blob: 18d743eccf3cafece7cbc50cda9486219eea9051 [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
Adam Snaiderb40b72f2023-11-02 19:40:55 -070025//! restrictions. <https://github.com/frc971/971-Robot-Code/issues/12> covers creating an adapter
Brian Silverman9809c5f2022-07-23 16:12:23 -070026//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
Adam Snaiderb40b72f2023-11-02 19:40:55 -070034//! <https://github.com/google/autocxx/issues/1146> for details.
Brian Silverman9809c5f2022-07-23 16:12:23 -070035//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
Brian Silverman2ee175e2023-07-11 16:32:08 -070037//! * Rust's lifetimes are only flexible enough to track everything with a single big lifetime.
38//! All the callbacks can store references to things tied to the event loop's lifetime, but no
39//! other lifetimes.
Brian Silverman9809c5f2022-07-23 16:12:23 -070040//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
41//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
42//! a lending stream. This is very close to lending iterators, which is one of the motivating
Adam Snaiderb40b72f2023-11-02 19:40:55 -070043//! examples for generic associated types (<https://github.com/rust-lang/rust/issues/44265>).
Brian Silverman9809c5f2022-07-23 16:12:23 -070044
Brian Silverman1431a772022-08-31 20:44:36 -070045use std::{
46 fmt,
47 future::Future,
48 marker::PhantomData,
Adam Snaider34072e12023-10-03 10:04:25 -070049 ops::{Add, Deref, DerefMut},
Brian Silverman1431a772022-08-31 20:44:36 -070050 panic::{catch_unwind, AssertUnwindSafe},
51 pin::Pin,
52 slice,
53 task::Poll,
54 time::Duration,
55};
Brian Silverman9809c5f2022-07-23 16:12:23 -070056
57use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070058 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070059 WithinBox,
60};
61use cxx::UniquePtr;
Adam Snaider34072e12023-10-03 10:04:25 -070062use flatbuffers::{
63 root_unchecked, Allocator, FlatBufferBuilder, Follow, FollowWith, FullyQualifiedName,
64};
Adam Snaider163800b2023-07-12 00:21:17 -040065use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070066use thiserror::Error;
67use uuid::Uuid;
68
Brian Silverman90221f82022-08-22 23:46:09 -070069pub use aos_configuration::{Channel, Configuration, Node};
70use aos_configuration::{ChannelLookupError, ConfigurationExt};
71
Brian Silverman9809c5f2022-07-23 16:12:23 -070072pub use aos_uuid::UUID;
Adam Snaider88097232023-10-17 18:43:14 -070073pub use ffi::aos::EventLoop as CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -070074pub use ffi::aos::EventLoopRuntime as CppEventLoopRuntime;
Adam Snaider163800b2023-07-12 00:21:17 -040075pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070076
77autocxx::include_cpp! (
78#include "aos/events/event_loop_runtime.h"
79
80safety!(unsafe)
81
82generate_pod!("aos::Context")
83generate!("aos::WatcherForRust")
84generate!("aos::RawSender_Error")
85generate!("aos::SenderForRust")
86generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070087generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070088generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040089generate!("aos::ExitHandle")
Adam Snaidercc8c2f72023-06-25 20:56:13 -070090generate!("aos::TimerForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070091
92subclass!("aos::ApplicationFuture", RustApplicationFuture)
93
94extern_cpp_type!("aos::Configuration", crate::Configuration)
95extern_cpp_type!("aos::Channel", crate::Channel)
96extern_cpp_type!("aos::Node", crate::Node)
97extern_cpp_type!("aos::UUID", crate::UUID)
98);
99
Brian Silverman2ee175e2023-07-11 16:32:08 -0700100/// A marker type which is invariant with respect to the given lifetime.
101///
102/// When interacting with functions that take and return things with a given lifetime, the lifetime
103/// becomes invariant. Because we don't store these functions as Rust types, we need a type like
104/// this to tell the Rust compiler that it can't substitute a shorter _or_ longer lifetime.
105pub type InvariantLifetime<'a> = PhantomData<fn(&'a ()) -> &'a ()>;
106
Brian Silverman9809c5f2022-07-23 16:12:23 -0700107/// # Safety
108///
109/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
110/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
111/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
112/// must be outlived by the EventLoop.
113#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700114#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700115pub struct RustApplicationFuture {
116 /// This logically has a `'event_loop` bound, see the class comment for details.
117 future: Pin<Box<dyn Future<Output = Never>>>,
118}
119
120impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700121 fn Poll(&mut self) -> bool {
122 catch_unwind(AssertUnwindSafe(|| {
123 // This is always allowed because it can never create a value of type `Ready<Never>` to
124 // return, so it must always return `Pending`. That also means the value it returns doesn't
125 // mean anything, so we ignore it.
126 let _ = Pin::new(&mut self.future)
127 .poll(&mut std::task::Context::from_waker(&panic_waker()));
128 }))
129 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700130 }
131}
132
133impl RustApplicationFuture {
134 pub fn new<'event_loop>(
135 future: impl Future<Output = Never> + 'event_loop,
136 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
137 /// # Safety
138 ///
139 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
140 /// sound.
141 unsafe fn remove_lifetime<'event_loop>(
142 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
143 ) -> Pin<Box<dyn Future<Output = Never>>> {
144 // SAFETY: Caller is responsible.
145 unsafe { std::mem::transmute(future) }
146 }
147
148 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
149 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
150 // details.
151 future: unsafe { remove_lifetime(Box::pin(future)) },
152 cpp_peer: Default::default(),
153 }))
154 }
155}
156
Brian Silverman2ee175e2023-07-11 16:32:08 -0700157/// An abstraction for objects which hold an `aos::EventLoop` from Rust code.
158///
159/// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
160/// [`EventLoopRuntime.new`] directly.
161///
162/// # Safety
163///
Adam Snaider014f88e2023-10-24 13:21:42 -0400164/// Objects implementing this trait must guarantee that the underlying event loop (as returned
165/// from [`EventLoopHolder::as_raw`]), must be valid for as long as this object is. One way to do
166/// this may be by managing ownership of the event loop with Rust's ownership semantics. However,
167/// this is not strictly necessary.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700168///
Adam Snaider88097232023-10-17 18:43:14 -0700169/// This also implies semantics similar to `Pin<&mut CppEventLoop>` for the underlying object.
Adam Snaider014f88e2023-10-24 13:21:42 -0400170/// Implementations of this trait must guarantee that the underlying object must not be moved while
171/// this object exists.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700172pub unsafe trait EventLoopHolder {
Adam Snaider014f88e2023-10-24 13:21:42 -0400173 /// Returns the raw C++ pointer of the underlying event loop.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700174 ///
Adam Snaider014f88e2023-10-24 13:21:42 -0400175 /// Caller can only assume this pointer is valid while `self` is still alive.
176 fn as_raw(&self) -> *const CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700177}
178
179/// Owns an [`EventLoopRuntime`] and its underlying `aos::EventLoop`, with safe management of the
180/// associated Rust lifetimes.
Adam Snaider014f88e2023-10-24 13:21:42 -0400181pub struct EventLoopRuntimeHolder<T: EventLoopHolder> {
182 // NOTE: `runtime` must get dropped first, so we declare it before the event_loop:
183 // https://doc.rust-lang.org/reference/destructors.html
184 _runtime: Pin<Box<CppEventLoopRuntime>>,
185 _event_loop: T,
186}
Brian Silverman2ee175e2023-07-11 16:32:08 -0700187
188impl<T: EventLoopHolder> EventLoopRuntimeHolder<T> {
189 /// Creates a new [`EventLoopRuntime`] and runs an initialization function on it. This is a
190 /// safe wrapper around [`EventLoopRuntime.new`] (although see [`EventLoopHolder`]'s safety
191 /// requirements, part of them are just delegated there).
192 ///
193 /// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
194 /// [`EventLoopRuntime.new`] directly.
195 ///
196 /// All setup of the runtime must be performed with `fun`, which is called before this function
197 /// returns. `fun` may create further objects to use in async functions via [`EventLoop.spawn`]
198 /// etc, but it is the only place to set things up before the EventLoop is run.
199 ///
200 /// `fun` cannot capture things outside of the event loop, because the event loop might outlive
201 /// them:
202 /// ```compile_fail
203 /// # use aos_events_event_loop_runtime::*;
204 /// # fn bad(event_loop: impl EventLoopHolder) {
205 /// let mut x = 0;
206 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
207 /// runtime.spawn(async {
208 /// x = 1;
209 /// loop {}
210 /// });
211 /// });
212 /// # }
213 /// ```
214 ///
215 /// But it can capture `'event_loop` references:
216 /// ```
217 /// # use aos_events_event_loop_runtime::*;
218 /// # use aos_configuration::ChannelExt;
219 /// # fn good(event_loop: impl EventLoopHolder) {
220 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
221 /// let channel = runtime.get_raw_channel("/test", "aos.examples.Ping").unwrap();
222 /// runtime.spawn(async {
223 /// loop {
224 /// eprintln!("{:?}", channel.type_());
225 /// }
226 /// });
227 /// });
228 /// # }
229 /// ```
230 pub fn new<F>(event_loop: T, fun: F) -> Self
231 where
Adam Snaidere4367cb2023-10-20 15:14:31 -0400232 F: for<'event_loop> FnOnce(EventLoopRuntime<'event_loop>),
Brian Silverman2ee175e2023-07-11 16:32:08 -0700233 {
Adam Snaider014f88e2023-10-24 13:21:42 -0400234 // SAFETY: The event loop pointer produced by as_raw must be valid and it will get dropped
235 // first (see https://doc.rust-lang.org/reference/destructors.html)
236 let runtime = unsafe { CppEventLoopRuntime::new(event_loop.as_raw()).within_box() };
237 EventLoopRuntime::with(&runtime, fun);
238 Self {
239 _runtime: runtime,
240 _event_loop: event_loop,
241 }
Brian Silverman2ee175e2023-07-11 16:32:08 -0700242 }
243}
244
Adam Snaidercd53e482023-10-23 09:37:42 -0400245/// Manages the Rust interface to a *single* `aos::EventLoop`.
246///
247/// This is intended to be used by a single application.
Adam Snaidere4367cb2023-10-20 15:14:31 -0400248#[derive(Copy, Clone)]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700249pub struct EventLoopRuntime<'event_loop>(
Adam Snaidere98c2482023-10-17 19:02:03 -0700250 &'event_loop CppEventLoopRuntime,
Brian Silverman2ee175e2023-07-11 16:32:08 -0700251 // See documentation of [`new`] for details.
252 InvariantLifetime<'event_loop>,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700253);
254
Brian Silverman9809c5f2022-07-23 16:12:23 -0700255impl<'event_loop> EventLoopRuntime<'event_loop> {
Adam Snaidercd53e482023-10-23 09:37:42 -0400256 /// Creates a new runtime for the underlying event loop.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700257 ///
258 /// Consider using [`EventLoopRuntimeHolder.new`] instead, if you're working with an
Adam Snaidercd53e482023-10-23 09:37:42 -0400259 /// `aos::EventLoop` owned (indirectly) by Rust code or using [`EventLoopRuntime::with`] as a safe
260 /// alternative.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700261 ///
Adam Snaider014f88e2023-10-24 13:21:42 -0400262 /// One common pattern is wrapping the lifetime behind a higher-rank trait bound (such as
263 /// [`FnOnce`]). This would constraint the lifetime to `'static` and objects with `'event_loop`
264 /// returned by this runtime.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700265 ///
Adam Snaiderb40b72f2023-11-02 19:40:55 -0700266 /// Call [`EventLoopRuntime::spawn`] to respond to events. The non-event-driven APIs may be used without calling
Brian Silverman9809c5f2022-07-23 16:12:23 -0700267 /// this.
268 ///
269 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
270 /// documentation for details.
271 ///
272 /// # Safety
273 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700274 /// This function is where all the tricky lifetime guarantees to ensure soundness come
275 /// together. It all boils down to choosing `'event_loop` correctly, which is very complicated.
276 /// Here are the rules:
Brian Silverman9809c5f2022-07-23 16:12:23 -0700277 ///
Adam Snaider014f88e2023-10-24 13:21:42 -0400278 /// 1. `'event_loop` extends until after the last time the underlying `aos::EventLoop` is run.
279 /// **This is often beyond the lifetime of this Rust `EventLoopRuntime` object**.
280 /// 2. `'event_loop` must outlive this object, because this object stores references to the
Brian Silverman2ee175e2023-07-11 16:32:08 -0700281 /// underlying `aos::EventLoop`.
Adam Snaider014f88e2023-10-24 13:21:42 -0400282 /// 3. Any other references stored in the underlying `aos::EventLoop` must be valid for
Brian Silverman2ee175e2023-07-11 16:32:08 -0700283 /// `'event_loop`. The easiest way to ensure this is by not using the `aos::EventLoop` before
284 /// passing it to this object.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700285 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700286 /// Here are some corollaries:
287 ///
288 /// 1. The underlying `aos::EventLoop` must be dropped after this object.
289 /// 2. This object will store various references valid for `'event_loop` with a duration of
Adam Snaider014f88e2023-10-24 13:21:42 -0400290 /// `'event_loop`, which is safe as long as
291 ///
292 /// * `'event_loop` outlives the underlying event loop, and
293 /// * `'event_loop` references are not used once the event loop is destroyed
294 ///
295 /// Note that this requires this type to be invariant with respect to `'event_loop`. This can
296 /// be achieved by using [`EventLoopRuntime::with`] since `'event_loop` referenes can't leave
297 /// `fun` and the runtime holding `'event_loop` references will be destroyed before the event
298 /// loop.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700299 ///
300 /// `aos::EventLoop`'s public API is exclusively for consumers of the event loop. Some
301 /// subclasses extend this API. Additionally, all useful implementations of `aos::EventLoop`
302 /// must have some way to process events. Sometimes this is additional API surface (such as
303 /// `aos::ShmEventLoop`), in other cases comes via other objects holding references to the
304 /// `aos::EventLoop` (such as `aos::SimulatedEventLoopFactory`). This access to run the event
305 /// loop functions independently of the consuming functions in every way except lifetime of the
306 /// `aos::EventLoop`, and may be used independently of `'event_loop`.
307 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700308 /// ## Alternatives and why they don't work
309 ///
310 /// Making the argument `Pin<&'event_loop mut EventLoop>` would express some (but not all) of
311 /// these restrictions within the Rust type system. However, having an actual Rust mutable
312 /// reference like that prevents anything else from creating one via other pointers to the
313 /// same object from C++, which is a common operation. See the module-level documentation for
314 /// details.
315 ///
Adam Snaiderb40b72f2023-11-02 19:40:55 -0700316 /// spawned tasks need to hold `&'event_loop` references to things like channels. Using a
Brian Silverman2ee175e2023-07-11 16:32:08 -0700317 /// separate `'config` lifetime wouldn't change much; the tasks still need to do things which
318 /// require them to not outlive something they don't control. This is fundamental to
319 /// self-referential objects, which `aos::EventLoop` is based around, but Rust requires unsafe
320 /// code to manage manually.
321 ///
322 /// ## Final cautions
323 ///
Adam Snaider014f88e2023-10-24 13:21:42 -0400324 /// Following these rules is very tricky. Be very cautious calling this function. The
325 /// exposed lifetime doesn't actually convey all the rules to the compiler. To the compiler,
326 /// `'event_loop` ends when this object is dropped which is not the case!
Adam Snaidere98c2482023-10-17 19:02:03 -0700327 pub unsafe fn new(event_loop: &'event_loop CppEventLoopRuntime) -> Self {
328 Self(event_loop, InvariantLifetime::default())
Brian Silverman2ee175e2023-07-11 16:32:08 -0700329 }
330
Adam Snaidercd53e482023-10-23 09:37:42 -0400331 /// Safely builds a "constrained" EventLoopRuntime with `fun`.
332 ///
333 /// We constrain the scope of the `[EventLoopRuntime]` by tying it to **any** `'a` lifetime. The
334 /// idea is that the only things that satisfy this lifetime are either ``static` or produced by
335 /// the event loop itself with a '`event_loop` runtime.
336 pub fn with<F>(event_loop: &'event_loop CppEventLoopRuntime, fun: F)
337 where
338 F: for<'a> FnOnce(EventLoopRuntime<'a>),
339 {
340 // SAFETY: We satisfy the event loop lifetime constraint by scoping it inside of a higher-
341 // rank lifetime in FnOnce. This is similar to what is done in std::thread::scope, and the
Adam Snaider014f88e2023-10-24 13:21:42 -0400342 // point is that `fun` can only assume that `'static` and types produced by this type with a
Adam Snaidercd53e482023-10-23 09:37:42 -0400343 // 'event_loop lifetime are the only lifetimes that will satisfy `'a`. This is possible due
344 // to this type's invariance over its lifetime, otherwise, one could easily make a Subtype
345 // that, due to its shorter lifetime, would include things from its outer scope.
346 unsafe {
347 fun(Self::new(event_loop));
348 }
349 }
350
Brian Silverman9809c5f2022-07-23 16:12:23 -0700351 /// Returns the pointer passed into the constructor.
352 ///
353 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
354 /// calling other C++ APIs.
Adam Snaider88097232023-10-17 18:43:14 -0700355 pub fn raw_event_loop(&self) -> *mut CppEventLoop {
Adam Snaider48a54682023-09-28 21:50:42 -0700356 self.0.event_loop()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700357 }
358
Brian Silverman90221f82022-08-22 23:46:09 -0700359 /// Returns a reference to the name of this EventLoop.
360 ///
361 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
362 /// logging etc.
363 ///
364 /// # Safety
365 ///
366 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
367 /// name from most places, so you should be really careful what you do with the result.
368 pub unsafe fn raw_name(&self) -> &str {
369 self.0.name()
370 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700371
372 pub fn get_raw_channel(
373 &self,
374 name: &str,
375 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700376 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700377 self.configuration().get_channel(
378 name,
379 typename,
380 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
381 // channel lookup.
382 unsafe { self.raw_name() },
383 self.node(),
384 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700385 }
386
Brian Silverman90221f82022-08-22 23:46:09 -0700387 pub fn get_channel<T: FullyQualifiedName>(
388 &self,
389 name: &str,
390 ) -> Result<&'event_loop Channel, ChannelLookupError> {
391 self.get_raw_channel(name, T::get_fully_qualified_name())
392 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700393
394 /// Starts running the given `task`, which may not return (as specified by its type). If you
395 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
396 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
397 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700398 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
Adam Snaiderb40b72f2023-11-02 19:40:55 -0700399 /// defer work until the event loop starts running, await [`EventLoopRuntime::on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700400 ///
401 /// # Panics
402 ///
403 /// Panics if called more than once. See the module-level documentation for alternatives if you
404 /// want to do this.
405 ///
406 /// # Examples with interesting return types
407 ///
408 /// These are all valid futures which never return:
409 /// ```
410 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
411 /// # use futures::{never::Never, future::pending};
412 /// async fn pending_wrapper() -> Never {
413 /// pending().await
414 /// }
415 /// async fn loop_forever() -> Never {
416 /// loop {}
417 /// }
418 ///
419 /// runtime.spawn(pending());
420 /// runtime.spawn(async { pending().await });
421 /// runtime.spawn(pending_wrapper());
422 /// runtime.spawn(async { loop {} });
423 /// runtime.spawn(loop_forever());
424 /// runtime.spawn(async { println!("all done"); pending().await });
425 /// # }
426 /// ```
427 /// but this is not:
428 /// ```compile_fail
429 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
430 /// # use futures::ready;
431 /// runtime.spawn(ready());
432 /// # }
433 /// ```
434 /// and neither is this:
435 /// ```compile_fail
436 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
437 /// # use futures::ready;
438 /// runtime.spawn(async { println!("all done") });
439 /// # }
440 /// ```
441 ///
442 /// # Examples with capturing
443 ///
444 /// The future can capture things. This is important to access other objects created from the
445 /// runtime, either before calling this function:
446 /// ```
447 /// # fn compile_check<'event_loop>(
448 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
449 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
450 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
451 /// # ) {
452 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
453 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
454 /// runtime.spawn(async move { loop {
455 /// watcher1.next().await;
456 /// watcher2.next().await;
457 /// }});
458 /// # }
459 /// ```
460 /// or after:
461 /// ```
462 /// # fn compile_check<'event_loop>(
463 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
464 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
465 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
466 /// # ) {
467 /// # use std::{cell::RefCell, rc::Rc};
468 /// let runtime = Rc::new(RefCell::new(runtime));
469 /// runtime.borrow_mut().spawn({
470 /// let mut runtime = runtime.clone();
471 /// async move {
472 /// let mut runtime = runtime.borrow_mut();
473 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
474 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
475 /// loop {
476 /// watcher1.next().await;
477 /// watcher2.next().await;
478 /// }
479 /// }
480 /// });
481 /// # }
482 /// ```
483 /// or both:
484 /// ```
485 /// # fn compile_check<'event_loop>(
486 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
487 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
488 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
489 /// # ) {
490 /// # use std::{cell::RefCell, rc::Rc};
491 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
492 /// let runtime = Rc::new(RefCell::new(runtime));
493 /// runtime.borrow_mut().spawn({
494 /// let mut runtime = runtime.clone();
495 /// async move {
496 /// let mut runtime = runtime.borrow_mut();
497 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
498 /// loop {
499 /// watcher1.next().await;
500 /// watcher2.next().await;
501 /// }
502 /// }
503 /// });
504 /// # }
505 /// ```
506 ///
507 /// But you cannot capture local variables:
508 /// ```compile_fail
509 /// # fn compile_check<'event_loop>(
510 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
511 /// # ) {
512 /// let mut local: i32 = 971;
513 /// let local = &mut local;
514 /// runtime.spawn(async move { loop {
515 /// println!("have: {}", local);
516 /// }});
517 /// # }
518 /// ```
Adam Snaider48a54682023-09-28 21:50:42 -0700519 pub fn spawn(&self, task: impl Future<Output = Never> + 'event_loop) {
520 self.0.Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700521 }
522
523 pub fn configuration(&self) -> &'event_loop Configuration {
524 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
525 unsafe { &*self.0.configuration() }
526 }
527
528 pub fn node(&self) -> Option<&'event_loop Node> {
529 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
530 unsafe { self.0.node().as_ref() }
531 }
532
533 pub fn monotonic_now(&self) -> MonotonicInstant {
534 MonotonicInstant(self.0.monotonic_now())
535 }
536
Ryan Yin683a8672022-11-09 20:44:20 -0800537 pub fn realtime_now(&self) -> RealtimeInstant {
538 RealtimeInstant(self.0.realtime_now())
539 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700540 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
541 /// part of `self.configuration()`, which will always have this lifetime.
542 ///
543 /// # Panics
544 ///
545 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700546 pub fn make_raw_watcher(&self, channel: &'event_loop Channel) -> RawWatcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700547 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
548 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700549 RawWatcher(unsafe { self.0.MakeWatcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700550 }
551
Brian Silverman90221f82022-08-22 23:46:09 -0700552 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
553 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
554 /// is easiest.
555 ///
556 /// # Panics
557 ///
558 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700559 pub fn make_watcher<T>(&self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700560 where
561 for<'a> T: FollowWith<'a>,
562 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
563 T: FullyQualifiedName,
564 {
565 let channel = self.get_channel::<T>(channel_name)?;
566 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
567 }
568
Brian Silverman9809c5f2022-07-23 16:12:23 -0700569 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
570 /// part of `self.configuration()`, which will always have this lifetime.
571 ///
572 /// # Panics
573 ///
574 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700575 pub fn make_raw_sender(&self, channel: &'event_loop Channel) -> RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700576 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
577 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700578 RawSender(unsafe { self.0.MakeSender(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700579 }
580
Brian Silverman90221f82022-08-22 23:46:09 -0700581 /// Allows sending messages on a channel with a type-safe API.
582 ///
583 /// # Panics
584 ///
585 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700586 pub fn make_sender<T>(&self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700587 where
588 for<'a> T: FollowWith<'a>,
589 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
590 T: FullyQualifiedName,
591 {
592 let channel = self.get_channel::<T>(channel_name)?;
593 Ok(Sender(self.make_raw_sender(channel), PhantomData))
594 }
595
Brian Silverman9809c5f2022-07-23 16:12:23 -0700596 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
597 /// part of `self.configuration()`, which will always have this lifetime.
598 ///
599 /// # Panics
600 ///
601 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700602 pub fn make_raw_fetcher(&self, channel: &'event_loop Channel) -> RawFetcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700603 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
604 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700605 RawFetcher(unsafe { self.0.MakeFetcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700606 }
607
Brian Silverman90221f82022-08-22 23:46:09 -0700608 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
609 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
610 /// message in order.
611 ///
612 /// # Panics
613 ///
614 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700615 pub fn make_fetcher<T>(&self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700616 where
617 for<'a> T: FollowWith<'a>,
618 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
619 T: FullyQualifiedName,
620 {
621 let channel = self.get_channel::<T>(channel_name)?;
622 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
623 }
624
Brian Silverman9809c5f2022-07-23 16:12:23 -0700625 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
626 // instead of / in addition to mirroring C++ with separate setup and wait?
627
Brian Silverman76f48362022-08-24 21:09:08 -0700628 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
629 /// subsequent code will have any realtime scheduling applied. This means it can rely on
630 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
631 /// else non-realtime.
Adam Snaider48a54682023-09-28 21:50:42 -0700632 pub fn on_run(&self) -> OnRun {
633 OnRun(self.0.MakeOnRun().within_box())
Brian Silverman76f48362022-08-24 21:09:08 -0700634 }
635
636 pub fn is_running(&self) -> bool {
637 self.0.is_running()
638 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700639
640 /// Returns an unarmed timer.
Adam Snaider48a54682023-09-28 21:50:42 -0700641 pub fn add_timer(&self) -> Timer {
642 Timer(self.0.AddTimer())
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700643 }
644
645 /// Returns a timer that goes off every `duration`-long ticks.
Adam Snaider48a54682023-09-28 21:50:42 -0700646 pub fn add_interval(&self, duration: Duration) -> Timer {
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700647 let mut timer = self.add_timer();
648 timer.setup(self.monotonic_now(), Some(duration));
649 timer
650 }
Adam Snaidercf0dac72023-10-02 14:41:58 -0700651
652 /// Sets the scheduler priority to run the event loop at.
653 pub fn set_realtime_priority(&self, priority: i32) {
654 self.0.SetRuntimeRealtimePriority(priority.into());
655 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700656}
657
658/// An event loop primitive that allows sleeping asynchronously.
659///
660/// # Examples
661///
662/// ```no_run
663/// # use aos_events_event_loop_runtime::EventLoopRuntime;
664/// # use std::time::Duration;
665/// # fn compile_check(runtime: &mut EventLoopRuntime<'_>) {
666/// # let mut timer = runtime.add_timer();
667/// // Goes as soon as awaited.
668/// timer.setup(runtime.monotonic_now(), None);
669/// // Goes off once in 2 seconds.
670/// timer.setup(runtime.monotonic_now() + Duration::from_secs(2), None);
671/// // Goes off as soon as awaited and every 2 seconds afterwards.
672/// timer.setup(runtime.monotonic_now(), Some(Duration::from_secs(1)));
673/// async {
674/// for i in 0..10 {
675/// timer.tick().await;
676/// }
677/// // Timer won't off anymore. Next `tick` will never return.
678/// timer.disable();
679/// timer.tick().await;
680/// };
681/// # }
682/// ```
683pub struct Timer(UniquePtr<ffi::aos::TimerForRust>);
684
685/// A "tick" for a [`Timer`].
686///
687/// This is the raw future generated by the [`Timer::tick`] function.
688pub struct TimerTick<'a>(&'a mut Timer);
689
690impl Timer {
691 /// Arms the timer.
692 ///
693 /// The timer should sleep until `base`, `base + repeat`, `base + repeat * 2`, ...
694 /// If `repeat` is `None`, then the timer only expires once at `base`.
695 pub fn setup(&mut self, base: MonotonicInstant, repeat: Option<Duration>) {
696 self.0.pin_mut().Schedule(
697 base.0,
698 repeat
699 .unwrap_or(Duration::from_nanos(0))
700 .as_nanos()
701 .try_into()
702 .expect("Out of range: Internal clock uses 64 bits"),
703 );
704 }
705
706 /// Disarms the timer.
707 ///
708 /// Can be re-enabled by calling `setup` again.
709 pub fn disable(&mut self) {
710 self.0.pin_mut().Disable();
711 }
712
713 /// Returns `true` if the timer is enabled.
714 pub fn is_enabled(&self) -> bool {
715 !self.0.IsDisabled()
716 }
717
718 /// Sets the name of the timer.
719 ///
720 /// This can be useful to get a descriptive name in the timing reports.
721 pub fn set_name(&mut self, name: &str) {
722 self.0.pin_mut().set_name(name);
723 }
724
725 /// Gets the name of the timer.
726 pub fn name(&self) -> &str {
727 self.0.name()
728 }
729
730 /// Returns a tick which can be `.await`ed.
731 ///
732 /// This tick will resolve on the next timer expired.
733 pub fn tick(&mut self) -> TimerTick {
734 TimerTick(self)
735 }
736
737 /// Polls the timer, returning `[Poll::Ready]` only once the timer expired.
738 fn poll(&mut self) -> Poll<()> {
739 if self.0.pin_mut().Poll() {
740 Poll::Ready(())
741 } else {
742 Poll::Pending
743 }
744 }
745}
746
747impl Future for TimerTick<'_> {
748 type Output = ();
749
750 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
751 self.0.poll()
752 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700753}
754
Brian Silverman9809c5f2022-07-23 16:12:23 -0700755/// Provides async blocking access to messages on a channel. This will return every message on the
756/// channel, in order.
757///
758/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
759///
760/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
761/// for actually interpreting messages. You probably want a [`Watcher`] instead.
762///
763/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
764/// reasons.
765///
766/// # Design
767///
768/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
769/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
770/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
771/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
772/// another level doesn't help anything.
773///
774/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
775///
776/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
777/// the same one mentioned here:
Adam Snaiderb40b72f2023-11-02 19:40:55 -0700778/// <https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future>
Brian Silverman9809c5f2022-07-23 16:12:23 -0700779/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
780/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700781// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
782#[repr(transparent)]
783pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
784
Brian Silverman9809c5f2022-07-23 16:12:23 -0700785impl RawWatcher {
786 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
787 /// without skipping any messages.
788 ///
789 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
790 /// will need to call this function again to get the succeeding message.
791 ///
792 /// # Examples
793 ///
794 /// The common use case is immediately awaiting the next message:
795 /// ```
796 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
797 /// println!("received: {:?}", watcher.next().await);
798 /// # }
799 /// ```
800 ///
801 /// You can also await the first message from any of a set of channels:
802 /// ```
803 /// # async fn select(
804 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
805 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
806 /// # ) {
807 /// futures::select! {
808 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
809 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
810 /// }
811 /// # }
812 /// ```
813 ///
814 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
815 /// enforce only having a single of these returned objects at a time. Drop the previous message
816 /// before asking for the next one. That means this will not compile:
817 /// ```compile_fail
818 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
819 /// let first = watcher.next();
820 /// let second = watcher.next();
821 /// first.await;
822 /// # }
823 /// ```
824 /// and nor will this:
825 /// ```compile_fail
826 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
827 /// let first = watcher.next().await;
828 /// watcher.next();
829 /// println!("still have: {:?}", first);
830 /// # }
831 /// ```
832 /// but this is fine:
833 /// ```
834 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
835 /// let first = watcher.next().await;
836 /// println!("have: {:?}", first);
837 /// watcher.next();
838 /// # }
839 /// ```
840 pub fn next(&mut self) -> RawWatcherNext {
841 RawWatcherNext(Some(self))
842 }
843}
844
845/// The type returned from [`RawWatcher::next`], see there for details.
846pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
847
848impl<'a> Future for RawWatcherNext<'a> {
849 type Output = Context<'a>;
850 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
851 let inner = self
852 .0
853 .take()
854 .expect("May not call poll after it returns Ready");
855 let maybe_context = inner.0.as_mut().PollNext();
856 if maybe_context.is_null() {
857 // We're not returning a reference into it, so we can safely replace the reference to
858 // use again in the future.
859 self.0.replace(inner);
860 Poll::Pending
861 } else {
862 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
863 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
864 // because we're dropping `inner` (which is that reference), so it will need to be
865 // borrowed again which cannot happen before the end of `'a`.
866 Poll::Ready(Context(unsafe { &*maybe_context }))
867 }
868 }
869}
870
871impl FusedFuture for RawWatcherNext<'_> {
872 fn is_terminated(&self) -> bool {
873 self.0.is_none()
874 }
875}
876
Brian Silverman90221f82022-08-22 23:46:09 -0700877/// Provides async blocking access to messages on a channel. This will return every message on the
878/// channel, in order.
879///
880/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
881///
882/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
883/// reasons. See [`RawWatcher`]'s documentation for details.
884pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
885where
886 for<'a> T: FollowWith<'a>,
887 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
888
889impl<T> Watcher<T>
890where
891 for<'a> T: FollowWith<'a>,
892 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
893{
894 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
895 /// without skipping any messages.
896 ///
897 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
898 /// will need to call this function again to get the succeeding message.
899 ///
900 /// # Examples
901 ///
902 /// The common use case is immediately awaiting the next message:
903 /// ```
904 /// # use pong_rust_fbs::aos::examples::Pong;
905 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
906 /// println!("received: {:?}", watcher.next().await);
907 /// # }
908 /// ```
909 ///
910 /// You can also await the first message from any of a set of channels:
911 /// ```
912 /// # use pong_rust_fbs::aos::examples::Pong;
913 /// # async fn select(
914 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
915 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
916 /// # ) {
917 /// futures::select! {
918 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
919 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
920 /// }
921 /// # }
922 /// ```
923 ///
924 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
925 /// enforce only having a single of these returned objects at a time. Drop the previous message
926 /// before asking for the next one. That means this will not compile:
927 /// ```compile_fail
928 /// # use pong_rust_fbs::aos::examples::Pong;
929 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
930 /// let first = watcher.next();
931 /// let second = watcher.next();
932 /// first.await;
933 /// # }
934 /// ```
935 /// and nor will this:
936 /// ```compile_fail
937 /// # use pong_rust_fbs::aos::examples::Pong;
938 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
939 /// let first = watcher.next().await;
940 /// watcher.next();
941 /// println!("still have: {:?}", first);
942 /// # }
943 /// ```
944 /// but this is fine:
945 /// ```
946 /// # use pong_rust_fbs::aos::examples::Pong;
947 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
948 /// let first = watcher.next().await;
949 /// println!("have: {:?}", first);
950 /// watcher.next();
951 /// # }
952 /// ```
953 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
954 WatcherNext(self.0.next(), PhantomData)
955 }
956}
957
958/// The type returned from [`Watcher::next`], see there for details.
959pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
960where
961 T: Follow<'watcher> + 'watcher;
962
963impl<'watcher, T> Future for WatcherNext<'watcher, T>
964where
965 T: Follow<'watcher> + 'watcher,
966{
967 type Output = TypedContext<'watcher, T>;
968
969 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
970 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
971 // SAFETY: The Watcher this was created from verified that the channel is the
972 // right type, and the C++ guarantees that the buffer's type matches.
973 TypedContext(context, PhantomData))
974 }
975}
976
977impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
978where
979 T: Follow<'watcher> + 'watcher,
980{
981 fn is_terminated(&self) -> bool {
982 self.0.is_terminated()
983 }
984}
985
986/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
987pub struct TypedContext<'a, T>(
988 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
989 Context<'a>,
990 PhantomData<*mut T>,
991)
992where
993 T: Follow<'a> + 'a;
994
Brian Silverman90221f82022-08-22 23:46:09 -0700995impl<'a, T> TypedContext<'a, T>
996where
997 T: Follow<'a> + 'a,
998{
999 pub fn message(&self) -> Option<T::Inner> {
1000 self.0.data().map(|data| {
1001 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
1002 // type based on invariants for our type.
1003 unsafe { root_unchecked::<T>(data) }
1004 })
1005 }
1006
1007 pub fn monotonic_event_time(&self) -> MonotonicInstant {
1008 self.0.monotonic_event_time()
1009 }
1010 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
1011 self.0.monotonic_remote_time()
1012 }
Ryan Yin683a8672022-11-09 20:44:20 -08001013 pub fn realtime_event_time(&self) -> RealtimeInstant {
1014 self.0.realtime_event_time()
1015 }
1016 pub fn realtime_remote_time(&self) -> RealtimeInstant {
1017 self.0.realtime_remote_time()
1018 }
Brian Silverman90221f82022-08-22 23:46:09 -07001019 pub fn queue_index(&self) -> u32 {
1020 self.0.queue_index()
1021 }
1022 pub fn remote_queue_index(&self) -> u32 {
1023 self.0.remote_queue_index()
1024 }
1025 pub fn buffer_index(&self) -> i32 {
1026 self.0.buffer_index()
1027 }
1028 pub fn source_boot_uuid(&self) -> &Uuid {
1029 self.0.source_boot_uuid()
1030 }
1031}
1032
1033impl<'a, T> fmt::Debug for TypedContext<'a, T>
1034where
1035 T: Follow<'a> + 'a,
1036 T::Inner: fmt::Debug,
1037{
1038 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -07001039 f.debug_struct("TypedContext")
1040 .field("monotonic_event_time", &self.monotonic_event_time())
1041 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001042 .field("realtime_event_time", &self.realtime_event_time())
1043 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -07001044 .field("queue_index", &self.queue_index())
1045 .field("remote_queue_index", &self.remote_queue_index())
1046 .field("message", &self.message())
1047 .field("buffer_index", &self.buffer_index())
1048 .field("source_boot_uuid", &self.source_boot_uuid())
1049 .finish()
1050 }
1051}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001052
1053/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -07001054/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001055///
1056/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
1057///
1058/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1059/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -07001060// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1061#[repr(transparent)]
1062pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
1063
Brian Silverman9809c5f2022-07-23 16:12:23 -07001064impl RawFetcher {
1065 pub fn fetch_next(&mut self) -> bool {
1066 self.0.as_mut().FetchNext()
1067 }
1068
1069 pub fn fetch(&mut self) -> bool {
1070 self.0.as_mut().Fetch()
1071 }
1072
1073 pub fn context(&self) -> Context {
1074 Context(self.0.context())
1075 }
1076}
1077
Brian Silverman90221f82022-08-22 23:46:09 -07001078/// Provides access to messages on a channel, without the ability to wait for a new one. This
1079/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
1080///
1081/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
1082pub struct Fetcher<T>(
1083 // SAFETY: This must produce messages of type `T`.
1084 RawFetcher,
1085 PhantomData<*mut T>,
1086)
1087where
1088 for<'a> T: FollowWith<'a>,
1089 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1090
1091impl<T> Fetcher<T>
1092where
1093 for<'a> T: FollowWith<'a>,
1094 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1095{
1096 pub fn fetch_next(&mut self) -> bool {
1097 self.0.fetch_next()
1098 }
1099 pub fn fetch(&mut self) -> bool {
1100 self.0.fetch()
1101 }
1102
1103 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
1104 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
1105 // type matches.
1106 TypedContext(self.0.context(), PhantomData)
1107 }
1108}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001109
1110/// Allows sending messages on a channel.
1111///
1112/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1113/// for actually creating messages to send. You probably want a [`Sender`] instead.
1114///
1115/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -07001116// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1117#[repr(transparent)]
1118pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
1119
Brian Silverman9809c5f2022-07-23 16:12:23 -07001120impl RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001121 /// Returns an object which can be used to build a message.
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1127 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1128 /// # unsafe {
1129 /// let mut builder = sender.make_builder();
1130 /// let pong = PongBuilder::new(builder.fbb()).finish();
1131 /// builder.send(pong);
1132 /// # }
1133 /// # }
1134 /// ```
1135 ///
1136 /// You can bail out of building a message and build another one:
1137 /// ```
1138 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1139 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1140 /// # unsafe {
1141 /// let mut builder1 = sender.make_builder();
1142 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001143 /// drop(builder1);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001144 /// let mut builder2 = sender.make_builder();
1145 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1146 /// builder2.send(pong);
1147 /// # }
1148 /// # }
1149 /// ```
1150 /// but you cannot build two messages at the same time with a single builder:
1151 /// ```compile_fail
1152 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1153 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1154 /// # unsafe {
1155 /// let mut builder1 = sender.make_builder();
1156 /// let mut builder2 = sender.make_builder();
1157 /// PongBuilder::new(builder2.fbb()).finish();
1158 /// PongBuilder::new(builder1.fbb()).finish();
1159 /// # }
1160 /// # }
1161 /// ```
1162 pub fn make_builder(&mut self) -> RawBuilder {
Adam Snaider34072e12023-10-03 10:04:25 -07001163 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment
1164 // requirements. Additionally, the lifetime of the builder is tied to
1165 // the lifetime of self so the buffer won't be accessible again until
1166 // the builder is destroyed.
1167 let allocator = ChannelPreallocatedAllocator::new(unsafe {
1168 slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size())
1169 });
1170 let fbb = FlatBufferBuilder::new_in(allocator);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001171 RawBuilder {
1172 raw_sender: self,
1173 fbb,
1174 }
1175 }
1176}
1177
Brian Silverman9809c5f2022-07-23 16:12:23 -07001178/// Used for building a message. See [`RawSender::make_builder`] for details.
1179pub struct RawBuilder<'sender> {
1180 raw_sender: &'sender mut RawSender,
Adam Snaider34072e12023-10-03 10:04:25 -07001181 fbb: FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>>,
Brian Silverman9809c5f2022-07-23 16:12:23 -07001182}
1183
1184impl<'sender> RawBuilder<'sender> {
Adam Snaider34072e12023-10-03 10:04:25 -07001185 pub fn fbb(
1186 &mut self,
1187 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001188 &mut self.fbb
1189 }
1190
1191 /// # Safety
1192 ///
1193 /// `T` must match the type of the channel of the sender this builder was created from.
1194 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
1195 self.fbb.finish_minimal(root);
1196 let data = self.fbb.finished_data();
1197
1198 use ffi::aos::RawSender_Error as FfiError;
1199 // SAFETY: This is a valid buffer we're passing.
Adam Snaiderb40b72f2023-11-02 19:40:55 -07001200 match self.raw_sender.0.as_mut().SendBuffer(data.len()) {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001201 FfiError::kOk => Ok(()),
1202 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
1203 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
1204 }
1205 }
1206}
1207
Brian Silverman90221f82022-08-22 23:46:09 -07001208/// Allows sending messages on a channel with a type-safe API.
1209///
1210/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
1211pub struct Sender<T>(
1212 // SAFETY: This must accept messages of type `T`.
1213 RawSender,
1214 PhantomData<*mut T>,
1215)
1216where
1217 for<'a> T: FollowWith<'a>,
1218 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1219
1220impl<T> Sender<T>
1221where
1222 for<'a> T: FollowWith<'a>,
1223 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1224{
1225 /// Returns an object which can be used to build a message.
1226 ///
1227 /// # Examples
1228 ///
1229 /// ```
1230 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1231 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1232 /// let mut builder = sender.make_builder();
1233 /// let pong = PongBuilder::new(builder.fbb()).finish();
1234 /// builder.send(pong);
1235 /// # }
1236 /// ```
1237 ///
1238 /// You can bail out of building a message and build another one:
1239 /// ```
1240 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1241 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1242 /// let mut builder1 = sender.make_builder();
1243 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001244 /// drop(builder1);
Brian Silverman90221f82022-08-22 23:46:09 -07001245 /// let mut builder2 = sender.make_builder();
1246 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1247 /// builder2.send(pong);
1248 /// # }
1249 /// ```
1250 /// but you cannot build two messages at the same time with a single builder:
1251 /// ```compile_fail
1252 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1253 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1254 /// let mut builder1 = sender.make_builder();
1255 /// let mut builder2 = sender.make_builder();
1256 /// PongBuilder::new(builder2.fbb()).finish();
1257 /// PongBuilder::new(builder1.fbb()).finish();
1258 /// # }
1259 /// ```
1260 pub fn make_builder(&mut self) -> Builder<T> {
1261 Builder(self.0.make_builder(), PhantomData)
1262 }
1263}
1264
1265/// Used for building a message. See [`Sender::make_builder`] for details.
1266pub struct Builder<'sender, T>(
1267 // SAFETY: This must accept messages of type `T`.
1268 RawBuilder<'sender>,
1269 PhantomData<*mut T>,
1270)
1271where
1272 for<'a> T: FollowWith<'a>,
1273 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1274
1275impl<'sender, T> Builder<'sender, T>
1276where
1277 for<'a> T: FollowWith<'a>,
1278 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1279{
Adam Snaider34072e12023-10-03 10:04:25 -07001280 pub fn fbb(
1281 &mut self,
1282 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman90221f82022-08-22 23:46:09 -07001283 self.0.fbb()
1284 }
1285
1286 pub fn send<'a>(
1287 self,
1288 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1289 ) -> Result<(), SendError> {
1290 // SAFETY: We guarantee this is the right type based on invariants for our type.
1291 unsafe { self.0.send(root) }
1292 }
1293}
1294
1295#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1296pub enum SendError {
1297 #[error("messages have been sent too fast on this channel")]
1298 MessagesSentTooFast,
1299 #[error("invalid redzone data, shared memory corruption detected")]
1300 InvalidRedzone,
1301}
1302
Brian Silverman9809c5f2022-07-23 16:12:23 -07001303#[repr(transparent)]
1304#[derive(Clone, Copy)]
1305pub struct Context<'context>(&'context ffi::aos::Context);
1306
1307impl fmt::Debug for Context<'_> {
1308 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001309 f.debug_struct("Context")
1310 .field("monotonic_event_time", &self.monotonic_event_time())
1311 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001312 .field("realtime_event_time", &self.realtime_event_time())
1313 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001314 .field("queue_index", &self.queue_index())
1315 .field("remote_queue_index", &self.remote_queue_index())
1316 .field("size", &self.data().map(|data| data.len()))
1317 .field("buffer_index", &self.buffer_index())
1318 .field("source_boot_uuid", &self.source_boot_uuid())
1319 .finish()
1320 }
1321}
1322
Brian Silverman9809c5f2022-07-23 16:12:23 -07001323impl<'context> Context<'context> {
1324 pub fn monotonic_event_time(self) -> MonotonicInstant {
1325 MonotonicInstant(self.0.monotonic_event_time)
1326 }
1327
1328 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1329 MonotonicInstant(self.0.monotonic_remote_time)
1330 }
1331
Ryan Yin683a8672022-11-09 20:44:20 -08001332 pub fn realtime_event_time(self) -> RealtimeInstant {
1333 RealtimeInstant(self.0.realtime_event_time)
1334 }
1335
1336 pub fn realtime_remote_time(self) -> RealtimeInstant {
1337 RealtimeInstant(self.0.realtime_remote_time)
1338 }
1339
Brian Silverman9809c5f2022-07-23 16:12:23 -07001340 pub fn queue_index(self) -> u32 {
1341 self.0.queue_index
1342 }
1343 pub fn remote_queue_index(self) -> u32 {
1344 self.0.remote_queue_index
1345 }
1346
1347 pub fn data(self) -> Option<&'context [u8]> {
1348 if self.0.data.is_null() {
1349 None
1350 } else {
1351 // SAFETY:
1352 // * `u8` has no alignment requirements
1353 // * It must be a single initialized flatbuffers buffer
1354 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1355 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1356 }
1357 }
1358
1359 pub fn buffer_index(self) -> i32 {
1360 self.0.buffer_index
1361 }
1362
1363 pub fn source_boot_uuid(self) -> &'context Uuid {
1364 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1365 // valid until something changes the context, which is `'context`.
1366 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1367 }
1368}
1369
Brian Silverman76f48362022-08-24 21:09:08 -07001370/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1371// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1372#[repr(transparent)]
1373pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1374
Adam Snaidera3317c82023-10-02 16:02:36 -07001375impl Future for &'_ OnRun {
Brian Silverman76f48362022-08-24 21:09:08 -07001376 type Output = ();
1377
1378 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1379 if self.0.is_running() {
1380 Poll::Ready(())
1381 } else {
1382 Poll::Pending
1383 }
1384 }
1385}
1386
Brian Silverman9809c5f2022-07-23 16:12:23 -07001387/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1388/// is intended to have the same API as [`std::time::Instant`], any missing
1389/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001390#[repr(transparent)]
1391#[derive(Clone, Copy, Eq, PartialEq)]
1392pub struct MonotonicInstant(i64);
1393
1394impl MonotonicInstant {
1395 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1396 pub const MIN_TIME: Self = Self(i64::MIN);
1397
1398 pub fn is_min_time(self) -> bool {
1399 self == Self::MIN_TIME
1400 }
1401
1402 pub fn duration_since_epoch(self) -> Option<Duration> {
1403 if self.is_min_time() {
1404 None
1405 } else {
1406 Some(Duration::from_nanos(self.0.try_into().expect(
1407 "monotonic_clock::time_point should always be after the epoch",
1408 )))
1409 }
1410 }
1411}
1412
Adam Snaidercc8c2f72023-06-25 20:56:13 -07001413impl Add<Duration> for MonotonicInstant {
1414 type Output = MonotonicInstant;
1415
1416 fn add(self, rhs: Duration) -> Self::Output {
1417 Self(self.0 + i64::try_from(rhs.as_nanos()).unwrap())
1418 }
1419}
1420
Adam Snaiderde51c672023-09-28 21:55:43 -07001421impl From<MonotonicInstant> for i64 {
1422 fn from(value: MonotonicInstant) -> Self {
1423 value.0
1424 }
1425}
1426
Brian Silverman9809c5f2022-07-23 16:12:23 -07001427impl fmt::Debug for MonotonicInstant {
1428 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1429 self.duration_since_epoch().fmt(f)
1430 }
1431}
1432
Ryan Yin683a8672022-11-09 20:44:20 -08001433#[repr(transparent)]
1434#[derive(Clone, Copy, Eq, PartialEq)]
1435pub struct RealtimeInstant(i64);
1436
1437impl RealtimeInstant {
1438 pub const MIN_TIME: Self = Self(i64::MIN);
1439
1440 pub fn is_min_time(self) -> bool {
1441 self == Self::MIN_TIME
1442 }
1443
1444 pub fn duration_since_epoch(self) -> Option<Duration> {
1445 if self.is_min_time() {
1446 None
1447 } else {
1448 Some(Duration::from_nanos(self.0.try_into().expect(
1449 "monotonic_clock::time_point should always be after the epoch",
1450 )))
1451 }
1452 }
1453}
1454
Adam Snaiderde51c672023-09-28 21:55:43 -07001455impl From<RealtimeInstant> for i64 {
1456 fn from(value: RealtimeInstant) -> Self {
1457 value.0
1458 }
1459}
1460
Ryan Yin683a8672022-11-09 20:44:20 -08001461impl fmt::Debug for RealtimeInstant {
1462 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1463 self.duration_since_epoch().fmt(f)
1464 }
1465}
1466
Brian Silverman9809c5f2022-07-23 16:12:23 -07001467mod panic_waker {
1468 use std::task::{RawWaker, RawWakerVTable, Waker};
1469
1470 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1471 raw_panic_waker()
1472 }
1473
1474 unsafe fn noop(_data: *const ()) {}
1475
1476 unsafe fn wake_panic(_data: *const ()) {
1477 panic!("Nothing should wake EventLoopRuntime's waker");
1478 }
1479
1480 const PANIC_WAKER_VTABLE: RawWakerVTable =
1481 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1482
1483 fn raw_panic_waker() -> RawWaker {
1484 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1485 }
1486
1487 pub fn panic_waker() -> Waker {
1488 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1489 unsafe { Waker::from_raw(raw_panic_waker()) }
1490 }
1491}
1492
1493use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001494
1495pub struct ExitHandle(UniquePtr<CppExitHandle>);
1496
1497impl ExitHandle {
1498 /// Exits the EventLoops represented by this handle. You probably want to immediately return
Adam Snaiderb40b72f2023-11-02 19:40:55 -07001499 /// from the context this is called in. Awaiting [`ExitHandle::exit`] instead of using this
1500 /// function is an easy way to do that.
Adam Snaider163800b2023-07-12 00:21:17 -04001501 pub fn exit_sync(mut self) {
1502 self.0.as_mut().unwrap().Exit();
1503 }
1504
1505 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1506 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1507 /// that no more code from that task runs.
1508 pub async fn exit(self) -> Never {
1509 self.exit_sync();
1510 pending().await
1511 }
1512}
1513
1514impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1515 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1516 Self(inner)
1517 }
1518}
Adam Snaider34072e12023-10-03 10:04:25 -07001519
1520pub struct ChannelPreallocatedAllocator<'a> {
1521 buffer: &'a mut [u8],
1522}
1523
1524impl<'a> ChannelPreallocatedAllocator<'a> {
1525 pub fn new(buffer: &'a mut [u8]) -> Self {
1526 Self { buffer }
1527 }
1528}
1529
1530#[derive(Debug, Error)]
1531#[error("Can't allocate more memory with a fixed size allocator")]
1532pub struct OutOfMemory;
1533
1534// SAFETY: Allocator follows the required behavior.
1535unsafe impl Allocator for ChannelPreallocatedAllocator<'_> {
1536 type Error = OutOfMemory;
1537 fn grow_downwards(&mut self) -> Result<(), Self::Error> {
1538 // Fixed size allocator can't grow.
1539 Err(OutOfMemory)
1540 }
1541
1542 fn len(&self) -> usize {
1543 self.buffer.len()
1544 }
1545}
1546
1547impl Deref for ChannelPreallocatedAllocator<'_> {
1548 type Target = [u8];
1549
1550 fn deref(&self) -> &Self::Target {
1551 self.buffer
1552 }
1553}
1554
1555impl DerefMut for ChannelPreallocatedAllocator<'_> {
1556 fn deref_mut(&mut self) -> &mut Self::Target {
1557 self.buffer
1558 }
1559}