blob: 3d84aff474d80e3f0468244ab83aa5c9acbcc463 [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
37//! * Keeping track of all the lifetimes and creating appropriate references for the callbacks is
38//! really hard in Rust. Even doing it for the library implementation turned out to be hard
39//! enough to look for alternatives. I think you'd have to make extensive use of pointers, but
40//! Rust makes that hard, and it's easy to create references in ways that violate Rust's
41//! aliasing rules.
42//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
43//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
44//! a lending stream. This is very close to lending iterators, which is one of the motivating
45//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
46
Brian Silverman1431a772022-08-31 20:44:36 -070047use std::{
48 fmt,
49 future::Future,
50 marker::PhantomData,
51 panic::{catch_unwind, AssertUnwindSafe},
52 pin::Pin,
53 slice,
54 task::Poll,
55 time::Duration,
56};
Brian Silverman9809c5f2022-07-23 16:12:23 -070057
58use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070059 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070060 WithinBox,
61};
62use cxx::UniquePtr;
Brian Silverman90221f82022-08-22 23:46:09 -070063use flatbuffers::{root_unchecked, Follow, FollowWith, FullyQualifiedName};
Adam Snaider163800b2023-07-12 00:21:17 -040064use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070065use thiserror::Error;
66use uuid::Uuid;
67
Brian Silverman90221f82022-08-22 23:46:09 -070068pub use aos_configuration::{Channel, Configuration, Node};
69use aos_configuration::{ChannelLookupError, ConfigurationExt};
70
Brian Silverman9809c5f2022-07-23 16:12:23 -070071pub use aos_uuid::UUID;
Adam Snaider163800b2023-07-12 00:21:17 -040072pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070073
74autocxx::include_cpp! (
75#include "aos/events/event_loop_runtime.h"
76
77safety!(unsafe)
78
79generate_pod!("aos::Context")
80generate!("aos::WatcherForRust")
81generate!("aos::RawSender_Error")
82generate!("aos::SenderForRust")
83generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070084generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070085generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040086generate!("aos::ExitHandle")
Brian Silverman9809c5f2022-07-23 16:12:23 -070087
88subclass!("aos::ApplicationFuture", RustApplicationFuture)
89
90extern_cpp_type!("aos::Configuration", crate::Configuration)
91extern_cpp_type!("aos::Channel", crate::Channel)
92extern_cpp_type!("aos::Node", crate::Node)
93extern_cpp_type!("aos::UUID", crate::UUID)
94);
95
96pub type EventLoop = ffi::aos::EventLoop;
97
98/// # Safety
99///
100/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
101/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
102/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
103/// must be outlived by the EventLoop.
104#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700105#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700106pub struct RustApplicationFuture {
107 /// This logically has a `'event_loop` bound, see the class comment for details.
108 future: Pin<Box<dyn Future<Output = Never>>>,
109}
110
111impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700112 fn Poll(&mut self) -> bool {
113 catch_unwind(AssertUnwindSafe(|| {
114 // This is always allowed because it can never create a value of type `Ready<Never>` to
115 // return, so it must always return `Pending`. That also means the value it returns doesn't
116 // mean anything, so we ignore it.
117 let _ = Pin::new(&mut self.future)
118 .poll(&mut std::task::Context::from_waker(&panic_waker()));
119 }))
120 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700121 }
122}
123
124impl RustApplicationFuture {
125 pub fn new<'event_loop>(
126 future: impl Future<Output = Never> + 'event_loop,
127 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
128 /// # Safety
129 ///
130 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
131 /// sound.
132 unsafe fn remove_lifetime<'event_loop>(
133 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
134 ) -> Pin<Box<dyn Future<Output = Never>>> {
135 // SAFETY: Caller is responsible.
136 unsafe { std::mem::transmute(future) }
137 }
138
139 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
140 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
141 // details.
142 future: unsafe { remove_lifetime(Box::pin(future)) },
143 cpp_peer: Default::default(),
144 }))
145 }
146}
147
148pub struct EventLoopRuntime<'event_loop>(
149 Pin<Box<ffi::aos::EventLoopRuntime>>,
150 // This is the lifetime of the underlying EventLoop, which is held in C++ via `.0`.
151 PhantomData<&'event_loop mut ()>,
152);
153
154/// Manages the Rust interface to a *single* `aos::EventLoop`. This is intended to be used by a
155/// single application.
156impl<'event_loop> EventLoopRuntime<'event_loop> {
157 /// Creates a new runtime. This must be the only user of the underlying `aos::EventLoop`, or
158 /// things may panic unexpectedly.
159 ///
160 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
161 /// this.
162 ///
163 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
164 /// documentation for details.
165 ///
166 /// # Safety
167 ///
168 /// `event_loop` must be valid for `'event_loop`. Effectively we want the argument to be
169 /// `&'event_loop mut EventLoop`, but we can't do that (see the module-level documentation for
170 /// details).
171 ///
172 /// This is a tricky thing to guarantee, be very cautious calling this function. It's an unbound
173 /// lifetime so you should probably wrap it in a function that directly attaches a known
174 /// lifetime. One common pattern is calling this in the constructor of an object whose lifetime
175 /// is managed by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code
176 /// that obeys the rule of destroying the object before the EventLoop, which is equivalent to
177 /// this restriction.
178 ///
179 /// In Rust terms, this is equivalent to storing `event_loop` in the returned object, which
180 /// will dereference it throughout its lifetime, and the caller must guarantee this is sound.
181 pub unsafe fn new(event_loop: *mut ffi::aos::EventLoop) -> Self {
182 Self(
183 // SAFETY: We push all the validity requirements for this up to our caller.
184 unsafe { ffi::aos::EventLoopRuntime::new(event_loop) }.within_box(),
185 PhantomData,
186 )
187 }
188
189 /// Returns the pointer passed into the constructor.
190 ///
191 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
192 /// calling other C++ APIs.
193 pub fn raw_event_loop(&mut self) -> *mut ffi::aos::EventLoop {
194 self.0.as_mut().event_loop()
195 }
196
Brian Silverman90221f82022-08-22 23:46:09 -0700197 /// Returns a reference to the name of this EventLoop.
198 ///
199 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
200 /// logging etc.
201 ///
202 /// # Safety
203 ///
204 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
205 /// name from most places, so you should be really careful what you do with the result.
206 pub unsafe fn raw_name(&self) -> &str {
207 self.0.name()
208 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700209
210 pub fn get_raw_channel(
211 &self,
212 name: &str,
213 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700214 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700215 self.configuration().get_channel(
216 name,
217 typename,
218 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
219 // channel lookup.
220 unsafe { self.raw_name() },
221 self.node(),
222 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700223 }
224
Brian Silverman90221f82022-08-22 23:46:09 -0700225 pub fn get_channel<T: FullyQualifiedName>(
226 &self,
227 name: &str,
228 ) -> Result<&'event_loop Channel, ChannelLookupError> {
229 self.get_raw_channel(name, T::get_fully_qualified_name())
230 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700231
232 /// Starts running the given `task`, which may not return (as specified by its type). If you
233 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
234 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
235 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700236 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
237 /// defer work until the event loop starts running, await [`on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700238 ///
239 /// # Panics
240 ///
241 /// Panics if called more than once. See the module-level documentation for alternatives if you
242 /// want to do this.
243 ///
244 /// # Examples with interesting return types
245 ///
246 /// These are all valid futures which never return:
247 /// ```
248 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
249 /// # use futures::{never::Never, future::pending};
250 /// async fn pending_wrapper() -> Never {
251 /// pending().await
252 /// }
253 /// async fn loop_forever() -> Never {
254 /// loop {}
255 /// }
256 ///
257 /// runtime.spawn(pending());
258 /// runtime.spawn(async { pending().await });
259 /// runtime.spawn(pending_wrapper());
260 /// runtime.spawn(async { loop {} });
261 /// runtime.spawn(loop_forever());
262 /// runtime.spawn(async { println!("all done"); pending().await });
263 /// # }
264 /// ```
265 /// but this is not:
266 /// ```compile_fail
267 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
268 /// # use futures::ready;
269 /// runtime.spawn(ready());
270 /// # }
271 /// ```
272 /// and neither is this:
273 /// ```compile_fail
274 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
275 /// # use futures::ready;
276 /// runtime.spawn(async { println!("all done") });
277 /// # }
278 /// ```
279 ///
280 /// # Examples with capturing
281 ///
282 /// The future can capture things. This is important to access other objects created from the
283 /// runtime, either before calling this function:
284 /// ```
285 /// # fn compile_check<'event_loop>(
286 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
287 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
288 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
289 /// # ) {
290 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
291 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
292 /// runtime.spawn(async move { loop {
293 /// watcher1.next().await;
294 /// watcher2.next().await;
295 /// }});
296 /// # }
297 /// ```
298 /// or after:
299 /// ```
300 /// # fn compile_check<'event_loop>(
301 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
302 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
303 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
304 /// # ) {
305 /// # use std::{cell::RefCell, rc::Rc};
306 /// let runtime = Rc::new(RefCell::new(runtime));
307 /// runtime.borrow_mut().spawn({
308 /// let mut runtime = runtime.clone();
309 /// async move {
310 /// let mut runtime = runtime.borrow_mut();
311 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
312 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
313 /// loop {
314 /// watcher1.next().await;
315 /// watcher2.next().await;
316 /// }
317 /// }
318 /// });
319 /// # }
320 /// ```
321 /// or both:
322 /// ```
323 /// # fn compile_check<'event_loop>(
324 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
325 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
326 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
327 /// # ) {
328 /// # use std::{cell::RefCell, rc::Rc};
329 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
330 /// let runtime = Rc::new(RefCell::new(runtime));
331 /// runtime.borrow_mut().spawn({
332 /// let mut runtime = runtime.clone();
333 /// async move {
334 /// let mut runtime = runtime.borrow_mut();
335 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
336 /// loop {
337 /// watcher1.next().await;
338 /// watcher2.next().await;
339 /// }
340 /// }
341 /// });
342 /// # }
343 /// ```
344 ///
345 /// But you cannot capture local variables:
346 /// ```compile_fail
347 /// # fn compile_check<'event_loop>(
348 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
349 /// # ) {
350 /// let mut local: i32 = 971;
351 /// let local = &mut local;
352 /// runtime.spawn(async move { loop {
353 /// println!("have: {}", local);
354 /// }});
355 /// # }
356 /// ```
357 pub fn spawn(&mut self, task: impl Future<Output = Never> + 'event_loop) {
Brian Silverman1431a772022-08-31 20:44:36 -0700358 self.0.as_mut().Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700359 }
360
361 pub fn configuration(&self) -> &'event_loop Configuration {
362 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
363 unsafe { &*self.0.configuration() }
364 }
365
366 pub fn node(&self) -> Option<&'event_loop Node> {
367 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
368 unsafe { self.0.node().as_ref() }
369 }
370
371 pub fn monotonic_now(&self) -> MonotonicInstant {
372 MonotonicInstant(self.0.monotonic_now())
373 }
374
Ryan Yin683a8672022-11-09 20:44:20 -0800375 pub fn realtime_now(&self) -> RealtimeInstant {
376 RealtimeInstant(self.0.realtime_now())
377 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700378 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
379 /// part of `self.configuration()`, which will always have this lifetime.
380 ///
381 /// # Panics
382 ///
383 /// Dropping `self` before the returned object is dropped will panic.
384 pub fn make_raw_watcher(&mut self, channel: &'event_loop Channel) -> RawWatcher {
385 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
386 // the usual autocxx heuristics.
387 RawWatcher(unsafe { self.0.as_mut().MakeWatcher(channel) }.within_box())
388 }
389
Brian Silverman90221f82022-08-22 23:46:09 -0700390 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
391 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
392 /// is easiest.
393 ///
394 /// # Panics
395 ///
396 /// Dropping `self` before the returned object is dropped will panic.
397 pub fn make_watcher<T>(&mut self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
398 where
399 for<'a> T: FollowWith<'a>,
400 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
401 T: FullyQualifiedName,
402 {
403 let channel = self.get_channel::<T>(channel_name)?;
404 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
405 }
406
Brian Silverman9809c5f2022-07-23 16:12:23 -0700407 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
408 /// part of `self.configuration()`, which will always have this lifetime.
409 ///
410 /// # Panics
411 ///
412 /// Dropping `self` before the returned object is dropped will panic.
413 pub fn make_raw_sender(&mut self, channel: &'event_loop Channel) -> RawSender {
414 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
415 // the usual autocxx heuristics.
416 RawSender(unsafe { self.0.as_mut().MakeSender(channel) }.within_box())
417 }
418
Brian Silverman90221f82022-08-22 23:46:09 -0700419 /// Allows sending messages on a channel with a type-safe API.
420 ///
421 /// # Panics
422 ///
423 /// Dropping `self` before the returned object is dropped will panic.
424 pub fn make_sender<T>(&mut self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
425 where
426 for<'a> T: FollowWith<'a>,
427 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
428 T: FullyQualifiedName,
429 {
430 let channel = self.get_channel::<T>(channel_name)?;
431 Ok(Sender(self.make_raw_sender(channel), PhantomData))
432 }
433
Brian Silverman9809c5f2022-07-23 16:12:23 -0700434 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
435 /// part of `self.configuration()`, which will always have this lifetime.
436 ///
437 /// # Panics
438 ///
439 /// Dropping `self` before the returned object is dropped will panic.
440 pub fn make_raw_fetcher(&mut self, channel: &'event_loop Channel) -> RawFetcher {
441 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
442 // the usual autocxx heuristics.
443 RawFetcher(unsafe { self.0.as_mut().MakeFetcher(channel) }.within_box())
444 }
445
Brian Silverman90221f82022-08-22 23:46:09 -0700446 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
447 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
448 /// message in order.
449 ///
450 /// # Panics
451 ///
452 /// Dropping `self` before the returned object is dropped will panic.
453 pub fn make_fetcher<T>(&mut self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
454 where
455 for<'a> T: FollowWith<'a>,
456 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
457 T: FullyQualifiedName,
458 {
459 let channel = self.get_channel::<T>(channel_name)?;
460 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
461 }
462
Brian Silverman9809c5f2022-07-23 16:12:23 -0700463 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
464 // instead of / in addition to mirroring C++ with separate setup and wait?
465
Brian Silverman76f48362022-08-24 21:09:08 -0700466 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
467 /// subsequent code will have any realtime scheduling applied. This means it can rely on
468 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
469 /// else non-realtime.
470 pub fn on_run(&mut self) -> OnRun {
471 OnRun(self.0.as_mut().MakeOnRun().within_box())
472 }
473
474 pub fn is_running(&self) -> bool {
475 self.0.is_running()
476 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700477}
478
Brian Silverman9809c5f2022-07-23 16:12:23 -0700479/// Provides async blocking access to messages on a channel. This will return every message on the
480/// channel, in order.
481///
482/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
483///
484/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
485/// for actually interpreting messages. You probably want a [`Watcher`] instead.
486///
487/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
488/// reasons.
489///
490/// # Design
491///
492/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
493/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
494/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
495/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
496/// another level doesn't help anything.
497///
498/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
499///
500/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
501/// the same one mentioned here:
502/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
503/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
504/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700505// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
506#[repr(transparent)]
507pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
508
Brian Silverman9809c5f2022-07-23 16:12:23 -0700509impl RawWatcher {
510 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
511 /// without skipping any messages.
512 ///
513 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
514 /// will need to call this function again to get the succeeding message.
515 ///
516 /// # Examples
517 ///
518 /// The common use case is immediately awaiting the next message:
519 /// ```
520 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
521 /// println!("received: {:?}", watcher.next().await);
522 /// # }
523 /// ```
524 ///
525 /// You can also await the first message from any of a set of channels:
526 /// ```
527 /// # async fn select(
528 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
529 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
530 /// # ) {
531 /// futures::select! {
532 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
533 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
534 /// }
535 /// # }
536 /// ```
537 ///
538 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
539 /// enforce only having a single of these returned objects at a time. Drop the previous message
540 /// before asking for the next one. That means this will not compile:
541 /// ```compile_fail
542 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
543 /// let first = watcher.next();
544 /// let second = watcher.next();
545 /// first.await;
546 /// # }
547 /// ```
548 /// and nor will this:
549 /// ```compile_fail
550 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
551 /// let first = watcher.next().await;
552 /// watcher.next();
553 /// println!("still have: {:?}", first);
554 /// # }
555 /// ```
556 /// but this is fine:
557 /// ```
558 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
559 /// let first = watcher.next().await;
560 /// println!("have: {:?}", first);
561 /// watcher.next();
562 /// # }
563 /// ```
564 pub fn next(&mut self) -> RawWatcherNext {
565 RawWatcherNext(Some(self))
566 }
567}
568
569/// The type returned from [`RawWatcher::next`], see there for details.
570pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
571
572impl<'a> Future for RawWatcherNext<'a> {
573 type Output = Context<'a>;
574 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
575 let inner = self
576 .0
577 .take()
578 .expect("May not call poll after it returns Ready");
579 let maybe_context = inner.0.as_mut().PollNext();
580 if maybe_context.is_null() {
581 // We're not returning a reference into it, so we can safely replace the reference to
582 // use again in the future.
583 self.0.replace(inner);
584 Poll::Pending
585 } else {
586 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
587 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
588 // because we're dropping `inner` (which is that reference), so it will need to be
589 // borrowed again which cannot happen before the end of `'a`.
590 Poll::Ready(Context(unsafe { &*maybe_context }))
591 }
592 }
593}
594
595impl FusedFuture for RawWatcherNext<'_> {
596 fn is_terminated(&self) -> bool {
597 self.0.is_none()
598 }
599}
600
Brian Silverman90221f82022-08-22 23:46:09 -0700601/// Provides async blocking access to messages on a channel. This will return every message on the
602/// channel, in order.
603///
604/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
605///
606/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
607/// reasons. See [`RawWatcher`]'s documentation for details.
608pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
609where
610 for<'a> T: FollowWith<'a>,
611 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
612
613impl<T> Watcher<T>
614where
615 for<'a> T: FollowWith<'a>,
616 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
617{
618 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
619 /// without skipping any messages.
620 ///
621 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
622 /// will need to call this function again to get the succeeding message.
623 ///
624 /// # Examples
625 ///
626 /// The common use case is immediately awaiting the next message:
627 /// ```
628 /// # use pong_rust_fbs::aos::examples::Pong;
629 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
630 /// println!("received: {:?}", watcher.next().await);
631 /// # }
632 /// ```
633 ///
634 /// You can also await the first message from any of a set of channels:
635 /// ```
636 /// # use pong_rust_fbs::aos::examples::Pong;
637 /// # async fn select(
638 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
639 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
640 /// # ) {
641 /// futures::select! {
642 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
643 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
644 /// }
645 /// # }
646 /// ```
647 ///
648 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
649 /// enforce only having a single of these returned objects at a time. Drop the previous message
650 /// before asking for the next one. That means this will not compile:
651 /// ```compile_fail
652 /// # use pong_rust_fbs::aos::examples::Pong;
653 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
654 /// let first = watcher.next();
655 /// let second = watcher.next();
656 /// first.await;
657 /// # }
658 /// ```
659 /// and nor will this:
660 /// ```compile_fail
661 /// # use pong_rust_fbs::aos::examples::Pong;
662 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
663 /// let first = watcher.next().await;
664 /// watcher.next();
665 /// println!("still have: {:?}", first);
666 /// # }
667 /// ```
668 /// but this is fine:
669 /// ```
670 /// # use pong_rust_fbs::aos::examples::Pong;
671 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
672 /// let first = watcher.next().await;
673 /// println!("have: {:?}", first);
674 /// watcher.next();
675 /// # }
676 /// ```
677 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
678 WatcherNext(self.0.next(), PhantomData)
679 }
680}
681
682/// The type returned from [`Watcher::next`], see there for details.
683pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
684where
685 T: Follow<'watcher> + 'watcher;
686
687impl<'watcher, T> Future for WatcherNext<'watcher, T>
688where
689 T: Follow<'watcher> + 'watcher,
690{
691 type Output = TypedContext<'watcher, T>;
692
693 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
694 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
695 // SAFETY: The Watcher this was created from verified that the channel is the
696 // right type, and the C++ guarantees that the buffer's type matches.
697 TypedContext(context, PhantomData))
698 }
699}
700
701impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
702where
703 T: Follow<'watcher> + 'watcher,
704{
705 fn is_terminated(&self) -> bool {
706 self.0.is_terminated()
707 }
708}
709
710/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
711pub struct TypedContext<'a, T>(
712 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
713 Context<'a>,
714 PhantomData<*mut T>,
715)
716where
717 T: Follow<'a> + 'a;
718
Brian Silverman90221f82022-08-22 23:46:09 -0700719impl<'a, T> TypedContext<'a, T>
720where
721 T: Follow<'a> + 'a,
722{
723 pub fn message(&self) -> Option<T::Inner> {
724 self.0.data().map(|data| {
725 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
726 // type based on invariants for our type.
727 unsafe { root_unchecked::<T>(data) }
728 })
729 }
730
731 pub fn monotonic_event_time(&self) -> MonotonicInstant {
732 self.0.monotonic_event_time()
733 }
734 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
735 self.0.monotonic_remote_time()
736 }
Ryan Yin683a8672022-11-09 20:44:20 -0800737 pub fn realtime_event_time(&self) -> RealtimeInstant {
738 self.0.realtime_event_time()
739 }
740 pub fn realtime_remote_time(&self) -> RealtimeInstant {
741 self.0.realtime_remote_time()
742 }
Brian Silverman90221f82022-08-22 23:46:09 -0700743 pub fn queue_index(&self) -> u32 {
744 self.0.queue_index()
745 }
746 pub fn remote_queue_index(&self) -> u32 {
747 self.0.remote_queue_index()
748 }
749 pub fn buffer_index(&self) -> i32 {
750 self.0.buffer_index()
751 }
752 pub fn source_boot_uuid(&self) -> &Uuid {
753 self.0.source_boot_uuid()
754 }
755}
756
757impl<'a, T> fmt::Debug for TypedContext<'a, T>
758where
759 T: Follow<'a> + 'a,
760 T::Inner: fmt::Debug,
761{
762 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -0700763 f.debug_struct("TypedContext")
764 .field("monotonic_event_time", &self.monotonic_event_time())
765 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -0800766 .field("realtime_event_time", &self.realtime_event_time())
767 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -0700768 .field("queue_index", &self.queue_index())
769 .field("remote_queue_index", &self.remote_queue_index())
770 .field("message", &self.message())
771 .field("buffer_index", &self.buffer_index())
772 .field("source_boot_uuid", &self.source_boot_uuid())
773 .finish()
774 }
775}
Brian Silverman9809c5f2022-07-23 16:12:23 -0700776
777/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -0700778/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700779///
780/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
781///
782/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
783/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -0700784// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
785#[repr(transparent)]
786pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
787
Brian Silverman9809c5f2022-07-23 16:12:23 -0700788impl RawFetcher {
789 pub fn fetch_next(&mut self) -> bool {
790 self.0.as_mut().FetchNext()
791 }
792
793 pub fn fetch(&mut self) -> bool {
794 self.0.as_mut().Fetch()
795 }
796
797 pub fn context(&self) -> Context {
798 Context(self.0.context())
799 }
800}
801
Brian Silverman90221f82022-08-22 23:46:09 -0700802/// Provides access to messages on a channel, without the ability to wait for a new one. This
803/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
804///
805/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
806pub struct Fetcher<T>(
807 // SAFETY: This must produce messages of type `T`.
808 RawFetcher,
809 PhantomData<*mut T>,
810)
811where
812 for<'a> T: FollowWith<'a>,
813 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
814
815impl<T> Fetcher<T>
816where
817 for<'a> T: FollowWith<'a>,
818 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
819{
820 pub fn fetch_next(&mut self) -> bool {
821 self.0.fetch_next()
822 }
823 pub fn fetch(&mut self) -> bool {
824 self.0.fetch()
825 }
826
827 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
828 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
829 // type matches.
830 TypedContext(self.0.context(), PhantomData)
831 }
832}
Brian Silverman9809c5f2022-07-23 16:12:23 -0700833
834/// Allows sending messages on a channel.
835///
836/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
837/// for actually creating messages to send. You probably want a [`Sender`] instead.
838///
839/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -0700840// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
841#[repr(transparent)]
842pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
843
Brian Silverman9809c5f2022-07-23 16:12:23 -0700844impl RawSender {
845 fn buffer(&mut self) -> &mut [u8] {
846 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment requirements.
847 unsafe { slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size()) }
848 }
849
850 /// Returns an object which can be used to build a message.
851 ///
852 /// # Examples
853 ///
854 /// ```
855 /// # use pong_rust_fbs::aos::examples::PongBuilder;
856 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
857 /// # unsafe {
858 /// let mut builder = sender.make_builder();
859 /// let pong = PongBuilder::new(builder.fbb()).finish();
860 /// builder.send(pong);
861 /// # }
862 /// # }
863 /// ```
864 ///
865 /// You can bail out of building a message and build another one:
866 /// ```
867 /// # use pong_rust_fbs::aos::examples::PongBuilder;
868 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
869 /// # unsafe {
870 /// let mut builder1 = sender.make_builder();
871 /// builder1.fbb();
872 /// let mut builder2 = sender.make_builder();
873 /// let pong = PongBuilder::new(builder2.fbb()).finish();
874 /// builder2.send(pong);
875 /// # }
876 /// # }
877 /// ```
878 /// but you cannot build two messages at the same time with a single builder:
879 /// ```compile_fail
880 /// # use pong_rust_fbs::aos::examples::PongBuilder;
881 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
882 /// # unsafe {
883 /// let mut builder1 = sender.make_builder();
884 /// let mut builder2 = sender.make_builder();
885 /// PongBuilder::new(builder2.fbb()).finish();
886 /// PongBuilder::new(builder1.fbb()).finish();
887 /// # }
888 /// # }
889 /// ```
890 pub fn make_builder(&mut self) -> RawBuilder {
891 // TODO(Brian): Actually use the provided buffer instead of just using its
892 // size to allocate a separate one.
893 //
894 // See https://github.com/google/flatbuffers/issues/7385.
895 let fbb = flatbuffers::FlatBufferBuilder::with_capacity(self.buffer().len());
896 RawBuilder {
897 raw_sender: self,
898 fbb,
899 }
900 }
901}
902
Brian Silverman9809c5f2022-07-23 16:12:23 -0700903/// Used for building a message. See [`RawSender::make_builder`] for details.
904pub struct RawBuilder<'sender> {
905 raw_sender: &'sender mut RawSender,
906 fbb: flatbuffers::FlatBufferBuilder<'sender>,
907}
908
909impl<'sender> RawBuilder<'sender> {
910 pub fn fbb(&mut self) -> &mut flatbuffers::FlatBufferBuilder<'sender> {
911 &mut self.fbb
912 }
913
914 /// # Safety
915 ///
916 /// `T` must match the type of the channel of the sender this builder was created from.
917 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
918 self.fbb.finish_minimal(root);
919 let data = self.fbb.finished_data();
920
921 use ffi::aos::RawSender_Error as FfiError;
922 // SAFETY: This is a valid buffer we're passing.
923 match unsafe {
924 self.raw_sender
925 .0
926 .as_mut()
927 .CopyAndSend(data.as_ptr(), data.len())
928 } {
929 FfiError::kOk => Ok(()),
930 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
931 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
932 }
933 }
934}
935
Brian Silverman90221f82022-08-22 23:46:09 -0700936/// Allows sending messages on a channel with a type-safe API.
937///
938/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
939pub struct Sender<T>(
940 // SAFETY: This must accept messages of type `T`.
941 RawSender,
942 PhantomData<*mut T>,
943)
944where
945 for<'a> T: FollowWith<'a>,
946 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
947
948impl<T> Sender<T>
949where
950 for<'a> T: FollowWith<'a>,
951 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
952{
953 /// Returns an object which can be used to build a message.
954 ///
955 /// # Examples
956 ///
957 /// ```
958 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
959 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
960 /// let mut builder = sender.make_builder();
961 /// let pong = PongBuilder::new(builder.fbb()).finish();
962 /// builder.send(pong);
963 /// # }
964 /// ```
965 ///
966 /// You can bail out of building a message and build another one:
967 /// ```
968 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
969 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
970 /// let mut builder1 = sender.make_builder();
971 /// builder1.fbb();
972 /// let mut builder2 = sender.make_builder();
973 /// let pong = PongBuilder::new(builder2.fbb()).finish();
974 /// builder2.send(pong);
975 /// # }
976 /// ```
977 /// but you cannot build two messages at the same time with a single builder:
978 /// ```compile_fail
979 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
980 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
981 /// let mut builder1 = sender.make_builder();
982 /// let mut builder2 = sender.make_builder();
983 /// PongBuilder::new(builder2.fbb()).finish();
984 /// PongBuilder::new(builder1.fbb()).finish();
985 /// # }
986 /// ```
987 pub fn make_builder(&mut self) -> Builder<T> {
988 Builder(self.0.make_builder(), PhantomData)
989 }
990}
991
992/// Used for building a message. See [`Sender::make_builder`] for details.
993pub struct Builder<'sender, T>(
994 // SAFETY: This must accept messages of type `T`.
995 RawBuilder<'sender>,
996 PhantomData<*mut T>,
997)
998where
999 for<'a> T: FollowWith<'a>,
1000 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1001
1002impl<'sender, T> Builder<'sender, T>
1003where
1004 for<'a> T: FollowWith<'a>,
1005 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1006{
1007 pub fn fbb(&mut self) -> &mut flatbuffers::FlatBufferBuilder<'sender> {
1008 self.0.fbb()
1009 }
1010
1011 pub fn send<'a>(
1012 self,
1013 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1014 ) -> Result<(), SendError> {
1015 // SAFETY: We guarantee this is the right type based on invariants for our type.
1016 unsafe { self.0.send(root) }
1017 }
1018}
1019
1020#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1021pub enum SendError {
1022 #[error("messages have been sent too fast on this channel")]
1023 MessagesSentTooFast,
1024 #[error("invalid redzone data, shared memory corruption detected")]
1025 InvalidRedzone,
1026}
1027
Brian Silverman9809c5f2022-07-23 16:12:23 -07001028#[repr(transparent)]
1029#[derive(Clone, Copy)]
1030pub struct Context<'context>(&'context ffi::aos::Context);
1031
1032impl fmt::Debug for Context<'_> {
1033 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001034 f.debug_struct("Context")
1035 .field("monotonic_event_time", &self.monotonic_event_time())
1036 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001037 .field("realtime_event_time", &self.realtime_event_time())
1038 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001039 .field("queue_index", &self.queue_index())
1040 .field("remote_queue_index", &self.remote_queue_index())
1041 .field("size", &self.data().map(|data| data.len()))
1042 .field("buffer_index", &self.buffer_index())
1043 .field("source_boot_uuid", &self.source_boot_uuid())
1044 .finish()
1045 }
1046}
1047
Brian Silverman9809c5f2022-07-23 16:12:23 -07001048impl<'context> Context<'context> {
1049 pub fn monotonic_event_time(self) -> MonotonicInstant {
1050 MonotonicInstant(self.0.monotonic_event_time)
1051 }
1052
1053 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1054 MonotonicInstant(self.0.monotonic_remote_time)
1055 }
1056
Ryan Yin683a8672022-11-09 20:44:20 -08001057 pub fn realtime_event_time(self) -> RealtimeInstant {
1058 RealtimeInstant(self.0.realtime_event_time)
1059 }
1060
1061 pub fn realtime_remote_time(self) -> RealtimeInstant {
1062 RealtimeInstant(self.0.realtime_remote_time)
1063 }
1064
Brian Silverman9809c5f2022-07-23 16:12:23 -07001065 pub fn queue_index(self) -> u32 {
1066 self.0.queue_index
1067 }
1068 pub fn remote_queue_index(self) -> u32 {
1069 self.0.remote_queue_index
1070 }
1071
1072 pub fn data(self) -> Option<&'context [u8]> {
1073 if self.0.data.is_null() {
1074 None
1075 } else {
1076 // SAFETY:
1077 // * `u8` has no alignment requirements
1078 // * It must be a single initialized flatbuffers buffer
1079 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1080 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1081 }
1082 }
1083
1084 pub fn buffer_index(self) -> i32 {
1085 self.0.buffer_index
1086 }
1087
1088 pub fn source_boot_uuid(self) -> &'context Uuid {
1089 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1090 // valid until something changes the context, which is `'context`.
1091 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1092 }
1093}
1094
Brian Silverman76f48362022-08-24 21:09:08 -07001095/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1096// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1097#[repr(transparent)]
1098pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1099
1100impl Future for OnRun {
1101 type Output = ();
1102
1103 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1104 if self.0.is_running() {
1105 Poll::Ready(())
1106 } else {
1107 Poll::Pending
1108 }
1109 }
1110}
1111
Brian Silverman9809c5f2022-07-23 16:12:23 -07001112/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1113/// is intended to have the same API as [`std::time::Instant`], any missing
1114/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001115#[repr(transparent)]
1116#[derive(Clone, Copy, Eq, PartialEq)]
1117pub struct MonotonicInstant(i64);
1118
1119impl MonotonicInstant {
1120 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1121 pub const MIN_TIME: Self = Self(i64::MIN);
1122
1123 pub fn is_min_time(self) -> bool {
1124 self == Self::MIN_TIME
1125 }
1126
1127 pub fn duration_since_epoch(self) -> Option<Duration> {
1128 if self.is_min_time() {
1129 None
1130 } else {
1131 Some(Duration::from_nanos(self.0.try_into().expect(
1132 "monotonic_clock::time_point should always be after the epoch",
1133 )))
1134 }
1135 }
1136}
1137
1138impl fmt::Debug for MonotonicInstant {
1139 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1140 self.duration_since_epoch().fmt(f)
1141 }
1142}
1143
Ryan Yin683a8672022-11-09 20:44:20 -08001144#[repr(transparent)]
1145#[derive(Clone, Copy, Eq, PartialEq)]
1146pub struct RealtimeInstant(i64);
1147
1148impl RealtimeInstant {
1149 pub const MIN_TIME: Self = Self(i64::MIN);
1150
1151 pub fn is_min_time(self) -> bool {
1152 self == Self::MIN_TIME
1153 }
1154
1155 pub fn duration_since_epoch(self) -> Option<Duration> {
1156 if self.is_min_time() {
1157 None
1158 } else {
1159 Some(Duration::from_nanos(self.0.try_into().expect(
1160 "monotonic_clock::time_point should always be after the epoch",
1161 )))
1162 }
1163 }
1164}
1165
1166impl fmt::Debug for RealtimeInstant {
1167 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1168 self.duration_since_epoch().fmt(f)
1169 }
1170}
1171
Brian Silverman9809c5f2022-07-23 16:12:23 -07001172mod panic_waker {
1173 use std::task::{RawWaker, RawWakerVTable, Waker};
1174
1175 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1176 raw_panic_waker()
1177 }
1178
1179 unsafe fn noop(_data: *const ()) {}
1180
1181 unsafe fn wake_panic(_data: *const ()) {
1182 panic!("Nothing should wake EventLoopRuntime's waker");
1183 }
1184
1185 const PANIC_WAKER_VTABLE: RawWakerVTable =
1186 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1187
1188 fn raw_panic_waker() -> RawWaker {
1189 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1190 }
1191
1192 pub fn panic_waker() -> Waker {
1193 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1194 unsafe { Waker::from_raw(raw_panic_waker()) }
1195 }
1196}
1197
1198use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001199
1200pub struct ExitHandle(UniquePtr<CppExitHandle>);
1201
1202impl ExitHandle {
1203 /// Exits the EventLoops represented by this handle. You probably want to immediately return
1204 /// from the context this is called in. Awaiting [`exit`] instead of using this function is an
1205 /// easy way to do that.
1206 pub fn exit_sync(mut self) {
1207 self.0.as_mut().unwrap().Exit();
1208 }
1209
1210 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1211 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1212 /// that no more code from that task runs.
1213 pub async fn exit(self) -> Never {
1214 self.exit_sync();
1215 pending().await
1216 }
1217}
1218
1219impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1220 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1221 Self(inner)
1222 }
1223}