blob: 35a4225bc61667daa86ad8d39420723f75285b2b [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
Brian Silverman2ee175e2023-07-11 16:32:08 -070037//! * Rust's lifetimes are only flexible enough to track everything with a single big lifetime.
38//! All the callbacks can store references to things tied to the event loop's lifetime, but no
39//! other lifetimes.
Brian Silverman9809c5f2022-07-23 16:12:23 -070040//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
41//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
42//! a lending stream. This is very close to lending iterators, which is one of the motivating
43//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
44
Brian Silverman1431a772022-08-31 20:44:36 -070045use std::{
46 fmt,
47 future::Future,
48 marker::PhantomData,
Brian Silverman2ee175e2023-07-11 16:32:08 -070049 mem::ManuallyDrop,
Adam Snaidercc8c2f72023-06-25 20:56:13 -070050 ops::Add,
Brian Silverman1431a772022-08-31 20:44:36 -070051 panic::{catch_unwind, AssertUnwindSafe},
52 pin::Pin,
53 slice,
54 task::Poll,
55 time::Duration,
56};
Brian Silverman9809c5f2022-07-23 16:12:23 -070057
58use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070059 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070060 WithinBox,
61};
62use cxx::UniquePtr;
Brian Silverman90221f82022-08-22 23:46:09 -070063use flatbuffers::{root_unchecked, Follow, FollowWith, FullyQualifiedName};
Adam Snaider163800b2023-07-12 00:21:17 -040064use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070065use thiserror::Error;
66use uuid::Uuid;
67
Brian Silverman90221f82022-08-22 23:46:09 -070068pub use aos_configuration::{Channel, Configuration, Node};
69use aos_configuration::{ChannelLookupError, ConfigurationExt};
70
Brian Silverman9809c5f2022-07-23 16:12:23 -070071pub use aos_uuid::UUID;
Brian Silverman2ee175e2023-07-11 16:32:08 -070072pub use ffi::aos::EventLoopRuntime as CppEventLoopRuntime;
Adam Snaider163800b2023-07-12 00:21:17 -040073pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070074
75autocxx::include_cpp! (
76#include "aos/events/event_loop_runtime.h"
77
78safety!(unsafe)
79
80generate_pod!("aos::Context")
81generate!("aos::WatcherForRust")
82generate!("aos::RawSender_Error")
83generate!("aos::SenderForRust")
84generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070085generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070086generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040087generate!("aos::ExitHandle")
Adam Snaidercc8c2f72023-06-25 20:56:13 -070088generate!("aos::TimerForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070089
90subclass!("aos::ApplicationFuture", RustApplicationFuture)
91
92extern_cpp_type!("aos::Configuration", crate::Configuration)
93extern_cpp_type!("aos::Channel", crate::Channel)
94extern_cpp_type!("aos::Node", crate::Node)
95extern_cpp_type!("aos::UUID", crate::UUID)
96);
97
98pub type EventLoop = ffi::aos::EventLoop;
99
Brian Silverman2ee175e2023-07-11 16:32:08 -0700100/// A marker type which is invariant with respect to the given lifetime.
101///
102/// When interacting with functions that take and return things with a given lifetime, the lifetime
103/// becomes invariant. Because we don't store these functions as Rust types, we need a type like
104/// this to tell the Rust compiler that it can't substitute a shorter _or_ longer lifetime.
105pub type InvariantLifetime<'a> = PhantomData<fn(&'a ()) -> &'a ()>;
106
Brian Silverman9809c5f2022-07-23 16:12:23 -0700107/// # Safety
108///
109/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
110/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
111/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
112/// must be outlived by the EventLoop.
113#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700114#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700115pub struct RustApplicationFuture {
116 /// This logically has a `'event_loop` bound, see the class comment for details.
117 future: Pin<Box<dyn Future<Output = Never>>>,
118}
119
120impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700121 fn Poll(&mut self) -> bool {
122 catch_unwind(AssertUnwindSafe(|| {
123 // This is always allowed because it can never create a value of type `Ready<Never>` to
124 // return, so it must always return `Pending`. That also means the value it returns doesn't
125 // mean anything, so we ignore it.
126 let _ = Pin::new(&mut self.future)
127 .poll(&mut std::task::Context::from_waker(&panic_waker()));
128 }))
129 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700130 }
131}
132
133impl RustApplicationFuture {
134 pub fn new<'event_loop>(
135 future: impl Future<Output = Never> + 'event_loop,
136 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
137 /// # Safety
138 ///
139 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
140 /// sound.
141 unsafe fn remove_lifetime<'event_loop>(
142 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
143 ) -> Pin<Box<dyn Future<Output = Never>>> {
144 // SAFETY: Caller is responsible.
145 unsafe { std::mem::transmute(future) }
146 }
147
148 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
149 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
150 // details.
151 future: unsafe { remove_lifetime(Box::pin(future)) },
152 cpp_peer: Default::default(),
153 }))
154 }
155}
156
Brian Silverman2ee175e2023-07-11 16:32:08 -0700157/// An abstraction for objects which hold an `aos::EventLoop` from Rust code.
158///
159/// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
160/// [`EventLoopRuntime.new`] directly.
161///
162/// # Safety
163///
164/// Objects implementing this trait *must* have mostly-exclusive (except for running it) ownership
165/// of the `aos::EventLoop` *for its entire lifetime*, which *must* be dropped when this object is.
166/// See [`EventLoopRuntime.new`]'s safety requirements for why this can be important and details of
167/// mostly-exclusive. In other words, nothing else may mutate it in any way except processing events
168/// (including dropping, because this object has to be the one to drop it).
169///
170/// This also implies semantics similar to `Pin<&mut ffi::aos::EventLoop>` for the underlying object.
171/// Implementations of this trait must have exclusive ownership of it, and the underlying object
172/// must not be moved.
173pub unsafe trait EventLoopHolder {
174 /// Converts this holder into a raw C++ pointer. This may be fed through other Rust and C++
175 /// code, and eventually passed back to [`from_raw`].
176 fn into_raw(self) -> *mut ffi::aos::EventLoop;
177
178 /// Converts a raw C++ pointer back to a holder object.
179 ///
180 /// # Safety
181 ///
182 /// `raw` must be the result of [`into_raw`] on an instance of this same type. These raw
183 /// pointers *are not* interchangeable between implementations of this trait.
184 unsafe fn from_raw(raw: *mut ffi::aos::EventLoop) -> Self;
185}
186
187/// Owns an [`EventLoopRuntime`] and its underlying `aos::EventLoop`, with safe management of the
188/// associated Rust lifetimes.
189pub struct EventLoopRuntimeHolder<T: EventLoopHolder>(
190 ManuallyDrop<Pin<Box<CppEventLoopRuntime>>>,
191 PhantomData<T>,
192);
193
194impl<T: EventLoopHolder> EventLoopRuntimeHolder<T> {
195 /// Creates a new [`EventLoopRuntime`] and runs an initialization function on it. This is a
196 /// safe wrapper around [`EventLoopRuntime.new`] (although see [`EventLoopHolder`]'s safety
197 /// requirements, part of them are just delegated there).
198 ///
199 /// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
200 /// [`EventLoopRuntime.new`] directly.
201 ///
202 /// All setup of the runtime must be performed with `fun`, which is called before this function
203 /// returns. `fun` may create further objects to use in async functions via [`EventLoop.spawn`]
204 /// etc, but it is the only place to set things up before the EventLoop is run.
205 ///
206 /// `fun` cannot capture things outside of the event loop, because the event loop might outlive
207 /// them:
208 /// ```compile_fail
209 /// # use aos_events_event_loop_runtime::*;
210 /// # fn bad(event_loop: impl EventLoopHolder) {
211 /// let mut x = 0;
212 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
213 /// runtime.spawn(async {
214 /// x = 1;
215 /// loop {}
216 /// });
217 /// });
218 /// # }
219 /// ```
220 ///
221 /// But it can capture `'event_loop` references:
222 /// ```
223 /// # use aos_events_event_loop_runtime::*;
224 /// # use aos_configuration::ChannelExt;
225 /// # fn good(event_loop: impl EventLoopHolder) {
226 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
227 /// let channel = runtime.get_raw_channel("/test", "aos.examples.Ping").unwrap();
228 /// runtime.spawn(async {
229 /// loop {
230 /// eprintln!("{:?}", channel.type_());
231 /// }
232 /// });
233 /// });
234 /// # }
235 /// ```
236 pub fn new<F>(event_loop: T, fun: F) -> Self
237 where
238 F: for<'event_loop> FnOnce(&mut EventLoopRuntime<'event_loop>),
239 {
240 // SAFETY: The EventLoopRuntime never escapes this function, which means the only code that
241 // observes its lifetime is `fun`. `fun` must be generic across any value of its
242 // `'event_loop` lifetime parameter, which means we can choose any lifetime here, which
243 // satisfies the safety requirements.
244 //
245 // This is a similar pattern as `std::thread::scope`, `ghost-cell`, etc. Note that unlike
246 // `std::thread::scope`, our inner functions (the async ones) are definitely not allowed to
247 // capture things from the calling scope of this function, so there's no `'env` equivalent.
248 // `ghost-cell` ends up looking very similar despite doing different things with the
249 // pattern, while `std::thread::scope` has a lot of additional complexity to achieve a
250 // similar result.
251 //
252 // `EventLoopHolder`s safety requirements prevent anybody else from touching the underlying
253 // `aos::EventLoop`.
254 let mut runtime = unsafe { EventLoopRuntime::new(event_loop.into_raw()) };
255 fun(&mut runtime);
256 Self(ManuallyDrop::new(runtime.into_cpp()), PhantomData)
257 }
258}
259
260impl<T: EventLoopHolder> Drop for EventLoopRuntimeHolder<T> {
261 fn drop(&mut self) {
262 let event_loop = self.0.as_mut().event_loop();
263 // SAFETY: We're not going to touch this field again. The underlying EventLoop will not be
264 // run again because we're going to drop it next.
265 unsafe { ManuallyDrop::drop(&mut self.0) };
266 // SAFETY: We took this from `into_raw`, and we just dropped the runtime which may contain
267 // Rust references to it.
268 unsafe { drop(T::from_raw(event_loop)) };
269 }
270}
271
Brian Silverman9809c5f2022-07-23 16:12:23 -0700272pub struct EventLoopRuntime<'event_loop>(
273 Pin<Box<ffi::aos::EventLoopRuntime>>,
Brian Silverman2ee175e2023-07-11 16:32:08 -0700274 // See documentation of [`new`] for details.
275 InvariantLifetime<'event_loop>,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700276);
277
278/// Manages the Rust interface to a *single* `aos::EventLoop`. This is intended to be used by a
279/// single application.
280impl<'event_loop> EventLoopRuntime<'event_loop> {
Brian Silverman2ee175e2023-07-11 16:32:08 -0700281 /// Creates a new runtime. This must be the only user of the underlying `aos::EventLoop`.
282 ///
283 /// Consider using [`EventLoopRuntimeHolder.new`] instead, if you're working with an
284 /// `aos::EventLoop` owned (indirectly) by Rust code.
285 ///
286 /// One common pattern is calling this in the constructor of an object whose lifetime is managed
287 /// by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code that obeys
288 /// these rules implicitly.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700289 ///
290 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
291 /// this.
292 ///
293 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
294 /// documentation for details.
295 ///
296 /// # Safety
297 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700298 /// This function is where all the tricky lifetime guarantees to ensure soundness come
299 /// together. It all boils down to choosing `'event_loop` correctly, which is very complicated.
300 /// Here are the rules:
Brian Silverman9809c5f2022-07-23 16:12:23 -0700301 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700302 /// 1. The `aos::EventLoop` APIs, and any other consumer-facing APIs, of the underlying
303 /// `aos::EventLoop` *must* be exclusively used by this object, and things it calls, for
304 /// `'event_loop`.
305 /// 2. `'event_loop` extends until after the last time the underlying `aos::EventLoop` is run.
306 /// This is often beyond the lifetime of this Rust `EventLoopRuntime` object.
307 /// 3. `'event_loop` must outlive this object, because this object stores references to the
308 /// underlying `aos::EventLoop`.
309 /// 4. Any other references stored in the underlying `aos::EventLoop` must be valid for
310 /// `'event_loop`. The easiest way to ensure this is by not using the `aos::EventLoop` before
311 /// passing it to this object.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700312 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700313 /// Here are some corollaries:
314 ///
315 /// 1. The underlying `aos::EventLoop` must be dropped after this object.
316 /// 2. This object will store various references valid for `'event_loop` with a duration of
317 /// `'event_loop`, which is safe as long as they're both the same `'event_loop`. Note that
318 /// this requires this type to be invariant with respect to `'event_loop`.
319 /// 3. `event_loop` (the pointer being passed in) is effectively `Pin`, which is also implied
320 /// by the underlying `aos::EventLoop` C++ type.
321 /// 4. You cannot create multiple `EventLoopRuntime`s from the same underlying `aos::EventLoop`
322 /// or otherwise use it from a different application. The first one may create
323 /// mutable Rust references while the second one expects exclusive ownership, for example.
324 ///
325 /// `aos::EventLoop`'s public API is exclusively for consumers of the event loop. Some
326 /// subclasses extend this API. Additionally, all useful implementations of `aos::EventLoop`
327 /// must have some way to process events. Sometimes this is additional API surface (such as
328 /// `aos::ShmEventLoop`), in other cases comes via other objects holding references to the
329 /// `aos::EventLoop` (such as `aos::SimulatedEventLoopFactory`). This access to run the event
330 /// loop functions independently of the consuming functions in every way except lifetime of the
331 /// `aos::EventLoop`, and may be used independently of `'event_loop`.
332 ///
333 /// ## Discussion of the rules
334 ///
335 /// Rule 1 is similar to rule 3 (they're both similar to mutable borrowing), but rule 1 extends
336 /// for the entire lifetime of the object instead of being limited to the lifetime of an
337 /// individual borrow by an instance of this type. This is similar to the way [`Pin`]'s
338 /// estrictions extend for the entire lifetime of the object, until it is dropped.
339 ///
340 /// Rule 2 and corollaries 2 and 3 go together, and are essential for making [`spawn`]ed tasks
341 /// useful. The `aos::EventLoop` is full of indirect circular references, both within itself
342 /// and via all of the callbacks. This is sound if all of these references have the *exact
343 /// same* Rust lifetime, which is `'event_loop`.
344 ///
345 /// ## Alternatives and why they don't work
346 ///
347 /// Making the argument `Pin<&'event_loop mut EventLoop>` would express some (but not all) of
348 /// these restrictions within the Rust type system. However, having an actual Rust mutable
349 /// reference like that prevents anything else from creating one via other pointers to the
350 /// same object from C++, which is a common operation. See the module-level documentation for
351 /// details.
352 ///
353 /// [`spawn`]ed tasks need to hold `&'event_loop` references to things like channels. Using a
354 /// separate `'config` lifetime wouldn't change much; the tasks still need to do things which
355 /// require them to not outlive something they don't control. This is fundamental to
356 /// self-referential objects, which `aos::EventLoop` is based around, but Rust requires unsafe
357 /// code to manage manually.
358 ///
359 /// ## Final cautions
360 ///
361 /// Following these rules is very tricky. Be very cautious calling this function. It exposes an
362 /// unbound lifetime, which means you should wrap it directly in a function that attaches a
363 /// correct lifetime.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700364 pub unsafe fn new(event_loop: *mut ffi::aos::EventLoop) -> Self {
365 Self(
366 // SAFETY: We push all the validity requirements for this up to our caller.
367 unsafe { ffi::aos::EventLoopRuntime::new(event_loop) }.within_box(),
Brian Silverman2ee175e2023-07-11 16:32:08 -0700368 InvariantLifetime::default(),
Brian Silverman9809c5f2022-07-23 16:12:23 -0700369 )
370 }
371
Brian Silverman2ee175e2023-07-11 16:32:08 -0700372 /// Creates a Rust wrapper from the underlying C++ object, with an unbound lifetime.
373 ///
374 /// This may never be useful, but it's here for this big scary comment to explain why it's not
375 /// useful.
376 ///
377 /// # Safety
378 ///
379 /// See [`new`] for safety restrictions on `'event_loop` when calling this. In particular, see
380 /// the note about how tricky doing this correctly is, and remember that for this function the
381 /// event loop in question isn't even an argument to this function so it's even trickier. Also
382 /// note that you cannot call this on the result of [`into_cpp`] without violating those
383 /// restrictions.
384 pub unsafe fn from_cpp(cpp: Pin<Box<ffi::aos::EventLoopRuntime>>) -> Self {
385 Self(cpp, InvariantLifetime::default())
386 }
387
388 /// Extracts the underlying C++ object, without the corresponding Rust lifetime. This is useful
389 /// to stop the propagation of Rust lifetimes without destroying the underlying object which
390 /// contains all the state.
391 ///
392 /// Note that you *cannot* call [`from_cpp`] on the result of this, because that will violate
393 /// [`from_cpp`]'s safety requirements.
394 pub fn into_cpp(self) -> Pin<Box<ffi::aos::EventLoopRuntime>> {
395 self.0
396 }
397
Brian Silverman9809c5f2022-07-23 16:12:23 -0700398 /// Returns the pointer passed into the constructor.
399 ///
400 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
401 /// calling other C++ APIs.
402 pub fn raw_event_loop(&mut self) -> *mut ffi::aos::EventLoop {
403 self.0.as_mut().event_loop()
404 }
405
Brian Silverman90221f82022-08-22 23:46:09 -0700406 /// Returns a reference to the name of this EventLoop.
407 ///
408 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
409 /// logging etc.
410 ///
411 /// # Safety
412 ///
413 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
414 /// name from most places, so you should be really careful what you do with the result.
415 pub unsafe fn raw_name(&self) -> &str {
416 self.0.name()
417 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700418
419 pub fn get_raw_channel(
420 &self,
421 name: &str,
422 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700423 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700424 self.configuration().get_channel(
425 name,
426 typename,
427 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
428 // channel lookup.
429 unsafe { self.raw_name() },
430 self.node(),
431 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700432 }
433
Brian Silverman90221f82022-08-22 23:46:09 -0700434 pub fn get_channel<T: FullyQualifiedName>(
435 &self,
436 name: &str,
437 ) -> Result<&'event_loop Channel, ChannelLookupError> {
438 self.get_raw_channel(name, T::get_fully_qualified_name())
439 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700440
441 /// Starts running the given `task`, which may not return (as specified by its type). If you
442 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
443 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
444 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700445 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
446 /// defer work until the event loop starts running, await [`on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700447 ///
448 /// # Panics
449 ///
450 /// Panics if called more than once. See the module-level documentation for alternatives if you
451 /// want to do this.
452 ///
453 /// # Examples with interesting return types
454 ///
455 /// These are all valid futures which never return:
456 /// ```
457 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
458 /// # use futures::{never::Never, future::pending};
459 /// async fn pending_wrapper() -> Never {
460 /// pending().await
461 /// }
462 /// async fn loop_forever() -> Never {
463 /// loop {}
464 /// }
465 ///
466 /// runtime.spawn(pending());
467 /// runtime.spawn(async { pending().await });
468 /// runtime.spawn(pending_wrapper());
469 /// runtime.spawn(async { loop {} });
470 /// runtime.spawn(loop_forever());
471 /// runtime.spawn(async { println!("all done"); pending().await });
472 /// # }
473 /// ```
474 /// but this is not:
475 /// ```compile_fail
476 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
477 /// # use futures::ready;
478 /// runtime.spawn(ready());
479 /// # }
480 /// ```
481 /// and neither is this:
482 /// ```compile_fail
483 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
484 /// # use futures::ready;
485 /// runtime.spawn(async { println!("all done") });
486 /// # }
487 /// ```
488 ///
489 /// # Examples with capturing
490 ///
491 /// The future can capture things. This is important to access other objects created from the
492 /// runtime, either before calling this function:
493 /// ```
494 /// # fn compile_check<'event_loop>(
495 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
496 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
497 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
498 /// # ) {
499 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
500 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
501 /// runtime.spawn(async move { loop {
502 /// watcher1.next().await;
503 /// watcher2.next().await;
504 /// }});
505 /// # }
506 /// ```
507 /// or after:
508 /// ```
509 /// # fn compile_check<'event_loop>(
510 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
511 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
512 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
513 /// # ) {
514 /// # use std::{cell::RefCell, rc::Rc};
515 /// let runtime = Rc::new(RefCell::new(runtime));
516 /// runtime.borrow_mut().spawn({
517 /// let mut runtime = runtime.clone();
518 /// async move {
519 /// let mut runtime = runtime.borrow_mut();
520 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
521 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
522 /// loop {
523 /// watcher1.next().await;
524 /// watcher2.next().await;
525 /// }
526 /// }
527 /// });
528 /// # }
529 /// ```
530 /// or both:
531 /// ```
532 /// # fn compile_check<'event_loop>(
533 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
534 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
535 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
536 /// # ) {
537 /// # use std::{cell::RefCell, rc::Rc};
538 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
539 /// let runtime = Rc::new(RefCell::new(runtime));
540 /// runtime.borrow_mut().spawn({
541 /// let mut runtime = runtime.clone();
542 /// async move {
543 /// let mut runtime = runtime.borrow_mut();
544 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
545 /// loop {
546 /// watcher1.next().await;
547 /// watcher2.next().await;
548 /// }
549 /// }
550 /// });
551 /// # }
552 /// ```
553 ///
554 /// But you cannot capture local variables:
555 /// ```compile_fail
556 /// # fn compile_check<'event_loop>(
557 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
558 /// # ) {
559 /// let mut local: i32 = 971;
560 /// let local = &mut local;
561 /// runtime.spawn(async move { loop {
562 /// println!("have: {}", local);
563 /// }});
564 /// # }
565 /// ```
566 pub fn spawn(&mut self, task: impl Future<Output = Never> + 'event_loop) {
Brian Silverman1431a772022-08-31 20:44:36 -0700567 self.0.as_mut().Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700568 }
569
570 pub fn configuration(&self) -> &'event_loop Configuration {
571 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
572 unsafe { &*self.0.configuration() }
573 }
574
575 pub fn node(&self) -> Option<&'event_loop Node> {
576 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
577 unsafe { self.0.node().as_ref() }
578 }
579
580 pub fn monotonic_now(&self) -> MonotonicInstant {
581 MonotonicInstant(self.0.monotonic_now())
582 }
583
Ryan Yin683a8672022-11-09 20:44:20 -0800584 pub fn realtime_now(&self) -> RealtimeInstant {
585 RealtimeInstant(self.0.realtime_now())
586 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700587 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
588 /// part of `self.configuration()`, which will always have this lifetime.
589 ///
590 /// # Panics
591 ///
592 /// Dropping `self` before the returned object is dropped will panic.
593 pub fn make_raw_watcher(&mut self, channel: &'event_loop Channel) -> RawWatcher {
594 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
595 // the usual autocxx heuristics.
596 RawWatcher(unsafe { self.0.as_mut().MakeWatcher(channel) }.within_box())
597 }
598
Brian Silverman90221f82022-08-22 23:46:09 -0700599 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
600 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
601 /// is easiest.
602 ///
603 /// # Panics
604 ///
605 /// Dropping `self` before the returned object is dropped will panic.
606 pub fn make_watcher<T>(&mut self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
607 where
608 for<'a> T: FollowWith<'a>,
609 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
610 T: FullyQualifiedName,
611 {
612 let channel = self.get_channel::<T>(channel_name)?;
613 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
614 }
615
Brian Silverman9809c5f2022-07-23 16:12:23 -0700616 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
617 /// part of `self.configuration()`, which will always have this lifetime.
618 ///
619 /// # Panics
620 ///
621 /// Dropping `self` before the returned object is dropped will panic.
622 pub fn make_raw_sender(&mut self, channel: &'event_loop Channel) -> RawSender {
623 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
624 // the usual autocxx heuristics.
625 RawSender(unsafe { self.0.as_mut().MakeSender(channel) }.within_box())
626 }
627
Brian Silverman90221f82022-08-22 23:46:09 -0700628 /// Allows sending messages on a channel with a type-safe API.
629 ///
630 /// # Panics
631 ///
632 /// Dropping `self` before the returned object is dropped will panic.
633 pub fn make_sender<T>(&mut self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
634 where
635 for<'a> T: FollowWith<'a>,
636 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
637 T: FullyQualifiedName,
638 {
639 let channel = self.get_channel::<T>(channel_name)?;
640 Ok(Sender(self.make_raw_sender(channel), PhantomData))
641 }
642
Brian Silverman9809c5f2022-07-23 16:12:23 -0700643 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
644 /// part of `self.configuration()`, which will always have this lifetime.
645 ///
646 /// # Panics
647 ///
648 /// Dropping `self` before the returned object is dropped will panic.
649 pub fn make_raw_fetcher(&mut self, channel: &'event_loop Channel) -> RawFetcher {
650 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
651 // the usual autocxx heuristics.
652 RawFetcher(unsafe { self.0.as_mut().MakeFetcher(channel) }.within_box())
653 }
654
Brian Silverman90221f82022-08-22 23:46:09 -0700655 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
656 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
657 /// message in order.
658 ///
659 /// # Panics
660 ///
661 /// Dropping `self` before the returned object is dropped will panic.
662 pub fn make_fetcher<T>(&mut self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
663 where
664 for<'a> T: FollowWith<'a>,
665 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
666 T: FullyQualifiedName,
667 {
668 let channel = self.get_channel::<T>(channel_name)?;
669 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
670 }
671
Brian Silverman9809c5f2022-07-23 16:12:23 -0700672 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
673 // instead of / in addition to mirroring C++ with separate setup and wait?
674
Brian Silverman76f48362022-08-24 21:09:08 -0700675 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
676 /// subsequent code will have any realtime scheduling applied. This means it can rely on
677 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
678 /// else non-realtime.
679 pub fn on_run(&mut self) -> OnRun {
680 OnRun(self.0.as_mut().MakeOnRun().within_box())
681 }
682
683 pub fn is_running(&self) -> bool {
684 self.0.is_running()
685 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700686
687 /// Returns an unarmed timer.
688 pub fn add_timer(&mut self) -> Timer {
689 Timer(self.0.as_mut().AddTimer())
690 }
691
692 /// Returns a timer that goes off every `duration`-long ticks.
693 pub fn add_interval(&mut self, duration: Duration) -> Timer {
694 let mut timer = self.add_timer();
695 timer.setup(self.monotonic_now(), Some(duration));
696 timer
697 }
698}
699
700/// An event loop primitive that allows sleeping asynchronously.
701///
702/// # Examples
703///
704/// ```no_run
705/// # use aos_events_event_loop_runtime::EventLoopRuntime;
706/// # use std::time::Duration;
707/// # fn compile_check(runtime: &mut EventLoopRuntime<'_>) {
708/// # let mut timer = runtime.add_timer();
709/// // Goes as soon as awaited.
710/// timer.setup(runtime.monotonic_now(), None);
711/// // Goes off once in 2 seconds.
712/// timer.setup(runtime.monotonic_now() + Duration::from_secs(2), None);
713/// // Goes off as soon as awaited and every 2 seconds afterwards.
714/// timer.setup(runtime.monotonic_now(), Some(Duration::from_secs(1)));
715/// async {
716/// for i in 0..10 {
717/// timer.tick().await;
718/// }
719/// // Timer won't off anymore. Next `tick` will never return.
720/// timer.disable();
721/// timer.tick().await;
722/// };
723/// # }
724/// ```
725pub struct Timer(UniquePtr<ffi::aos::TimerForRust>);
726
727/// A "tick" for a [`Timer`].
728///
729/// This is the raw future generated by the [`Timer::tick`] function.
730pub struct TimerTick<'a>(&'a mut Timer);
731
732impl Timer {
733 /// Arms the timer.
734 ///
735 /// The timer should sleep until `base`, `base + repeat`, `base + repeat * 2`, ...
736 /// If `repeat` is `None`, then the timer only expires once at `base`.
737 pub fn setup(&mut self, base: MonotonicInstant, repeat: Option<Duration>) {
738 self.0.pin_mut().Schedule(
739 base.0,
740 repeat
741 .unwrap_or(Duration::from_nanos(0))
742 .as_nanos()
743 .try_into()
744 .expect("Out of range: Internal clock uses 64 bits"),
745 );
746 }
747
748 /// Disarms the timer.
749 ///
750 /// Can be re-enabled by calling `setup` again.
751 pub fn disable(&mut self) {
752 self.0.pin_mut().Disable();
753 }
754
755 /// Returns `true` if the timer is enabled.
756 pub fn is_enabled(&self) -> bool {
757 !self.0.IsDisabled()
758 }
759
760 /// Sets the name of the timer.
761 ///
762 /// This can be useful to get a descriptive name in the timing reports.
763 pub fn set_name(&mut self, name: &str) {
764 self.0.pin_mut().set_name(name);
765 }
766
767 /// Gets the name of the timer.
768 pub fn name(&self) -> &str {
769 self.0.name()
770 }
771
772 /// Returns a tick which can be `.await`ed.
773 ///
774 /// This tick will resolve on the next timer expired.
775 pub fn tick(&mut self) -> TimerTick {
776 TimerTick(self)
777 }
778
779 /// Polls the timer, returning `[Poll::Ready]` only once the timer expired.
780 fn poll(&mut self) -> Poll<()> {
781 if self.0.pin_mut().Poll() {
782 Poll::Ready(())
783 } else {
784 Poll::Pending
785 }
786 }
787}
788
789impl Future for TimerTick<'_> {
790 type Output = ();
791
792 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
793 self.0.poll()
794 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700795}
796
Brian Silverman9809c5f2022-07-23 16:12:23 -0700797/// Provides async blocking access to messages on a channel. This will return every message on the
798/// channel, in order.
799///
800/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
801///
802/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
803/// for actually interpreting messages. You probably want a [`Watcher`] instead.
804///
805/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
806/// reasons.
807///
808/// # Design
809///
810/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
811/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
812/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
813/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
814/// another level doesn't help anything.
815///
816/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
817///
818/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
819/// the same one mentioned here:
820/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
821/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
822/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700823// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
824#[repr(transparent)]
825pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
826
Brian Silverman9809c5f2022-07-23 16:12:23 -0700827impl RawWatcher {
828 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
829 /// without skipping any messages.
830 ///
831 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
832 /// will need to call this function again to get the succeeding message.
833 ///
834 /// # Examples
835 ///
836 /// The common use case is immediately awaiting the next message:
837 /// ```
838 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
839 /// println!("received: {:?}", watcher.next().await);
840 /// # }
841 /// ```
842 ///
843 /// You can also await the first message from any of a set of channels:
844 /// ```
845 /// # async fn select(
846 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
847 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
848 /// # ) {
849 /// futures::select! {
850 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
851 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
852 /// }
853 /// # }
854 /// ```
855 ///
856 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
857 /// enforce only having a single of these returned objects at a time. Drop the previous message
858 /// before asking for the next one. That means this will not compile:
859 /// ```compile_fail
860 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
861 /// let first = watcher.next();
862 /// let second = watcher.next();
863 /// first.await;
864 /// # }
865 /// ```
866 /// and nor will this:
867 /// ```compile_fail
868 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
869 /// let first = watcher.next().await;
870 /// watcher.next();
871 /// println!("still have: {:?}", first);
872 /// # }
873 /// ```
874 /// but this is fine:
875 /// ```
876 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
877 /// let first = watcher.next().await;
878 /// println!("have: {:?}", first);
879 /// watcher.next();
880 /// # }
881 /// ```
882 pub fn next(&mut self) -> RawWatcherNext {
883 RawWatcherNext(Some(self))
884 }
885}
886
887/// The type returned from [`RawWatcher::next`], see there for details.
888pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
889
890impl<'a> Future for RawWatcherNext<'a> {
891 type Output = Context<'a>;
892 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
893 let inner = self
894 .0
895 .take()
896 .expect("May not call poll after it returns Ready");
897 let maybe_context = inner.0.as_mut().PollNext();
898 if maybe_context.is_null() {
899 // We're not returning a reference into it, so we can safely replace the reference to
900 // use again in the future.
901 self.0.replace(inner);
902 Poll::Pending
903 } else {
904 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
905 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
906 // because we're dropping `inner` (which is that reference), so it will need to be
907 // borrowed again which cannot happen before the end of `'a`.
908 Poll::Ready(Context(unsafe { &*maybe_context }))
909 }
910 }
911}
912
913impl FusedFuture for RawWatcherNext<'_> {
914 fn is_terminated(&self) -> bool {
915 self.0.is_none()
916 }
917}
918
Brian Silverman90221f82022-08-22 23:46:09 -0700919/// Provides async blocking access to messages on a channel. This will return every message on the
920/// channel, in order.
921///
922/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
923///
924/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
925/// reasons. See [`RawWatcher`]'s documentation for details.
926pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
927where
928 for<'a> T: FollowWith<'a>,
929 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
930
931impl<T> Watcher<T>
932where
933 for<'a> T: FollowWith<'a>,
934 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
935{
936 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
937 /// without skipping any messages.
938 ///
939 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
940 /// will need to call this function again to get the succeeding message.
941 ///
942 /// # Examples
943 ///
944 /// The common use case is immediately awaiting the next message:
945 /// ```
946 /// # use pong_rust_fbs::aos::examples::Pong;
947 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
948 /// println!("received: {:?}", watcher.next().await);
949 /// # }
950 /// ```
951 ///
952 /// You can also await the first message from any of a set of channels:
953 /// ```
954 /// # use pong_rust_fbs::aos::examples::Pong;
955 /// # async fn select(
956 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
957 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
958 /// # ) {
959 /// futures::select! {
960 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
961 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
962 /// }
963 /// # }
964 /// ```
965 ///
966 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
967 /// enforce only having a single of these returned objects at a time. Drop the previous message
968 /// before asking for the next one. That means this will not compile:
969 /// ```compile_fail
970 /// # use pong_rust_fbs::aos::examples::Pong;
971 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
972 /// let first = watcher.next();
973 /// let second = watcher.next();
974 /// first.await;
975 /// # }
976 /// ```
977 /// and nor will this:
978 /// ```compile_fail
979 /// # use pong_rust_fbs::aos::examples::Pong;
980 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
981 /// let first = watcher.next().await;
982 /// watcher.next();
983 /// println!("still have: {:?}", first);
984 /// # }
985 /// ```
986 /// but this is fine:
987 /// ```
988 /// # use pong_rust_fbs::aos::examples::Pong;
989 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
990 /// let first = watcher.next().await;
991 /// println!("have: {:?}", first);
992 /// watcher.next();
993 /// # }
994 /// ```
995 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
996 WatcherNext(self.0.next(), PhantomData)
997 }
998}
999
1000/// The type returned from [`Watcher::next`], see there for details.
1001pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
1002where
1003 T: Follow<'watcher> + 'watcher;
1004
1005impl<'watcher, T> Future for WatcherNext<'watcher, T>
1006where
1007 T: Follow<'watcher> + 'watcher,
1008{
1009 type Output = TypedContext<'watcher, T>;
1010
1011 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
1012 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
1013 // SAFETY: The Watcher this was created from verified that the channel is the
1014 // right type, and the C++ guarantees that the buffer's type matches.
1015 TypedContext(context, PhantomData))
1016 }
1017}
1018
1019impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
1020where
1021 T: Follow<'watcher> + 'watcher,
1022{
1023 fn is_terminated(&self) -> bool {
1024 self.0.is_terminated()
1025 }
1026}
1027
1028/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
1029pub struct TypedContext<'a, T>(
1030 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
1031 Context<'a>,
1032 PhantomData<*mut T>,
1033)
1034where
1035 T: Follow<'a> + 'a;
1036
Brian Silverman90221f82022-08-22 23:46:09 -07001037impl<'a, T> TypedContext<'a, T>
1038where
1039 T: Follow<'a> + 'a,
1040{
1041 pub fn message(&self) -> Option<T::Inner> {
1042 self.0.data().map(|data| {
1043 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
1044 // type based on invariants for our type.
1045 unsafe { root_unchecked::<T>(data) }
1046 })
1047 }
1048
1049 pub fn monotonic_event_time(&self) -> MonotonicInstant {
1050 self.0.monotonic_event_time()
1051 }
1052 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
1053 self.0.monotonic_remote_time()
1054 }
Ryan Yin683a8672022-11-09 20:44:20 -08001055 pub fn realtime_event_time(&self) -> RealtimeInstant {
1056 self.0.realtime_event_time()
1057 }
1058 pub fn realtime_remote_time(&self) -> RealtimeInstant {
1059 self.0.realtime_remote_time()
1060 }
Brian Silverman90221f82022-08-22 23:46:09 -07001061 pub fn queue_index(&self) -> u32 {
1062 self.0.queue_index()
1063 }
1064 pub fn remote_queue_index(&self) -> u32 {
1065 self.0.remote_queue_index()
1066 }
1067 pub fn buffer_index(&self) -> i32 {
1068 self.0.buffer_index()
1069 }
1070 pub fn source_boot_uuid(&self) -> &Uuid {
1071 self.0.source_boot_uuid()
1072 }
1073}
1074
1075impl<'a, T> fmt::Debug for TypedContext<'a, T>
1076where
1077 T: Follow<'a> + 'a,
1078 T::Inner: fmt::Debug,
1079{
1080 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -07001081 f.debug_struct("TypedContext")
1082 .field("monotonic_event_time", &self.monotonic_event_time())
1083 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001084 .field("realtime_event_time", &self.realtime_event_time())
1085 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -07001086 .field("queue_index", &self.queue_index())
1087 .field("remote_queue_index", &self.remote_queue_index())
1088 .field("message", &self.message())
1089 .field("buffer_index", &self.buffer_index())
1090 .field("source_boot_uuid", &self.source_boot_uuid())
1091 .finish()
1092 }
1093}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001094
1095/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -07001096/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001097///
1098/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
1099///
1100/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1101/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -07001102// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1103#[repr(transparent)]
1104pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
1105
Brian Silverman9809c5f2022-07-23 16:12:23 -07001106impl RawFetcher {
1107 pub fn fetch_next(&mut self) -> bool {
1108 self.0.as_mut().FetchNext()
1109 }
1110
1111 pub fn fetch(&mut self) -> bool {
1112 self.0.as_mut().Fetch()
1113 }
1114
1115 pub fn context(&self) -> Context {
1116 Context(self.0.context())
1117 }
1118}
1119
Brian Silverman90221f82022-08-22 23:46:09 -07001120/// Provides access to messages on a channel, without the ability to wait for a new one. This
1121/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
1122///
1123/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
1124pub struct Fetcher<T>(
1125 // SAFETY: This must produce messages of type `T`.
1126 RawFetcher,
1127 PhantomData<*mut T>,
1128)
1129where
1130 for<'a> T: FollowWith<'a>,
1131 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1132
1133impl<T> Fetcher<T>
1134where
1135 for<'a> T: FollowWith<'a>,
1136 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1137{
1138 pub fn fetch_next(&mut self) -> bool {
1139 self.0.fetch_next()
1140 }
1141 pub fn fetch(&mut self) -> bool {
1142 self.0.fetch()
1143 }
1144
1145 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
1146 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
1147 // type matches.
1148 TypedContext(self.0.context(), PhantomData)
1149 }
1150}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001151
1152/// Allows sending messages on a channel.
1153///
1154/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1155/// for actually creating messages to send. You probably want a [`Sender`] instead.
1156///
1157/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -07001158// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1159#[repr(transparent)]
1160pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
1161
Brian Silverman9809c5f2022-07-23 16:12:23 -07001162impl RawSender {
1163 fn buffer(&mut self) -> &mut [u8] {
1164 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment requirements.
1165 unsafe { slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size()) }
1166 }
1167
1168 /// Returns an object which can be used to build a message.
1169 ///
1170 /// # Examples
1171 ///
1172 /// ```
1173 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1174 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1175 /// # unsafe {
1176 /// let mut builder = sender.make_builder();
1177 /// let pong = PongBuilder::new(builder.fbb()).finish();
1178 /// builder.send(pong);
1179 /// # }
1180 /// # }
1181 /// ```
1182 ///
1183 /// You can bail out of building a message and build another one:
1184 /// ```
1185 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1186 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1187 /// # unsafe {
1188 /// let mut builder1 = sender.make_builder();
1189 /// builder1.fbb();
1190 /// let mut builder2 = sender.make_builder();
1191 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1192 /// builder2.send(pong);
1193 /// # }
1194 /// # }
1195 /// ```
1196 /// but you cannot build two messages at the same time with a single builder:
1197 /// ```compile_fail
1198 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1199 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1200 /// # unsafe {
1201 /// let mut builder1 = sender.make_builder();
1202 /// let mut builder2 = sender.make_builder();
1203 /// PongBuilder::new(builder2.fbb()).finish();
1204 /// PongBuilder::new(builder1.fbb()).finish();
1205 /// # }
1206 /// # }
1207 /// ```
1208 pub fn make_builder(&mut self) -> RawBuilder {
1209 // TODO(Brian): Actually use the provided buffer instead of just using its
1210 // size to allocate a separate one.
1211 //
1212 // See https://github.com/google/flatbuffers/issues/7385.
1213 let fbb = flatbuffers::FlatBufferBuilder::with_capacity(self.buffer().len());
1214 RawBuilder {
1215 raw_sender: self,
1216 fbb,
1217 }
1218 }
1219}
1220
Brian Silverman9809c5f2022-07-23 16:12:23 -07001221/// Used for building a message. See [`RawSender::make_builder`] for details.
1222pub struct RawBuilder<'sender> {
1223 raw_sender: &'sender mut RawSender,
1224 fbb: flatbuffers::FlatBufferBuilder<'sender>,
1225}
1226
1227impl<'sender> RawBuilder<'sender> {
1228 pub fn fbb(&mut self) -> &mut flatbuffers::FlatBufferBuilder<'sender> {
1229 &mut self.fbb
1230 }
1231
1232 /// # Safety
1233 ///
1234 /// `T` must match the type of the channel of the sender this builder was created from.
1235 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
1236 self.fbb.finish_minimal(root);
1237 let data = self.fbb.finished_data();
1238
1239 use ffi::aos::RawSender_Error as FfiError;
1240 // SAFETY: This is a valid buffer we're passing.
1241 match unsafe {
1242 self.raw_sender
1243 .0
1244 .as_mut()
1245 .CopyAndSend(data.as_ptr(), data.len())
1246 } {
1247 FfiError::kOk => Ok(()),
1248 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
1249 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
1250 }
1251 }
1252}
1253
Brian Silverman90221f82022-08-22 23:46:09 -07001254/// Allows sending messages on a channel with a type-safe API.
1255///
1256/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
1257pub struct Sender<T>(
1258 // SAFETY: This must accept messages of type `T`.
1259 RawSender,
1260 PhantomData<*mut T>,
1261)
1262where
1263 for<'a> T: FollowWith<'a>,
1264 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1265
1266impl<T> Sender<T>
1267where
1268 for<'a> T: FollowWith<'a>,
1269 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1270{
1271 /// Returns an object which can be used to build a message.
1272 ///
1273 /// # Examples
1274 ///
1275 /// ```
1276 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1277 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1278 /// let mut builder = sender.make_builder();
1279 /// let pong = PongBuilder::new(builder.fbb()).finish();
1280 /// builder.send(pong);
1281 /// # }
1282 /// ```
1283 ///
1284 /// You can bail out of building a message and build another one:
1285 /// ```
1286 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1287 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1288 /// let mut builder1 = sender.make_builder();
1289 /// builder1.fbb();
1290 /// let mut builder2 = sender.make_builder();
1291 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1292 /// builder2.send(pong);
1293 /// # }
1294 /// ```
1295 /// but you cannot build two messages at the same time with a single builder:
1296 /// ```compile_fail
1297 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1298 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1299 /// let mut builder1 = sender.make_builder();
1300 /// let mut builder2 = sender.make_builder();
1301 /// PongBuilder::new(builder2.fbb()).finish();
1302 /// PongBuilder::new(builder1.fbb()).finish();
1303 /// # }
1304 /// ```
1305 pub fn make_builder(&mut self) -> Builder<T> {
1306 Builder(self.0.make_builder(), PhantomData)
1307 }
1308}
1309
1310/// Used for building a message. See [`Sender::make_builder`] for details.
1311pub struct Builder<'sender, T>(
1312 // SAFETY: This must accept messages of type `T`.
1313 RawBuilder<'sender>,
1314 PhantomData<*mut T>,
1315)
1316where
1317 for<'a> T: FollowWith<'a>,
1318 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1319
1320impl<'sender, T> Builder<'sender, T>
1321where
1322 for<'a> T: FollowWith<'a>,
1323 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1324{
1325 pub fn fbb(&mut self) -> &mut flatbuffers::FlatBufferBuilder<'sender> {
1326 self.0.fbb()
1327 }
1328
1329 pub fn send<'a>(
1330 self,
1331 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1332 ) -> Result<(), SendError> {
1333 // SAFETY: We guarantee this is the right type based on invariants for our type.
1334 unsafe { self.0.send(root) }
1335 }
1336}
1337
1338#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1339pub enum SendError {
1340 #[error("messages have been sent too fast on this channel")]
1341 MessagesSentTooFast,
1342 #[error("invalid redzone data, shared memory corruption detected")]
1343 InvalidRedzone,
1344}
1345
Brian Silverman9809c5f2022-07-23 16:12:23 -07001346#[repr(transparent)]
1347#[derive(Clone, Copy)]
1348pub struct Context<'context>(&'context ffi::aos::Context);
1349
1350impl fmt::Debug for Context<'_> {
1351 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001352 f.debug_struct("Context")
1353 .field("monotonic_event_time", &self.monotonic_event_time())
1354 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001355 .field("realtime_event_time", &self.realtime_event_time())
1356 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001357 .field("queue_index", &self.queue_index())
1358 .field("remote_queue_index", &self.remote_queue_index())
1359 .field("size", &self.data().map(|data| data.len()))
1360 .field("buffer_index", &self.buffer_index())
1361 .field("source_boot_uuid", &self.source_boot_uuid())
1362 .finish()
1363 }
1364}
1365
Brian Silverman9809c5f2022-07-23 16:12:23 -07001366impl<'context> Context<'context> {
1367 pub fn monotonic_event_time(self) -> MonotonicInstant {
1368 MonotonicInstant(self.0.monotonic_event_time)
1369 }
1370
1371 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1372 MonotonicInstant(self.0.monotonic_remote_time)
1373 }
1374
Ryan Yin683a8672022-11-09 20:44:20 -08001375 pub fn realtime_event_time(self) -> RealtimeInstant {
1376 RealtimeInstant(self.0.realtime_event_time)
1377 }
1378
1379 pub fn realtime_remote_time(self) -> RealtimeInstant {
1380 RealtimeInstant(self.0.realtime_remote_time)
1381 }
1382
Brian Silverman9809c5f2022-07-23 16:12:23 -07001383 pub fn queue_index(self) -> u32 {
1384 self.0.queue_index
1385 }
1386 pub fn remote_queue_index(self) -> u32 {
1387 self.0.remote_queue_index
1388 }
1389
1390 pub fn data(self) -> Option<&'context [u8]> {
1391 if self.0.data.is_null() {
1392 None
1393 } else {
1394 // SAFETY:
1395 // * `u8` has no alignment requirements
1396 // * It must be a single initialized flatbuffers buffer
1397 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1398 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1399 }
1400 }
1401
1402 pub fn buffer_index(self) -> i32 {
1403 self.0.buffer_index
1404 }
1405
1406 pub fn source_boot_uuid(self) -> &'context Uuid {
1407 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1408 // valid until something changes the context, which is `'context`.
1409 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1410 }
1411}
1412
Brian Silverman76f48362022-08-24 21:09:08 -07001413/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1414// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1415#[repr(transparent)]
1416pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1417
1418impl Future for OnRun {
1419 type Output = ();
1420
1421 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1422 if self.0.is_running() {
1423 Poll::Ready(())
1424 } else {
1425 Poll::Pending
1426 }
1427 }
1428}
1429
Brian Silverman9809c5f2022-07-23 16:12:23 -07001430/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1431/// is intended to have the same API as [`std::time::Instant`], any missing
1432/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001433#[repr(transparent)]
1434#[derive(Clone, Copy, Eq, PartialEq)]
1435pub struct MonotonicInstant(i64);
1436
1437impl MonotonicInstant {
1438 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1439 pub const MIN_TIME: Self = Self(i64::MIN);
1440
1441 pub fn is_min_time(self) -> bool {
1442 self == Self::MIN_TIME
1443 }
1444
1445 pub fn duration_since_epoch(self) -> Option<Duration> {
1446 if self.is_min_time() {
1447 None
1448 } else {
1449 Some(Duration::from_nanos(self.0.try_into().expect(
1450 "monotonic_clock::time_point should always be after the epoch",
1451 )))
1452 }
1453 }
1454}
1455
Adam Snaidercc8c2f72023-06-25 20:56:13 -07001456impl Add<Duration> for MonotonicInstant {
1457 type Output = MonotonicInstant;
1458
1459 fn add(self, rhs: Duration) -> Self::Output {
1460 Self(self.0 + i64::try_from(rhs.as_nanos()).unwrap())
1461 }
1462}
1463
Brian Silverman9809c5f2022-07-23 16:12:23 -07001464impl fmt::Debug for MonotonicInstant {
1465 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1466 self.duration_since_epoch().fmt(f)
1467 }
1468}
1469
Ryan Yin683a8672022-11-09 20:44:20 -08001470#[repr(transparent)]
1471#[derive(Clone, Copy, Eq, PartialEq)]
1472pub struct RealtimeInstant(i64);
1473
1474impl RealtimeInstant {
1475 pub const MIN_TIME: Self = Self(i64::MIN);
1476
1477 pub fn is_min_time(self) -> bool {
1478 self == Self::MIN_TIME
1479 }
1480
1481 pub fn duration_since_epoch(self) -> Option<Duration> {
1482 if self.is_min_time() {
1483 None
1484 } else {
1485 Some(Duration::from_nanos(self.0.try_into().expect(
1486 "monotonic_clock::time_point should always be after the epoch",
1487 )))
1488 }
1489 }
1490}
1491
1492impl fmt::Debug for RealtimeInstant {
1493 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1494 self.duration_since_epoch().fmt(f)
1495 }
1496}
1497
Brian Silverman9809c5f2022-07-23 16:12:23 -07001498mod panic_waker {
1499 use std::task::{RawWaker, RawWakerVTable, Waker};
1500
1501 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1502 raw_panic_waker()
1503 }
1504
1505 unsafe fn noop(_data: *const ()) {}
1506
1507 unsafe fn wake_panic(_data: *const ()) {
1508 panic!("Nothing should wake EventLoopRuntime's waker");
1509 }
1510
1511 const PANIC_WAKER_VTABLE: RawWakerVTable =
1512 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1513
1514 fn raw_panic_waker() -> RawWaker {
1515 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1516 }
1517
1518 pub fn panic_waker() -> Waker {
1519 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1520 unsafe { Waker::from_raw(raw_panic_waker()) }
1521 }
1522}
1523
1524use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001525
1526pub struct ExitHandle(UniquePtr<CppExitHandle>);
1527
1528impl ExitHandle {
1529 /// Exits the EventLoops represented by this handle. You probably want to immediately return
1530 /// from the context this is called in. Awaiting [`exit`] instead of using this function is an
1531 /// easy way to do that.
1532 pub fn exit_sync(mut self) {
1533 self.0.as_mut().unwrap().Exit();
1534 }
1535
1536 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1537 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1538 /// that no more code from that task runs.
1539 pub async fn exit(self) -> Never {
1540 self.exit_sync();
1541 pending().await
1542 }
1543}
1544
1545impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1546 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1547 Self(inner)
1548 }
1549}