blob: 461f650641a3134059762754be29eea9c2765dca [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
Brian Silverman2ee175e2023-07-11 16:32:08 -070037//! * Rust's lifetimes are only flexible enough to track everything with a single big lifetime.
38//! All the callbacks can store references to things tied to the event loop's lifetime, but no
39//! other lifetimes.
Brian Silverman9809c5f2022-07-23 16:12:23 -070040//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
41//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
42//! a lending stream. This is very close to lending iterators, which is one of the motivating
43//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
44
Brian Silverman1431a772022-08-31 20:44:36 -070045use std::{
46 fmt,
47 future::Future,
48 marker::PhantomData,
Brian Silverman2ee175e2023-07-11 16:32:08 -070049 mem::ManuallyDrop,
Adam Snaider34072e12023-10-03 10:04:25 -070050 ops::{Add, Deref, DerefMut},
Brian Silverman1431a772022-08-31 20:44:36 -070051 panic::{catch_unwind, AssertUnwindSafe},
52 pin::Pin,
53 slice,
54 task::Poll,
55 time::Duration,
56};
Brian Silverman9809c5f2022-07-23 16:12:23 -070057
58use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070059 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070060 WithinBox,
61};
62use cxx::UniquePtr;
Adam Snaider34072e12023-10-03 10:04:25 -070063use flatbuffers::{
64 root_unchecked, Allocator, FlatBufferBuilder, Follow, FollowWith, FullyQualifiedName,
65};
Adam Snaider163800b2023-07-12 00:21:17 -040066use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070067use thiserror::Error;
68use uuid::Uuid;
69
Brian Silverman90221f82022-08-22 23:46:09 -070070pub use aos_configuration::{Channel, Configuration, Node};
71use aos_configuration::{ChannelLookupError, ConfigurationExt};
72
Brian Silverman9809c5f2022-07-23 16:12:23 -070073pub use aos_uuid::UUID;
Adam Snaider88097232023-10-17 18:43:14 -070074pub use ffi::aos::EventLoop as CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -070075pub use ffi::aos::EventLoopRuntime as CppEventLoopRuntime;
Adam Snaider163800b2023-07-12 00:21:17 -040076pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070077
78autocxx::include_cpp! (
79#include "aos/events/event_loop_runtime.h"
80
81safety!(unsafe)
82
83generate_pod!("aos::Context")
84generate!("aos::WatcherForRust")
85generate!("aos::RawSender_Error")
86generate!("aos::SenderForRust")
87generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070088generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070089generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040090generate!("aos::ExitHandle")
Adam Snaidercc8c2f72023-06-25 20:56:13 -070091generate!("aos::TimerForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070092
93subclass!("aos::ApplicationFuture", RustApplicationFuture)
94
95extern_cpp_type!("aos::Configuration", crate::Configuration)
96extern_cpp_type!("aos::Channel", crate::Channel)
97extern_cpp_type!("aos::Node", crate::Node)
98extern_cpp_type!("aos::UUID", crate::UUID)
99);
100
Brian Silverman2ee175e2023-07-11 16:32:08 -0700101/// A marker type which is invariant with respect to the given lifetime.
102///
103/// When interacting with functions that take and return things with a given lifetime, the lifetime
104/// becomes invariant. Because we don't store these functions as Rust types, we need a type like
105/// this to tell the Rust compiler that it can't substitute a shorter _or_ longer lifetime.
106pub type InvariantLifetime<'a> = PhantomData<fn(&'a ()) -> &'a ()>;
107
Brian Silverman9809c5f2022-07-23 16:12:23 -0700108/// # Safety
109///
110/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
111/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
112/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
113/// must be outlived by the EventLoop.
114#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700115#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700116pub struct RustApplicationFuture {
117 /// This logically has a `'event_loop` bound, see the class comment for details.
118 future: Pin<Box<dyn Future<Output = Never>>>,
119}
120
121impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700122 fn Poll(&mut self) -> bool {
123 catch_unwind(AssertUnwindSafe(|| {
124 // This is always allowed because it can never create a value of type `Ready<Never>` to
125 // return, so it must always return `Pending`. That also means the value it returns doesn't
126 // mean anything, so we ignore it.
127 let _ = Pin::new(&mut self.future)
128 .poll(&mut std::task::Context::from_waker(&panic_waker()));
129 }))
130 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700131 }
132}
133
134impl RustApplicationFuture {
135 pub fn new<'event_loop>(
136 future: impl Future<Output = Never> + 'event_loop,
137 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
138 /// # Safety
139 ///
140 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
141 /// sound.
142 unsafe fn remove_lifetime<'event_loop>(
143 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
144 ) -> Pin<Box<dyn Future<Output = Never>>> {
145 // SAFETY: Caller is responsible.
146 unsafe { std::mem::transmute(future) }
147 }
148
149 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
150 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
151 // details.
152 future: unsafe { remove_lifetime(Box::pin(future)) },
153 cpp_peer: Default::default(),
154 }))
155 }
156}
157
Brian Silverman2ee175e2023-07-11 16:32:08 -0700158/// An abstraction for objects which hold an `aos::EventLoop` from Rust code.
159///
160/// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
161/// [`EventLoopRuntime.new`] directly.
162///
163/// # Safety
164///
165/// Objects implementing this trait *must* have mostly-exclusive (except for running it) ownership
166/// of the `aos::EventLoop` *for its entire lifetime*, which *must* be dropped when this object is.
167/// See [`EventLoopRuntime.new`]'s safety requirements for why this can be important and details of
168/// mostly-exclusive. In other words, nothing else may mutate it in any way except processing events
169/// (including dropping, because this object has to be the one to drop it).
170///
Adam Snaider88097232023-10-17 18:43:14 -0700171/// This also implies semantics similar to `Pin<&mut CppEventLoop>` for the underlying object.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700172/// Implementations of this trait must have exclusive ownership of it, and the underlying object
173/// must not be moved.
174pub unsafe trait EventLoopHolder {
175 /// Converts this holder into a raw C++ pointer. This may be fed through other Rust and C++
176 /// code, and eventually passed back to [`from_raw`].
Adam Snaider88097232023-10-17 18:43:14 -0700177 fn into_raw(self) -> *mut CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700178
179 /// Converts a raw C++ pointer back to a holder object.
180 ///
181 /// # Safety
182 ///
183 /// `raw` must be the result of [`into_raw`] on an instance of this same type. These raw
184 /// pointers *are not* interchangeable between implementations of this trait.
Adam Snaider88097232023-10-17 18:43:14 -0700185 unsafe fn from_raw(raw: *mut CppEventLoop) -> Self;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700186}
187
188/// Owns an [`EventLoopRuntime`] and its underlying `aos::EventLoop`, with safe management of the
189/// associated Rust lifetimes.
190pub struct EventLoopRuntimeHolder<T: EventLoopHolder>(
191 ManuallyDrop<Pin<Box<CppEventLoopRuntime>>>,
192 PhantomData<T>,
193);
194
195impl<T: EventLoopHolder> EventLoopRuntimeHolder<T> {
196 /// Creates a new [`EventLoopRuntime`] and runs an initialization function on it. This is a
197 /// safe wrapper around [`EventLoopRuntime.new`] (although see [`EventLoopHolder`]'s safety
198 /// requirements, part of them are just delegated there).
199 ///
200 /// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
201 /// [`EventLoopRuntime.new`] directly.
202 ///
203 /// All setup of the runtime must be performed with `fun`, which is called before this function
204 /// returns. `fun` may create further objects to use in async functions via [`EventLoop.spawn`]
205 /// etc, but it is the only place to set things up before the EventLoop is run.
206 ///
207 /// `fun` cannot capture things outside of the event loop, because the event loop might outlive
208 /// them:
209 /// ```compile_fail
210 /// # use aos_events_event_loop_runtime::*;
211 /// # fn bad(event_loop: impl EventLoopHolder) {
212 /// let mut x = 0;
213 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
214 /// runtime.spawn(async {
215 /// x = 1;
216 /// loop {}
217 /// });
218 /// });
219 /// # }
220 /// ```
221 ///
222 /// But it can capture `'event_loop` references:
223 /// ```
224 /// # use aos_events_event_loop_runtime::*;
225 /// # use aos_configuration::ChannelExt;
226 /// # fn good(event_loop: impl EventLoopHolder) {
227 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
228 /// let channel = runtime.get_raw_channel("/test", "aos.examples.Ping").unwrap();
229 /// runtime.spawn(async {
230 /// loop {
231 /// eprintln!("{:?}", channel.type_());
232 /// }
233 /// });
234 /// });
235 /// # }
236 /// ```
237 pub fn new<F>(event_loop: T, fun: F) -> Self
238 where
239 F: for<'event_loop> FnOnce(&mut EventLoopRuntime<'event_loop>),
240 {
241 // SAFETY: The EventLoopRuntime never escapes this function, which means the only code that
242 // observes its lifetime is `fun`. `fun` must be generic across any value of its
243 // `'event_loop` lifetime parameter, which means we can choose any lifetime here, which
244 // satisfies the safety requirements.
245 //
246 // This is a similar pattern as `std::thread::scope`, `ghost-cell`, etc. Note that unlike
247 // `std::thread::scope`, our inner functions (the async ones) are definitely not allowed to
248 // capture things from the calling scope of this function, so there's no `'env` equivalent.
249 // `ghost-cell` ends up looking very similar despite doing different things with the
250 // pattern, while `std::thread::scope` has a lot of additional complexity to achieve a
251 // similar result.
252 //
253 // `EventLoopHolder`s safety requirements prevent anybody else from touching the underlying
254 // `aos::EventLoop`.
Adam Snaidere98c2482023-10-17 19:02:03 -0700255 let cpp_runtime = unsafe { CppEventLoopRuntime::new(event_loop.into_raw()).within_box() };
256 let mut runtime = unsafe { EventLoopRuntime::new(&cpp_runtime) };
Brian Silverman2ee175e2023-07-11 16:32:08 -0700257 fun(&mut runtime);
Adam Snaidere98c2482023-10-17 19:02:03 -0700258 Self(ManuallyDrop::new(cpp_runtime), PhantomData)
Brian Silverman2ee175e2023-07-11 16:32:08 -0700259 }
260}
261
262impl<T: EventLoopHolder> Drop for EventLoopRuntimeHolder<T> {
263 fn drop(&mut self) {
Adam Snaider48a54682023-09-28 21:50:42 -0700264 let event_loop = self.0.event_loop();
Brian Silverman2ee175e2023-07-11 16:32:08 -0700265 // SAFETY: We're not going to touch this field again. The underlying EventLoop will not be
266 // run again because we're going to drop it next.
267 unsafe { ManuallyDrop::drop(&mut self.0) };
268 // SAFETY: We took this from `into_raw`, and we just dropped the runtime which may contain
269 // Rust references to it.
270 unsafe { drop(T::from_raw(event_loop)) };
271 }
272}
273
Brian Silverman9809c5f2022-07-23 16:12:23 -0700274pub struct EventLoopRuntime<'event_loop>(
Adam Snaidere98c2482023-10-17 19:02:03 -0700275 &'event_loop CppEventLoopRuntime,
Brian Silverman2ee175e2023-07-11 16:32:08 -0700276 // See documentation of [`new`] for details.
277 InvariantLifetime<'event_loop>,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700278);
279
280/// Manages the Rust interface to a *single* `aos::EventLoop`. This is intended to be used by a
281/// single application.
282impl<'event_loop> EventLoopRuntime<'event_loop> {
Brian Silverman2ee175e2023-07-11 16:32:08 -0700283 /// Creates a new runtime. This must be the only user of the underlying `aos::EventLoop`.
284 ///
285 /// Consider using [`EventLoopRuntimeHolder.new`] instead, if you're working with an
286 /// `aos::EventLoop` owned (indirectly) by Rust code.
287 ///
288 /// One common pattern is calling this in the constructor of an object whose lifetime is managed
289 /// by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code that obeys
290 /// these rules implicitly.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700291 ///
292 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
293 /// this.
294 ///
295 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
296 /// documentation for details.
297 ///
298 /// # Safety
299 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700300 /// This function is where all the tricky lifetime guarantees to ensure soundness come
301 /// together. It all boils down to choosing `'event_loop` correctly, which is very complicated.
302 /// Here are the rules:
Brian Silverman9809c5f2022-07-23 16:12:23 -0700303 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700304 /// 1. The `aos::EventLoop` APIs, and any other consumer-facing APIs, of the underlying
305 /// `aos::EventLoop` *must* be exclusively used by this object, and things it calls, for
306 /// `'event_loop`.
307 /// 2. `'event_loop` extends until after the last time the underlying `aos::EventLoop` is run.
308 /// This is often beyond the lifetime of this Rust `EventLoopRuntime` object.
309 /// 3. `'event_loop` must outlive this object, because this object stores references to the
310 /// underlying `aos::EventLoop`.
311 /// 4. Any other references stored in the underlying `aos::EventLoop` must be valid for
312 /// `'event_loop`. The easiest way to ensure this is by not using the `aos::EventLoop` before
313 /// passing it to this object.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700314 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700315 /// Here are some corollaries:
316 ///
317 /// 1. The underlying `aos::EventLoop` must be dropped after this object.
318 /// 2. This object will store various references valid for `'event_loop` with a duration of
319 /// `'event_loop`, which is safe as long as they're both the same `'event_loop`. Note that
320 /// this requires this type to be invariant with respect to `'event_loop`.
321 /// 3. `event_loop` (the pointer being passed in) is effectively `Pin`, which is also implied
322 /// by the underlying `aos::EventLoop` C++ type.
323 /// 4. You cannot create multiple `EventLoopRuntime`s from the same underlying `aos::EventLoop`
324 /// or otherwise use it from a different application. The first one may create
325 /// mutable Rust references while the second one expects exclusive ownership, for example.
326 ///
327 /// `aos::EventLoop`'s public API is exclusively for consumers of the event loop. Some
328 /// subclasses extend this API. Additionally, all useful implementations of `aos::EventLoop`
329 /// must have some way to process events. Sometimes this is additional API surface (such as
330 /// `aos::ShmEventLoop`), in other cases comes via other objects holding references to the
331 /// `aos::EventLoop` (such as `aos::SimulatedEventLoopFactory`). This access to run the event
332 /// loop functions independently of the consuming functions in every way except lifetime of the
333 /// `aos::EventLoop`, and may be used independently of `'event_loop`.
334 ///
335 /// ## Discussion of the rules
336 ///
337 /// Rule 1 is similar to rule 3 (they're both similar to mutable borrowing), but rule 1 extends
338 /// for the entire lifetime of the object instead of being limited to the lifetime of an
339 /// individual borrow by an instance of this type. This is similar to the way [`Pin`]'s
340 /// estrictions extend for the entire lifetime of the object, until it is dropped.
341 ///
342 /// Rule 2 and corollaries 2 and 3 go together, and are essential for making [`spawn`]ed tasks
343 /// useful. The `aos::EventLoop` is full of indirect circular references, both within itself
344 /// and via all of the callbacks. This is sound if all of these references have the *exact
345 /// same* Rust lifetime, which is `'event_loop`.
346 ///
347 /// ## Alternatives and why they don't work
348 ///
349 /// Making the argument `Pin<&'event_loop mut EventLoop>` would express some (but not all) of
350 /// these restrictions within the Rust type system. However, having an actual Rust mutable
351 /// reference like that prevents anything else from creating one via other pointers to the
352 /// same object from C++, which is a common operation. See the module-level documentation for
353 /// details.
354 ///
355 /// [`spawn`]ed tasks need to hold `&'event_loop` references to things like channels. Using a
356 /// separate `'config` lifetime wouldn't change much; the tasks still need to do things which
357 /// require them to not outlive something they don't control. This is fundamental to
358 /// self-referential objects, which `aos::EventLoop` is based around, but Rust requires unsafe
359 /// code to manage manually.
360 ///
361 /// ## Final cautions
362 ///
363 /// Following these rules is very tricky. Be very cautious calling this function. It exposes an
364 /// unbound lifetime, which means you should wrap it directly in a function that attaches a
365 /// correct lifetime.
Adam Snaidere98c2482023-10-17 19:02:03 -0700366 pub unsafe fn new(event_loop: &'event_loop CppEventLoopRuntime) -> Self {
367 Self(event_loop, InvariantLifetime::default())
Brian Silverman2ee175e2023-07-11 16:32:08 -0700368 }
369
Brian Silverman9809c5f2022-07-23 16:12:23 -0700370 /// Returns the pointer passed into the constructor.
371 ///
372 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
373 /// calling other C++ APIs.
Adam Snaider88097232023-10-17 18:43:14 -0700374 pub fn raw_event_loop(&self) -> *mut CppEventLoop {
Adam Snaider48a54682023-09-28 21:50:42 -0700375 self.0.event_loop()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700376 }
377
Brian Silverman90221f82022-08-22 23:46:09 -0700378 /// Returns a reference to the name of this EventLoop.
379 ///
380 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
381 /// logging etc.
382 ///
383 /// # Safety
384 ///
385 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
386 /// name from most places, so you should be really careful what you do with the result.
387 pub unsafe fn raw_name(&self) -> &str {
388 self.0.name()
389 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700390
391 pub fn get_raw_channel(
392 &self,
393 name: &str,
394 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700395 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700396 self.configuration().get_channel(
397 name,
398 typename,
399 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
400 // channel lookup.
401 unsafe { self.raw_name() },
402 self.node(),
403 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700404 }
405
Brian Silverman90221f82022-08-22 23:46:09 -0700406 pub fn get_channel<T: FullyQualifiedName>(
407 &self,
408 name: &str,
409 ) -> Result<&'event_loop Channel, ChannelLookupError> {
410 self.get_raw_channel(name, T::get_fully_qualified_name())
411 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700412
413 /// Starts running the given `task`, which may not return (as specified by its type). If you
414 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
415 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
416 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700417 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
418 /// defer work until the event loop starts running, await [`on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700419 ///
420 /// # Panics
421 ///
422 /// Panics if called more than once. See the module-level documentation for alternatives if you
423 /// want to do this.
424 ///
425 /// # Examples with interesting return types
426 ///
427 /// These are all valid futures which never return:
428 /// ```
429 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
430 /// # use futures::{never::Never, future::pending};
431 /// async fn pending_wrapper() -> Never {
432 /// pending().await
433 /// }
434 /// async fn loop_forever() -> Never {
435 /// loop {}
436 /// }
437 ///
438 /// runtime.spawn(pending());
439 /// runtime.spawn(async { pending().await });
440 /// runtime.spawn(pending_wrapper());
441 /// runtime.spawn(async { loop {} });
442 /// runtime.spawn(loop_forever());
443 /// runtime.spawn(async { println!("all done"); pending().await });
444 /// # }
445 /// ```
446 /// but this is not:
447 /// ```compile_fail
448 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
449 /// # use futures::ready;
450 /// runtime.spawn(ready());
451 /// # }
452 /// ```
453 /// and neither is this:
454 /// ```compile_fail
455 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
456 /// # use futures::ready;
457 /// runtime.spawn(async { println!("all done") });
458 /// # }
459 /// ```
460 ///
461 /// # Examples with capturing
462 ///
463 /// The future can capture things. This is important to access other objects created from the
464 /// runtime, either before calling this function:
465 /// ```
466 /// # fn compile_check<'event_loop>(
467 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
468 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
469 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
470 /// # ) {
471 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
472 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
473 /// runtime.spawn(async move { loop {
474 /// watcher1.next().await;
475 /// watcher2.next().await;
476 /// }});
477 /// # }
478 /// ```
479 /// or after:
480 /// ```
481 /// # fn compile_check<'event_loop>(
482 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
483 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
484 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
485 /// # ) {
486 /// # use std::{cell::RefCell, rc::Rc};
487 /// let runtime = Rc::new(RefCell::new(runtime));
488 /// runtime.borrow_mut().spawn({
489 /// let mut runtime = runtime.clone();
490 /// async move {
491 /// let mut runtime = runtime.borrow_mut();
492 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
493 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
494 /// loop {
495 /// watcher1.next().await;
496 /// watcher2.next().await;
497 /// }
498 /// }
499 /// });
500 /// # }
501 /// ```
502 /// or both:
503 /// ```
504 /// # fn compile_check<'event_loop>(
505 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
506 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
507 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
508 /// # ) {
509 /// # use std::{cell::RefCell, rc::Rc};
510 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
511 /// let runtime = Rc::new(RefCell::new(runtime));
512 /// runtime.borrow_mut().spawn({
513 /// let mut runtime = runtime.clone();
514 /// async move {
515 /// let mut runtime = runtime.borrow_mut();
516 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
517 /// loop {
518 /// watcher1.next().await;
519 /// watcher2.next().await;
520 /// }
521 /// }
522 /// });
523 /// # }
524 /// ```
525 ///
526 /// But you cannot capture local variables:
527 /// ```compile_fail
528 /// # fn compile_check<'event_loop>(
529 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
530 /// # ) {
531 /// let mut local: i32 = 971;
532 /// let local = &mut local;
533 /// runtime.spawn(async move { loop {
534 /// println!("have: {}", local);
535 /// }});
536 /// # }
537 /// ```
Adam Snaider48a54682023-09-28 21:50:42 -0700538 pub fn spawn(&self, task: impl Future<Output = Never> + 'event_loop) {
539 self.0.Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700540 }
541
542 pub fn configuration(&self) -> &'event_loop Configuration {
543 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
544 unsafe { &*self.0.configuration() }
545 }
546
547 pub fn node(&self) -> Option<&'event_loop Node> {
548 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
549 unsafe { self.0.node().as_ref() }
550 }
551
552 pub fn monotonic_now(&self) -> MonotonicInstant {
553 MonotonicInstant(self.0.monotonic_now())
554 }
555
Ryan Yin683a8672022-11-09 20:44:20 -0800556 pub fn realtime_now(&self) -> RealtimeInstant {
557 RealtimeInstant(self.0.realtime_now())
558 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700559 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
560 /// part of `self.configuration()`, which will always have this lifetime.
561 ///
562 /// # Panics
563 ///
564 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700565 pub fn make_raw_watcher(&self, channel: &'event_loop Channel) -> RawWatcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700566 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
567 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700568 RawWatcher(unsafe { self.0.MakeWatcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700569 }
570
Brian Silverman90221f82022-08-22 23:46:09 -0700571 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
572 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
573 /// is easiest.
574 ///
575 /// # Panics
576 ///
577 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700578 pub fn make_watcher<T>(&self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700579 where
580 for<'a> T: FollowWith<'a>,
581 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
582 T: FullyQualifiedName,
583 {
584 let channel = self.get_channel::<T>(channel_name)?;
585 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
586 }
587
Brian Silverman9809c5f2022-07-23 16:12:23 -0700588 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
589 /// part of `self.configuration()`, which will always have this lifetime.
590 ///
591 /// # Panics
592 ///
593 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700594 pub fn make_raw_sender(&self, channel: &'event_loop Channel) -> RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700595 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
596 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700597 RawSender(unsafe { self.0.MakeSender(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700598 }
599
Brian Silverman90221f82022-08-22 23:46:09 -0700600 /// Allows sending messages on a channel with a type-safe API.
601 ///
602 /// # Panics
603 ///
604 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700605 pub fn make_sender<T>(&self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700606 where
607 for<'a> T: FollowWith<'a>,
608 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
609 T: FullyQualifiedName,
610 {
611 let channel = self.get_channel::<T>(channel_name)?;
612 Ok(Sender(self.make_raw_sender(channel), PhantomData))
613 }
614
Brian Silverman9809c5f2022-07-23 16:12:23 -0700615 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
616 /// part of `self.configuration()`, which will always have this lifetime.
617 ///
618 /// # Panics
619 ///
620 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700621 pub fn make_raw_fetcher(&self, channel: &'event_loop Channel) -> RawFetcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700622 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
623 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700624 RawFetcher(unsafe { self.0.MakeFetcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700625 }
626
Brian Silverman90221f82022-08-22 23:46:09 -0700627 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
628 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
629 /// message in order.
630 ///
631 /// # Panics
632 ///
633 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700634 pub fn make_fetcher<T>(&self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700635 where
636 for<'a> T: FollowWith<'a>,
637 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
638 T: FullyQualifiedName,
639 {
640 let channel = self.get_channel::<T>(channel_name)?;
641 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
642 }
643
Brian Silverman9809c5f2022-07-23 16:12:23 -0700644 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
645 // instead of / in addition to mirroring C++ with separate setup and wait?
646
Brian Silverman76f48362022-08-24 21:09:08 -0700647 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
648 /// subsequent code will have any realtime scheduling applied. This means it can rely on
649 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
650 /// else non-realtime.
Adam Snaider48a54682023-09-28 21:50:42 -0700651 pub fn on_run(&self) -> OnRun {
652 OnRun(self.0.MakeOnRun().within_box())
Brian Silverman76f48362022-08-24 21:09:08 -0700653 }
654
655 pub fn is_running(&self) -> bool {
656 self.0.is_running()
657 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700658
659 /// Returns an unarmed timer.
Adam Snaider48a54682023-09-28 21:50:42 -0700660 pub fn add_timer(&self) -> Timer {
661 Timer(self.0.AddTimer())
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700662 }
663
664 /// Returns a timer that goes off every `duration`-long ticks.
Adam Snaider48a54682023-09-28 21:50:42 -0700665 pub fn add_interval(&self, duration: Duration) -> Timer {
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700666 let mut timer = self.add_timer();
667 timer.setup(self.monotonic_now(), Some(duration));
668 timer
669 }
Adam Snaidercf0dac72023-10-02 14:41:58 -0700670
671 /// Sets the scheduler priority to run the event loop at.
672 pub fn set_realtime_priority(&self, priority: i32) {
673 self.0.SetRuntimeRealtimePriority(priority.into());
674 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700675}
676
677/// An event loop primitive that allows sleeping asynchronously.
678///
679/// # Examples
680///
681/// ```no_run
682/// # use aos_events_event_loop_runtime::EventLoopRuntime;
683/// # use std::time::Duration;
684/// # fn compile_check(runtime: &mut EventLoopRuntime<'_>) {
685/// # let mut timer = runtime.add_timer();
686/// // Goes as soon as awaited.
687/// timer.setup(runtime.monotonic_now(), None);
688/// // Goes off once in 2 seconds.
689/// timer.setup(runtime.monotonic_now() + Duration::from_secs(2), None);
690/// // Goes off as soon as awaited and every 2 seconds afterwards.
691/// timer.setup(runtime.monotonic_now(), Some(Duration::from_secs(1)));
692/// async {
693/// for i in 0..10 {
694/// timer.tick().await;
695/// }
696/// // Timer won't off anymore. Next `tick` will never return.
697/// timer.disable();
698/// timer.tick().await;
699/// };
700/// # }
701/// ```
702pub struct Timer(UniquePtr<ffi::aos::TimerForRust>);
703
704/// A "tick" for a [`Timer`].
705///
706/// This is the raw future generated by the [`Timer::tick`] function.
707pub struct TimerTick<'a>(&'a mut Timer);
708
709impl Timer {
710 /// Arms the timer.
711 ///
712 /// The timer should sleep until `base`, `base + repeat`, `base + repeat * 2`, ...
713 /// If `repeat` is `None`, then the timer only expires once at `base`.
714 pub fn setup(&mut self, base: MonotonicInstant, repeat: Option<Duration>) {
715 self.0.pin_mut().Schedule(
716 base.0,
717 repeat
718 .unwrap_or(Duration::from_nanos(0))
719 .as_nanos()
720 .try_into()
721 .expect("Out of range: Internal clock uses 64 bits"),
722 );
723 }
724
725 /// Disarms the timer.
726 ///
727 /// Can be re-enabled by calling `setup` again.
728 pub fn disable(&mut self) {
729 self.0.pin_mut().Disable();
730 }
731
732 /// Returns `true` if the timer is enabled.
733 pub fn is_enabled(&self) -> bool {
734 !self.0.IsDisabled()
735 }
736
737 /// Sets the name of the timer.
738 ///
739 /// This can be useful to get a descriptive name in the timing reports.
740 pub fn set_name(&mut self, name: &str) {
741 self.0.pin_mut().set_name(name);
742 }
743
744 /// Gets the name of the timer.
745 pub fn name(&self) -> &str {
746 self.0.name()
747 }
748
749 /// Returns a tick which can be `.await`ed.
750 ///
751 /// This tick will resolve on the next timer expired.
752 pub fn tick(&mut self) -> TimerTick {
753 TimerTick(self)
754 }
755
756 /// Polls the timer, returning `[Poll::Ready]` only once the timer expired.
757 fn poll(&mut self) -> Poll<()> {
758 if self.0.pin_mut().Poll() {
759 Poll::Ready(())
760 } else {
761 Poll::Pending
762 }
763 }
764}
765
766impl Future for TimerTick<'_> {
767 type Output = ();
768
769 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
770 self.0.poll()
771 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700772}
773
Brian Silverman9809c5f2022-07-23 16:12:23 -0700774/// Provides async blocking access to messages on a channel. This will return every message on the
775/// channel, in order.
776///
777/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
778///
779/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
780/// for actually interpreting messages. You probably want a [`Watcher`] instead.
781///
782/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
783/// reasons.
784///
785/// # Design
786///
787/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
788/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
789/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
790/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
791/// another level doesn't help anything.
792///
793/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
794///
795/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
796/// the same one mentioned here:
797/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
798/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
799/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700800// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
801#[repr(transparent)]
802pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
803
Brian Silverman9809c5f2022-07-23 16:12:23 -0700804impl RawWatcher {
805 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
806 /// without skipping any messages.
807 ///
808 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
809 /// will need to call this function again to get the succeeding message.
810 ///
811 /// # Examples
812 ///
813 /// The common use case is immediately awaiting the next message:
814 /// ```
815 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
816 /// println!("received: {:?}", watcher.next().await);
817 /// # }
818 /// ```
819 ///
820 /// You can also await the first message from any of a set of channels:
821 /// ```
822 /// # async fn select(
823 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
824 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
825 /// # ) {
826 /// futures::select! {
827 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
828 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
829 /// }
830 /// # }
831 /// ```
832 ///
833 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
834 /// enforce only having a single of these returned objects at a time. Drop the previous message
835 /// before asking for the next one. That means this will not compile:
836 /// ```compile_fail
837 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
838 /// let first = watcher.next();
839 /// let second = watcher.next();
840 /// first.await;
841 /// # }
842 /// ```
843 /// and nor will this:
844 /// ```compile_fail
845 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
846 /// let first = watcher.next().await;
847 /// watcher.next();
848 /// println!("still have: {:?}", first);
849 /// # }
850 /// ```
851 /// but this is fine:
852 /// ```
853 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
854 /// let first = watcher.next().await;
855 /// println!("have: {:?}", first);
856 /// watcher.next();
857 /// # }
858 /// ```
859 pub fn next(&mut self) -> RawWatcherNext {
860 RawWatcherNext(Some(self))
861 }
862}
863
864/// The type returned from [`RawWatcher::next`], see there for details.
865pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
866
867impl<'a> Future for RawWatcherNext<'a> {
868 type Output = Context<'a>;
869 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
870 let inner = self
871 .0
872 .take()
873 .expect("May not call poll after it returns Ready");
874 let maybe_context = inner.0.as_mut().PollNext();
875 if maybe_context.is_null() {
876 // We're not returning a reference into it, so we can safely replace the reference to
877 // use again in the future.
878 self.0.replace(inner);
879 Poll::Pending
880 } else {
881 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
882 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
883 // because we're dropping `inner` (which is that reference), so it will need to be
884 // borrowed again which cannot happen before the end of `'a`.
885 Poll::Ready(Context(unsafe { &*maybe_context }))
886 }
887 }
888}
889
890impl FusedFuture for RawWatcherNext<'_> {
891 fn is_terminated(&self) -> bool {
892 self.0.is_none()
893 }
894}
895
Brian Silverman90221f82022-08-22 23:46:09 -0700896/// Provides async blocking access to messages on a channel. This will return every message on the
897/// channel, in order.
898///
899/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
900///
901/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
902/// reasons. See [`RawWatcher`]'s documentation for details.
903pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
904where
905 for<'a> T: FollowWith<'a>,
906 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
907
908impl<T> Watcher<T>
909where
910 for<'a> T: FollowWith<'a>,
911 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
912{
913 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
914 /// without skipping any messages.
915 ///
916 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
917 /// will need to call this function again to get the succeeding message.
918 ///
919 /// # Examples
920 ///
921 /// The common use case is immediately awaiting the next message:
922 /// ```
923 /// # use pong_rust_fbs::aos::examples::Pong;
924 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
925 /// println!("received: {:?}", watcher.next().await);
926 /// # }
927 /// ```
928 ///
929 /// You can also await the first message from any of a set of channels:
930 /// ```
931 /// # use pong_rust_fbs::aos::examples::Pong;
932 /// # async fn select(
933 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
934 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
935 /// # ) {
936 /// futures::select! {
937 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
938 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
939 /// }
940 /// # }
941 /// ```
942 ///
943 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
944 /// enforce only having a single of these returned objects at a time. Drop the previous message
945 /// before asking for the next one. That means this will not compile:
946 /// ```compile_fail
947 /// # use pong_rust_fbs::aos::examples::Pong;
948 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
949 /// let first = watcher.next();
950 /// let second = watcher.next();
951 /// first.await;
952 /// # }
953 /// ```
954 /// and nor will this:
955 /// ```compile_fail
956 /// # use pong_rust_fbs::aos::examples::Pong;
957 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
958 /// let first = watcher.next().await;
959 /// watcher.next();
960 /// println!("still have: {:?}", first);
961 /// # }
962 /// ```
963 /// but this is fine:
964 /// ```
965 /// # use pong_rust_fbs::aos::examples::Pong;
966 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
967 /// let first = watcher.next().await;
968 /// println!("have: {:?}", first);
969 /// watcher.next();
970 /// # }
971 /// ```
972 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
973 WatcherNext(self.0.next(), PhantomData)
974 }
975}
976
977/// The type returned from [`Watcher::next`], see there for details.
978pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
979where
980 T: Follow<'watcher> + 'watcher;
981
982impl<'watcher, T> Future for WatcherNext<'watcher, T>
983where
984 T: Follow<'watcher> + 'watcher,
985{
986 type Output = TypedContext<'watcher, T>;
987
988 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
989 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
990 // SAFETY: The Watcher this was created from verified that the channel is the
991 // right type, and the C++ guarantees that the buffer's type matches.
992 TypedContext(context, PhantomData))
993 }
994}
995
996impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
997where
998 T: Follow<'watcher> + 'watcher,
999{
1000 fn is_terminated(&self) -> bool {
1001 self.0.is_terminated()
1002 }
1003}
1004
1005/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
1006pub struct TypedContext<'a, T>(
1007 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
1008 Context<'a>,
1009 PhantomData<*mut T>,
1010)
1011where
1012 T: Follow<'a> + 'a;
1013
Brian Silverman90221f82022-08-22 23:46:09 -07001014impl<'a, T> TypedContext<'a, T>
1015where
1016 T: Follow<'a> + 'a,
1017{
1018 pub fn message(&self) -> Option<T::Inner> {
1019 self.0.data().map(|data| {
1020 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
1021 // type based on invariants for our type.
1022 unsafe { root_unchecked::<T>(data) }
1023 })
1024 }
1025
1026 pub fn monotonic_event_time(&self) -> MonotonicInstant {
1027 self.0.monotonic_event_time()
1028 }
1029 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
1030 self.0.monotonic_remote_time()
1031 }
Ryan Yin683a8672022-11-09 20:44:20 -08001032 pub fn realtime_event_time(&self) -> RealtimeInstant {
1033 self.0.realtime_event_time()
1034 }
1035 pub fn realtime_remote_time(&self) -> RealtimeInstant {
1036 self.0.realtime_remote_time()
1037 }
Brian Silverman90221f82022-08-22 23:46:09 -07001038 pub fn queue_index(&self) -> u32 {
1039 self.0.queue_index()
1040 }
1041 pub fn remote_queue_index(&self) -> u32 {
1042 self.0.remote_queue_index()
1043 }
1044 pub fn buffer_index(&self) -> i32 {
1045 self.0.buffer_index()
1046 }
1047 pub fn source_boot_uuid(&self) -> &Uuid {
1048 self.0.source_boot_uuid()
1049 }
1050}
1051
1052impl<'a, T> fmt::Debug for TypedContext<'a, T>
1053where
1054 T: Follow<'a> + 'a,
1055 T::Inner: fmt::Debug,
1056{
1057 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -07001058 f.debug_struct("TypedContext")
1059 .field("monotonic_event_time", &self.monotonic_event_time())
1060 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001061 .field("realtime_event_time", &self.realtime_event_time())
1062 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -07001063 .field("queue_index", &self.queue_index())
1064 .field("remote_queue_index", &self.remote_queue_index())
1065 .field("message", &self.message())
1066 .field("buffer_index", &self.buffer_index())
1067 .field("source_boot_uuid", &self.source_boot_uuid())
1068 .finish()
1069 }
1070}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001071
1072/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -07001073/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001074///
1075/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
1076///
1077/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1078/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -07001079// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1080#[repr(transparent)]
1081pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
1082
Brian Silverman9809c5f2022-07-23 16:12:23 -07001083impl RawFetcher {
1084 pub fn fetch_next(&mut self) -> bool {
1085 self.0.as_mut().FetchNext()
1086 }
1087
1088 pub fn fetch(&mut self) -> bool {
1089 self.0.as_mut().Fetch()
1090 }
1091
1092 pub fn context(&self) -> Context {
1093 Context(self.0.context())
1094 }
1095}
1096
Brian Silverman90221f82022-08-22 23:46:09 -07001097/// Provides access to messages on a channel, without the ability to wait for a new one. This
1098/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
1099///
1100/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
1101pub struct Fetcher<T>(
1102 // SAFETY: This must produce messages of type `T`.
1103 RawFetcher,
1104 PhantomData<*mut T>,
1105)
1106where
1107 for<'a> T: FollowWith<'a>,
1108 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1109
1110impl<T> Fetcher<T>
1111where
1112 for<'a> T: FollowWith<'a>,
1113 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1114{
1115 pub fn fetch_next(&mut self) -> bool {
1116 self.0.fetch_next()
1117 }
1118 pub fn fetch(&mut self) -> bool {
1119 self.0.fetch()
1120 }
1121
1122 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
1123 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
1124 // type matches.
1125 TypedContext(self.0.context(), PhantomData)
1126 }
1127}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001128
1129/// Allows sending messages on a channel.
1130///
1131/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1132/// for actually creating messages to send. You probably want a [`Sender`] instead.
1133///
1134/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -07001135// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1136#[repr(transparent)]
1137pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
1138
Brian Silverman9809c5f2022-07-23 16:12:23 -07001139impl RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001140 /// Returns an object which can be used to build a message.
1141 ///
1142 /// # Examples
1143 ///
1144 /// ```
1145 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1146 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1147 /// # unsafe {
1148 /// let mut builder = sender.make_builder();
1149 /// let pong = PongBuilder::new(builder.fbb()).finish();
1150 /// builder.send(pong);
1151 /// # }
1152 /// # }
1153 /// ```
1154 ///
1155 /// You can bail out of building a message and build another one:
1156 /// ```
1157 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1158 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1159 /// # unsafe {
1160 /// let mut builder1 = sender.make_builder();
1161 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001162 /// drop(builder1);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001163 /// let mut builder2 = sender.make_builder();
1164 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1165 /// builder2.send(pong);
1166 /// # }
1167 /// # }
1168 /// ```
1169 /// but you cannot build two messages at the same time with a single builder:
1170 /// ```compile_fail
1171 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1172 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1173 /// # unsafe {
1174 /// let mut builder1 = sender.make_builder();
1175 /// let mut builder2 = sender.make_builder();
1176 /// PongBuilder::new(builder2.fbb()).finish();
1177 /// PongBuilder::new(builder1.fbb()).finish();
1178 /// # }
1179 /// # }
1180 /// ```
1181 pub fn make_builder(&mut self) -> RawBuilder {
Adam Snaider34072e12023-10-03 10:04:25 -07001182 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment
1183 // requirements. Additionally, the lifetime of the builder is tied to
1184 // the lifetime of self so the buffer won't be accessible again until
1185 // the builder is destroyed.
1186 let allocator = ChannelPreallocatedAllocator::new(unsafe {
1187 slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size())
1188 });
1189 let fbb = FlatBufferBuilder::new_in(allocator);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001190 RawBuilder {
1191 raw_sender: self,
1192 fbb,
1193 }
1194 }
1195}
1196
Brian Silverman9809c5f2022-07-23 16:12:23 -07001197/// Used for building a message. See [`RawSender::make_builder`] for details.
1198pub struct RawBuilder<'sender> {
1199 raw_sender: &'sender mut RawSender,
Adam Snaider34072e12023-10-03 10:04:25 -07001200 fbb: FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>>,
Brian Silverman9809c5f2022-07-23 16:12:23 -07001201}
1202
1203impl<'sender> RawBuilder<'sender> {
Adam Snaider34072e12023-10-03 10:04:25 -07001204 pub fn fbb(
1205 &mut self,
1206 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001207 &mut self.fbb
1208 }
1209
1210 /// # Safety
1211 ///
1212 /// `T` must match the type of the channel of the sender this builder was created from.
1213 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
1214 self.fbb.finish_minimal(root);
1215 let data = self.fbb.finished_data();
1216
1217 use ffi::aos::RawSender_Error as FfiError;
1218 // SAFETY: This is a valid buffer we're passing.
Adam Snaider4769bb42023-11-22 11:01:46 -08001219 match unsafe { self.raw_sender.0.as_mut().SendBuffer(data.len()) } {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001220 FfiError::kOk => Ok(()),
1221 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
1222 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
1223 }
1224 }
1225}
1226
Brian Silverman90221f82022-08-22 23:46:09 -07001227/// Allows sending messages on a channel with a type-safe API.
1228///
1229/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
1230pub struct Sender<T>(
1231 // SAFETY: This must accept messages of type `T`.
1232 RawSender,
1233 PhantomData<*mut T>,
1234)
1235where
1236 for<'a> T: FollowWith<'a>,
1237 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1238
1239impl<T> Sender<T>
1240where
1241 for<'a> T: FollowWith<'a>,
1242 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1243{
1244 /// Returns an object which can be used to build a message.
1245 ///
1246 /// # Examples
1247 ///
1248 /// ```
1249 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1250 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1251 /// let mut builder = sender.make_builder();
1252 /// let pong = PongBuilder::new(builder.fbb()).finish();
1253 /// builder.send(pong);
1254 /// # }
1255 /// ```
1256 ///
1257 /// You can bail out of building a message and build another one:
1258 /// ```
1259 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1260 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1261 /// let mut builder1 = sender.make_builder();
1262 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001263 /// drop(builder1);
Brian Silverman90221f82022-08-22 23:46:09 -07001264 /// let mut builder2 = sender.make_builder();
1265 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1266 /// builder2.send(pong);
1267 /// # }
1268 /// ```
1269 /// but you cannot build two messages at the same time with a single builder:
1270 /// ```compile_fail
1271 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1272 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1273 /// let mut builder1 = sender.make_builder();
1274 /// let mut builder2 = sender.make_builder();
1275 /// PongBuilder::new(builder2.fbb()).finish();
1276 /// PongBuilder::new(builder1.fbb()).finish();
1277 /// # }
1278 /// ```
1279 pub fn make_builder(&mut self) -> Builder<T> {
1280 Builder(self.0.make_builder(), PhantomData)
1281 }
1282}
1283
1284/// Used for building a message. See [`Sender::make_builder`] for details.
1285pub struct Builder<'sender, T>(
1286 // SAFETY: This must accept messages of type `T`.
1287 RawBuilder<'sender>,
1288 PhantomData<*mut T>,
1289)
1290where
1291 for<'a> T: FollowWith<'a>,
1292 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1293
1294impl<'sender, T> Builder<'sender, T>
1295where
1296 for<'a> T: FollowWith<'a>,
1297 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1298{
Adam Snaider34072e12023-10-03 10:04:25 -07001299 pub fn fbb(
1300 &mut self,
1301 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman90221f82022-08-22 23:46:09 -07001302 self.0.fbb()
1303 }
1304
1305 pub fn send<'a>(
1306 self,
1307 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1308 ) -> Result<(), SendError> {
1309 // SAFETY: We guarantee this is the right type based on invariants for our type.
1310 unsafe { self.0.send(root) }
1311 }
1312}
1313
1314#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1315pub enum SendError {
1316 #[error("messages have been sent too fast on this channel")]
1317 MessagesSentTooFast,
1318 #[error("invalid redzone data, shared memory corruption detected")]
1319 InvalidRedzone,
1320}
1321
Brian Silverman9809c5f2022-07-23 16:12:23 -07001322#[repr(transparent)]
1323#[derive(Clone, Copy)]
1324pub struct Context<'context>(&'context ffi::aos::Context);
1325
1326impl fmt::Debug for Context<'_> {
1327 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001328 f.debug_struct("Context")
1329 .field("monotonic_event_time", &self.monotonic_event_time())
1330 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001331 .field("realtime_event_time", &self.realtime_event_time())
1332 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001333 .field("queue_index", &self.queue_index())
1334 .field("remote_queue_index", &self.remote_queue_index())
1335 .field("size", &self.data().map(|data| data.len()))
1336 .field("buffer_index", &self.buffer_index())
1337 .field("source_boot_uuid", &self.source_boot_uuid())
1338 .finish()
1339 }
1340}
1341
Brian Silverman9809c5f2022-07-23 16:12:23 -07001342impl<'context> Context<'context> {
1343 pub fn monotonic_event_time(self) -> MonotonicInstant {
1344 MonotonicInstant(self.0.monotonic_event_time)
1345 }
1346
1347 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1348 MonotonicInstant(self.0.monotonic_remote_time)
1349 }
1350
Ryan Yin683a8672022-11-09 20:44:20 -08001351 pub fn realtime_event_time(self) -> RealtimeInstant {
1352 RealtimeInstant(self.0.realtime_event_time)
1353 }
1354
1355 pub fn realtime_remote_time(self) -> RealtimeInstant {
1356 RealtimeInstant(self.0.realtime_remote_time)
1357 }
1358
Brian Silverman9809c5f2022-07-23 16:12:23 -07001359 pub fn queue_index(self) -> u32 {
1360 self.0.queue_index
1361 }
1362 pub fn remote_queue_index(self) -> u32 {
1363 self.0.remote_queue_index
1364 }
1365
1366 pub fn data(self) -> Option<&'context [u8]> {
1367 if self.0.data.is_null() {
1368 None
1369 } else {
1370 // SAFETY:
1371 // * `u8` has no alignment requirements
1372 // * It must be a single initialized flatbuffers buffer
1373 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1374 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1375 }
1376 }
1377
1378 pub fn buffer_index(self) -> i32 {
1379 self.0.buffer_index
1380 }
1381
1382 pub fn source_boot_uuid(self) -> &'context Uuid {
1383 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1384 // valid until something changes the context, which is `'context`.
1385 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1386 }
1387}
1388
Brian Silverman76f48362022-08-24 21:09:08 -07001389/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1390// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1391#[repr(transparent)]
1392pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1393
Adam Snaidera3317c82023-10-02 16:02:36 -07001394impl Future for &'_ OnRun {
Brian Silverman76f48362022-08-24 21:09:08 -07001395 type Output = ();
1396
1397 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1398 if self.0.is_running() {
1399 Poll::Ready(())
1400 } else {
1401 Poll::Pending
1402 }
1403 }
1404}
1405
Brian Silverman9809c5f2022-07-23 16:12:23 -07001406/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1407/// is intended to have the same API as [`std::time::Instant`], any missing
1408/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001409#[repr(transparent)]
1410#[derive(Clone, Copy, Eq, PartialEq)]
1411pub struct MonotonicInstant(i64);
1412
1413impl MonotonicInstant {
1414 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1415 pub const MIN_TIME: Self = Self(i64::MIN);
1416
1417 pub fn is_min_time(self) -> bool {
1418 self == Self::MIN_TIME
1419 }
1420
1421 pub fn duration_since_epoch(self) -> Option<Duration> {
1422 if self.is_min_time() {
1423 None
1424 } else {
1425 Some(Duration::from_nanos(self.0.try_into().expect(
1426 "monotonic_clock::time_point should always be after the epoch",
1427 )))
1428 }
1429 }
1430}
1431
Adam Snaidercc8c2f72023-06-25 20:56:13 -07001432impl Add<Duration> for MonotonicInstant {
1433 type Output = MonotonicInstant;
1434
1435 fn add(self, rhs: Duration) -> Self::Output {
1436 Self(self.0 + i64::try_from(rhs.as_nanos()).unwrap())
1437 }
1438}
1439
Adam Snaiderde51c672023-09-28 21:55:43 -07001440impl From<MonotonicInstant> for i64 {
1441 fn from(value: MonotonicInstant) -> Self {
1442 value.0
1443 }
1444}
1445
Brian Silverman9809c5f2022-07-23 16:12:23 -07001446impl fmt::Debug for MonotonicInstant {
1447 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1448 self.duration_since_epoch().fmt(f)
1449 }
1450}
1451
Ryan Yin683a8672022-11-09 20:44:20 -08001452#[repr(transparent)]
1453#[derive(Clone, Copy, Eq, PartialEq)]
1454pub struct RealtimeInstant(i64);
1455
1456impl RealtimeInstant {
1457 pub const MIN_TIME: Self = Self(i64::MIN);
1458
1459 pub fn is_min_time(self) -> bool {
1460 self == Self::MIN_TIME
1461 }
1462
1463 pub fn duration_since_epoch(self) -> Option<Duration> {
1464 if self.is_min_time() {
1465 None
1466 } else {
1467 Some(Duration::from_nanos(self.0.try_into().expect(
1468 "monotonic_clock::time_point should always be after the epoch",
1469 )))
1470 }
1471 }
1472}
1473
Adam Snaiderde51c672023-09-28 21:55:43 -07001474impl From<RealtimeInstant> for i64 {
1475 fn from(value: RealtimeInstant) -> Self {
1476 value.0
1477 }
1478}
1479
Ryan Yin683a8672022-11-09 20:44:20 -08001480impl fmt::Debug for RealtimeInstant {
1481 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1482 self.duration_since_epoch().fmt(f)
1483 }
1484}
1485
Brian Silverman9809c5f2022-07-23 16:12:23 -07001486mod panic_waker {
1487 use std::task::{RawWaker, RawWakerVTable, Waker};
1488
1489 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1490 raw_panic_waker()
1491 }
1492
1493 unsafe fn noop(_data: *const ()) {}
1494
1495 unsafe fn wake_panic(_data: *const ()) {
1496 panic!("Nothing should wake EventLoopRuntime's waker");
1497 }
1498
1499 const PANIC_WAKER_VTABLE: RawWakerVTable =
1500 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1501
1502 fn raw_panic_waker() -> RawWaker {
1503 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1504 }
1505
1506 pub fn panic_waker() -> Waker {
1507 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1508 unsafe { Waker::from_raw(raw_panic_waker()) }
1509 }
1510}
1511
1512use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001513
1514pub struct ExitHandle(UniquePtr<CppExitHandle>);
1515
1516impl ExitHandle {
1517 /// Exits the EventLoops represented by this handle. You probably want to immediately return
1518 /// from the context this is called in. Awaiting [`exit`] instead of using this function is an
1519 /// easy way to do that.
1520 pub fn exit_sync(mut self) {
1521 self.0.as_mut().unwrap().Exit();
1522 }
1523
1524 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1525 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1526 /// that no more code from that task runs.
1527 pub async fn exit(self) -> Never {
1528 self.exit_sync();
1529 pending().await
1530 }
1531}
1532
1533impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1534 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1535 Self(inner)
1536 }
1537}
Adam Snaider34072e12023-10-03 10:04:25 -07001538
1539pub struct ChannelPreallocatedAllocator<'a> {
1540 buffer: &'a mut [u8],
1541}
1542
1543impl<'a> ChannelPreallocatedAllocator<'a> {
1544 pub fn new(buffer: &'a mut [u8]) -> Self {
1545 Self { buffer }
1546 }
1547}
1548
1549#[derive(Debug, Error)]
1550#[error("Can't allocate more memory with a fixed size allocator")]
1551pub struct OutOfMemory;
1552
1553// SAFETY: Allocator follows the required behavior.
1554unsafe impl Allocator for ChannelPreallocatedAllocator<'_> {
1555 type Error = OutOfMemory;
1556 fn grow_downwards(&mut self) -> Result<(), Self::Error> {
1557 // Fixed size allocator can't grow.
1558 Err(OutOfMemory)
1559 }
1560
1561 fn len(&self) -> usize {
1562 self.buffer.len()
1563 }
1564}
1565
1566impl Deref for ChannelPreallocatedAllocator<'_> {
1567 type Target = [u8];
1568
1569 fn deref(&self) -> &Self::Target {
1570 self.buffer
1571 }
1572}
1573
1574impl DerefMut for ChannelPreallocatedAllocator<'_> {
1575 fn deref_mut(&mut self) -> &mut Self::Target {
1576 self.buffer
1577 }
1578}