blob: dfd206eaef227d67e45644200f7bb4875aad4359 [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
Brian Silverman2ee175e2023-07-11 16:32:08 -070037//! * Rust's lifetimes are only flexible enough to track everything with a single big lifetime.
38//! All the callbacks can store references to things tied to the event loop's lifetime, but no
39//! other lifetimes.
Brian Silverman9809c5f2022-07-23 16:12:23 -070040//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
41//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
42//! a lending stream. This is very close to lending iterators, which is one of the motivating
43//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
44
Brian Silverman1431a772022-08-31 20:44:36 -070045use std::{
46 fmt,
47 future::Future,
48 marker::PhantomData,
Brian Silverman2ee175e2023-07-11 16:32:08 -070049 mem::ManuallyDrop,
Adam Snaider34072e12023-10-03 10:04:25 -070050 ops::{Add, Deref, DerefMut},
Brian Silverman1431a772022-08-31 20:44:36 -070051 panic::{catch_unwind, AssertUnwindSafe},
52 pin::Pin,
53 slice,
54 task::Poll,
55 time::Duration,
56};
Brian Silverman9809c5f2022-07-23 16:12:23 -070057
58use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070059 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070060 WithinBox,
61};
62use cxx::UniquePtr;
Adam Snaider34072e12023-10-03 10:04:25 -070063use flatbuffers::{
64 root_unchecked, Allocator, FlatBufferBuilder, Follow, FollowWith, FullyQualifiedName,
65};
Adam Snaider163800b2023-07-12 00:21:17 -040066use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070067use thiserror::Error;
68use uuid::Uuid;
69
Brian Silverman90221f82022-08-22 23:46:09 -070070pub use aos_configuration::{Channel, Configuration, Node};
71use aos_configuration::{ChannelLookupError, ConfigurationExt};
72
Brian Silverman9809c5f2022-07-23 16:12:23 -070073pub use aos_uuid::UUID;
Adam Snaider88097232023-10-17 18:43:14 -070074pub use ffi::aos::EventLoop as CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -070075pub use ffi::aos::EventLoopRuntime as CppEventLoopRuntime;
Adam Snaider163800b2023-07-12 00:21:17 -040076pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070077
78autocxx::include_cpp! (
79#include "aos/events/event_loop_runtime.h"
80
81safety!(unsafe)
82
83generate_pod!("aos::Context")
84generate!("aos::WatcherForRust")
85generate!("aos::RawSender_Error")
86generate!("aos::SenderForRust")
87generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070088generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070089generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040090generate!("aos::ExitHandle")
Adam Snaidercc8c2f72023-06-25 20:56:13 -070091generate!("aos::TimerForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070092
93subclass!("aos::ApplicationFuture", RustApplicationFuture)
94
95extern_cpp_type!("aos::Configuration", crate::Configuration)
96extern_cpp_type!("aos::Channel", crate::Channel)
97extern_cpp_type!("aos::Node", crate::Node)
98extern_cpp_type!("aos::UUID", crate::UUID)
99);
100
Brian Silverman2ee175e2023-07-11 16:32:08 -0700101/// A marker type which is invariant with respect to the given lifetime.
102///
103/// When interacting with functions that take and return things with a given lifetime, the lifetime
104/// becomes invariant. Because we don't store these functions as Rust types, we need a type like
105/// this to tell the Rust compiler that it can't substitute a shorter _or_ longer lifetime.
106pub type InvariantLifetime<'a> = PhantomData<fn(&'a ()) -> &'a ()>;
107
Brian Silverman9809c5f2022-07-23 16:12:23 -0700108/// # Safety
109///
110/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
111/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
112/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
113/// must be outlived by the EventLoop.
114#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700115#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700116pub struct RustApplicationFuture {
117 /// This logically has a `'event_loop` bound, see the class comment for details.
118 future: Pin<Box<dyn Future<Output = Never>>>,
119}
120
121impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700122 fn Poll(&mut self) -> bool {
123 catch_unwind(AssertUnwindSafe(|| {
124 // This is always allowed because it can never create a value of type `Ready<Never>` to
125 // return, so it must always return `Pending`. That also means the value it returns doesn't
126 // mean anything, so we ignore it.
127 let _ = Pin::new(&mut self.future)
128 .poll(&mut std::task::Context::from_waker(&panic_waker()));
129 }))
130 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700131 }
132}
133
134impl RustApplicationFuture {
135 pub fn new<'event_loop>(
136 future: impl Future<Output = Never> + 'event_loop,
137 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
138 /// # Safety
139 ///
140 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
141 /// sound.
142 unsafe fn remove_lifetime<'event_loop>(
143 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
144 ) -> Pin<Box<dyn Future<Output = Never>>> {
145 // SAFETY: Caller is responsible.
146 unsafe { std::mem::transmute(future) }
147 }
148
149 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
150 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
151 // details.
152 future: unsafe { remove_lifetime(Box::pin(future)) },
153 cpp_peer: Default::default(),
154 }))
155 }
156}
157
Brian Silverman2ee175e2023-07-11 16:32:08 -0700158/// An abstraction for objects which hold an `aos::EventLoop` from Rust code.
159///
160/// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
161/// [`EventLoopRuntime.new`] directly.
162///
163/// # Safety
164///
165/// Objects implementing this trait *must* have mostly-exclusive (except for running it) ownership
166/// of the `aos::EventLoop` *for its entire lifetime*, which *must* be dropped when this object is.
167/// See [`EventLoopRuntime.new`]'s safety requirements for why this can be important and details of
168/// mostly-exclusive. In other words, nothing else may mutate it in any way except processing events
169/// (including dropping, because this object has to be the one to drop it).
170///
Adam Snaider88097232023-10-17 18:43:14 -0700171/// This also implies semantics similar to `Pin<&mut CppEventLoop>` for the underlying object.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700172/// Implementations of this trait must have exclusive ownership of it, and the underlying object
173/// must not be moved.
174pub unsafe trait EventLoopHolder {
175 /// Converts this holder into a raw C++ pointer. This may be fed through other Rust and C++
176 /// code, and eventually passed back to [`from_raw`].
Adam Snaider88097232023-10-17 18:43:14 -0700177 fn into_raw(self) -> *mut CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700178
179 /// Converts a raw C++ pointer back to a holder object.
180 ///
181 /// # Safety
182 ///
183 /// `raw` must be the result of [`into_raw`] on an instance of this same type. These raw
184 /// pointers *are not* interchangeable between implementations of this trait.
Adam Snaider88097232023-10-17 18:43:14 -0700185 unsafe fn from_raw(raw: *mut CppEventLoop) -> Self;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700186}
187
188/// Owns an [`EventLoopRuntime`] and its underlying `aos::EventLoop`, with safe management of the
189/// associated Rust lifetimes.
190pub struct EventLoopRuntimeHolder<T: EventLoopHolder>(
191 ManuallyDrop<Pin<Box<CppEventLoopRuntime>>>,
192 PhantomData<T>,
193);
194
195impl<T: EventLoopHolder> EventLoopRuntimeHolder<T> {
196 /// Creates a new [`EventLoopRuntime`] and runs an initialization function on it. This is a
197 /// safe wrapper around [`EventLoopRuntime.new`] (although see [`EventLoopHolder`]'s safety
198 /// requirements, part of them are just delegated there).
199 ///
200 /// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
201 /// [`EventLoopRuntime.new`] directly.
202 ///
203 /// All setup of the runtime must be performed with `fun`, which is called before this function
204 /// returns. `fun` may create further objects to use in async functions via [`EventLoop.spawn`]
205 /// etc, but it is the only place to set things up before the EventLoop is run.
206 ///
207 /// `fun` cannot capture things outside of the event loop, because the event loop might outlive
208 /// them:
209 /// ```compile_fail
210 /// # use aos_events_event_loop_runtime::*;
211 /// # fn bad(event_loop: impl EventLoopHolder) {
212 /// let mut x = 0;
213 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
214 /// runtime.spawn(async {
215 /// x = 1;
216 /// loop {}
217 /// });
218 /// });
219 /// # }
220 /// ```
221 ///
222 /// But it can capture `'event_loop` references:
223 /// ```
224 /// # use aos_events_event_loop_runtime::*;
225 /// # use aos_configuration::ChannelExt;
226 /// # fn good(event_loop: impl EventLoopHolder) {
227 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
228 /// let channel = runtime.get_raw_channel("/test", "aos.examples.Ping").unwrap();
229 /// runtime.spawn(async {
230 /// loop {
231 /// eprintln!("{:?}", channel.type_());
232 /// }
233 /// });
234 /// });
235 /// # }
236 /// ```
237 pub fn new<F>(event_loop: T, fun: F) -> Self
238 where
Adam Snaidere4367cb2023-10-20 15:14:31 -0400239 F: for<'event_loop> FnOnce(EventLoopRuntime<'event_loop>),
Brian Silverman2ee175e2023-07-11 16:32:08 -0700240 {
241 // SAFETY: The EventLoopRuntime never escapes this function, which means the only code that
242 // observes its lifetime is `fun`. `fun` must be generic across any value of its
243 // `'event_loop` lifetime parameter, which means we can choose any lifetime here, which
244 // satisfies the safety requirements.
245 //
246 // This is a similar pattern as `std::thread::scope`, `ghost-cell`, etc. Note that unlike
247 // `std::thread::scope`, our inner functions (the async ones) are definitely not allowed to
248 // capture things from the calling scope of this function, so there's no `'env` equivalent.
249 // `ghost-cell` ends up looking very similar despite doing different things with the
250 // pattern, while `std::thread::scope` has a lot of additional complexity to achieve a
251 // similar result.
252 //
253 // `EventLoopHolder`s safety requirements prevent anybody else from touching the underlying
254 // `aos::EventLoop`.
Adam Snaidere98c2482023-10-17 19:02:03 -0700255 let cpp_runtime = unsafe { CppEventLoopRuntime::new(event_loop.into_raw()).within_box() };
Adam Snaidere4367cb2023-10-20 15:14:31 -0400256 let runtime = unsafe { EventLoopRuntime::new(&cpp_runtime) };
257 fun(runtime);
Adam Snaidere98c2482023-10-17 19:02:03 -0700258 Self(ManuallyDrop::new(cpp_runtime), PhantomData)
Brian Silverman2ee175e2023-07-11 16:32:08 -0700259 }
260}
261
262impl<T: EventLoopHolder> Drop for EventLoopRuntimeHolder<T> {
263 fn drop(&mut self) {
Adam Snaider48a54682023-09-28 21:50:42 -0700264 let event_loop = self.0.event_loop();
Brian Silverman2ee175e2023-07-11 16:32:08 -0700265 // SAFETY: We're not going to touch this field again. The underlying EventLoop will not be
266 // run again because we're going to drop it next.
267 unsafe { ManuallyDrop::drop(&mut self.0) };
268 // SAFETY: We took this from `into_raw`, and we just dropped the runtime which may contain
269 // Rust references to it.
270 unsafe { drop(T::from_raw(event_loop)) };
271 }
272}
273
Adam Snaidere4367cb2023-10-20 15:14:31 -0400274#[derive(Copy, Clone)]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700275pub struct EventLoopRuntime<'event_loop>(
Adam Snaidere98c2482023-10-17 19:02:03 -0700276 &'event_loop CppEventLoopRuntime,
Brian Silverman2ee175e2023-07-11 16:32:08 -0700277 // See documentation of [`new`] for details.
278 InvariantLifetime<'event_loop>,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700279);
280
281/// Manages the Rust interface to a *single* `aos::EventLoop`. This is intended to be used by a
282/// single application.
283impl<'event_loop> EventLoopRuntime<'event_loop> {
Brian Silverman2ee175e2023-07-11 16:32:08 -0700284 /// Creates a new runtime. This must be the only user of the underlying `aos::EventLoop`.
285 ///
286 /// Consider using [`EventLoopRuntimeHolder.new`] instead, if you're working with an
287 /// `aos::EventLoop` owned (indirectly) by Rust code.
288 ///
289 /// One common pattern is calling this in the constructor of an object whose lifetime is managed
290 /// by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code that obeys
291 /// these rules implicitly.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700292 ///
293 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
294 /// this.
295 ///
296 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
297 /// documentation for details.
298 ///
299 /// # Safety
300 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700301 /// This function is where all the tricky lifetime guarantees to ensure soundness come
302 /// together. It all boils down to choosing `'event_loop` correctly, which is very complicated.
303 /// Here are the rules:
Brian Silverman9809c5f2022-07-23 16:12:23 -0700304 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700305 /// 1. The `aos::EventLoop` APIs, and any other consumer-facing APIs, of the underlying
306 /// `aos::EventLoop` *must* be exclusively used by this object, and things it calls, for
307 /// `'event_loop`.
308 /// 2. `'event_loop` extends until after the last time the underlying `aos::EventLoop` is run.
309 /// This is often beyond the lifetime of this Rust `EventLoopRuntime` object.
310 /// 3. `'event_loop` must outlive this object, because this object stores references to the
311 /// underlying `aos::EventLoop`.
312 /// 4. Any other references stored in the underlying `aos::EventLoop` must be valid for
313 /// `'event_loop`. The easiest way to ensure this is by not using the `aos::EventLoop` before
314 /// passing it to this object.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700315 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700316 /// Here are some corollaries:
317 ///
318 /// 1. The underlying `aos::EventLoop` must be dropped after this object.
319 /// 2. This object will store various references valid for `'event_loop` with a duration of
320 /// `'event_loop`, which is safe as long as they're both the same `'event_loop`. Note that
321 /// this requires this type to be invariant with respect to `'event_loop`.
322 /// 3. `event_loop` (the pointer being passed in) is effectively `Pin`, which is also implied
323 /// by the underlying `aos::EventLoop` C++ type.
324 /// 4. You cannot create multiple `EventLoopRuntime`s from the same underlying `aos::EventLoop`
325 /// or otherwise use it from a different application. The first one may create
326 /// mutable Rust references while the second one expects exclusive ownership, for example.
327 ///
328 /// `aos::EventLoop`'s public API is exclusively for consumers of the event loop. Some
329 /// subclasses extend this API. Additionally, all useful implementations of `aos::EventLoop`
330 /// must have some way to process events. Sometimes this is additional API surface (such as
331 /// `aos::ShmEventLoop`), in other cases comes via other objects holding references to the
332 /// `aos::EventLoop` (such as `aos::SimulatedEventLoopFactory`). This access to run the event
333 /// loop functions independently of the consuming functions in every way except lifetime of the
334 /// `aos::EventLoop`, and may be used independently of `'event_loop`.
335 ///
336 /// ## Discussion of the rules
337 ///
338 /// Rule 1 is similar to rule 3 (they're both similar to mutable borrowing), but rule 1 extends
339 /// for the entire lifetime of the object instead of being limited to the lifetime of an
340 /// individual borrow by an instance of this type. This is similar to the way [`Pin`]'s
341 /// estrictions extend for the entire lifetime of the object, until it is dropped.
342 ///
343 /// Rule 2 and corollaries 2 and 3 go together, and are essential for making [`spawn`]ed tasks
344 /// useful. The `aos::EventLoop` is full of indirect circular references, both within itself
345 /// and via all of the callbacks. This is sound if all of these references have the *exact
346 /// same* Rust lifetime, which is `'event_loop`.
347 ///
348 /// ## Alternatives and why they don't work
349 ///
350 /// Making the argument `Pin<&'event_loop mut EventLoop>` would express some (but not all) of
351 /// these restrictions within the Rust type system. However, having an actual Rust mutable
352 /// reference like that prevents anything else from creating one via other pointers to the
353 /// same object from C++, which is a common operation. See the module-level documentation for
354 /// details.
355 ///
356 /// [`spawn`]ed tasks need to hold `&'event_loop` references to things like channels. Using a
357 /// separate `'config` lifetime wouldn't change much; the tasks still need to do things which
358 /// require them to not outlive something they don't control. This is fundamental to
359 /// self-referential objects, which `aos::EventLoop` is based around, but Rust requires unsafe
360 /// code to manage manually.
361 ///
362 /// ## Final cautions
363 ///
364 /// Following these rules is very tricky. Be very cautious calling this function. It exposes an
365 /// unbound lifetime, which means you should wrap it directly in a function that attaches a
366 /// correct lifetime.
Adam Snaidere98c2482023-10-17 19:02:03 -0700367 pub unsafe fn new(event_loop: &'event_loop CppEventLoopRuntime) -> Self {
368 Self(event_loop, InvariantLifetime::default())
Brian Silverman2ee175e2023-07-11 16:32:08 -0700369 }
370
Brian Silverman9809c5f2022-07-23 16:12:23 -0700371 /// Returns the pointer passed into the constructor.
372 ///
373 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
374 /// calling other C++ APIs.
Adam Snaider88097232023-10-17 18:43:14 -0700375 pub fn raw_event_loop(&self) -> *mut CppEventLoop {
Adam Snaider48a54682023-09-28 21:50:42 -0700376 self.0.event_loop()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700377 }
378
Brian Silverman90221f82022-08-22 23:46:09 -0700379 /// Returns a reference to the name of this EventLoop.
380 ///
381 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
382 /// logging etc.
383 ///
384 /// # Safety
385 ///
386 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
387 /// name from most places, so you should be really careful what you do with the result.
388 pub unsafe fn raw_name(&self) -> &str {
389 self.0.name()
390 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700391
392 pub fn get_raw_channel(
393 &self,
394 name: &str,
395 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700396 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700397 self.configuration().get_channel(
398 name,
399 typename,
400 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
401 // channel lookup.
402 unsafe { self.raw_name() },
403 self.node(),
404 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700405 }
406
Brian Silverman90221f82022-08-22 23:46:09 -0700407 pub fn get_channel<T: FullyQualifiedName>(
408 &self,
409 name: &str,
410 ) -> Result<&'event_loop Channel, ChannelLookupError> {
411 self.get_raw_channel(name, T::get_fully_qualified_name())
412 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700413
414 /// Starts running the given `task`, which may not return (as specified by its type). If you
415 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
416 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
417 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700418 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
419 /// defer work until the event loop starts running, await [`on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700420 ///
421 /// # Panics
422 ///
423 /// Panics if called more than once. See the module-level documentation for alternatives if you
424 /// want to do this.
425 ///
426 /// # Examples with interesting return types
427 ///
428 /// These are all valid futures which never return:
429 /// ```
430 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
431 /// # use futures::{never::Never, future::pending};
432 /// async fn pending_wrapper() -> Never {
433 /// pending().await
434 /// }
435 /// async fn loop_forever() -> Never {
436 /// loop {}
437 /// }
438 ///
439 /// runtime.spawn(pending());
440 /// runtime.spawn(async { pending().await });
441 /// runtime.spawn(pending_wrapper());
442 /// runtime.spawn(async { loop {} });
443 /// runtime.spawn(loop_forever());
444 /// runtime.spawn(async { println!("all done"); pending().await });
445 /// # }
446 /// ```
447 /// but this is not:
448 /// ```compile_fail
449 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
450 /// # use futures::ready;
451 /// runtime.spawn(ready());
452 /// # }
453 /// ```
454 /// and neither is this:
455 /// ```compile_fail
456 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
457 /// # use futures::ready;
458 /// runtime.spawn(async { println!("all done") });
459 /// # }
460 /// ```
461 ///
462 /// # Examples with capturing
463 ///
464 /// The future can capture things. This is important to access other objects created from the
465 /// runtime, either before calling this function:
466 /// ```
467 /// # fn compile_check<'event_loop>(
468 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
469 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
470 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
471 /// # ) {
472 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
473 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
474 /// runtime.spawn(async move { loop {
475 /// watcher1.next().await;
476 /// watcher2.next().await;
477 /// }});
478 /// # }
479 /// ```
480 /// or after:
481 /// ```
482 /// # fn compile_check<'event_loop>(
483 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
484 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
485 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
486 /// # ) {
487 /// # use std::{cell::RefCell, rc::Rc};
488 /// let runtime = Rc::new(RefCell::new(runtime));
489 /// runtime.borrow_mut().spawn({
490 /// let mut runtime = runtime.clone();
491 /// async move {
492 /// let mut runtime = runtime.borrow_mut();
493 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
494 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
495 /// loop {
496 /// watcher1.next().await;
497 /// watcher2.next().await;
498 /// }
499 /// }
500 /// });
501 /// # }
502 /// ```
503 /// or both:
504 /// ```
505 /// # fn compile_check<'event_loop>(
506 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
507 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
508 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
509 /// # ) {
510 /// # use std::{cell::RefCell, rc::Rc};
511 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
512 /// let runtime = Rc::new(RefCell::new(runtime));
513 /// runtime.borrow_mut().spawn({
514 /// let mut runtime = runtime.clone();
515 /// async move {
516 /// let mut runtime = runtime.borrow_mut();
517 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
518 /// loop {
519 /// watcher1.next().await;
520 /// watcher2.next().await;
521 /// }
522 /// }
523 /// });
524 /// # }
525 /// ```
526 ///
527 /// But you cannot capture local variables:
528 /// ```compile_fail
529 /// # fn compile_check<'event_loop>(
530 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
531 /// # ) {
532 /// let mut local: i32 = 971;
533 /// let local = &mut local;
534 /// runtime.spawn(async move { loop {
535 /// println!("have: {}", local);
536 /// }});
537 /// # }
538 /// ```
Adam Snaider48a54682023-09-28 21:50:42 -0700539 pub fn spawn(&self, task: impl Future<Output = Never> + 'event_loop) {
540 self.0.Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700541 }
542
543 pub fn configuration(&self) -> &'event_loop Configuration {
544 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
545 unsafe { &*self.0.configuration() }
546 }
547
548 pub fn node(&self) -> Option<&'event_loop Node> {
549 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
550 unsafe { self.0.node().as_ref() }
551 }
552
553 pub fn monotonic_now(&self) -> MonotonicInstant {
554 MonotonicInstant(self.0.monotonic_now())
555 }
556
Ryan Yin683a8672022-11-09 20:44:20 -0800557 pub fn realtime_now(&self) -> RealtimeInstant {
558 RealtimeInstant(self.0.realtime_now())
559 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700560 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
561 /// part of `self.configuration()`, which will always have this lifetime.
562 ///
563 /// # Panics
564 ///
565 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700566 pub fn make_raw_watcher(&self, channel: &'event_loop Channel) -> RawWatcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700567 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
568 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700569 RawWatcher(unsafe { self.0.MakeWatcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700570 }
571
Brian Silverman90221f82022-08-22 23:46:09 -0700572 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
573 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
574 /// is easiest.
575 ///
576 /// # Panics
577 ///
578 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700579 pub fn make_watcher<T>(&self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700580 where
581 for<'a> T: FollowWith<'a>,
582 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
583 T: FullyQualifiedName,
584 {
585 let channel = self.get_channel::<T>(channel_name)?;
586 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
587 }
588
Brian Silverman9809c5f2022-07-23 16:12:23 -0700589 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
590 /// part of `self.configuration()`, which will always have this lifetime.
591 ///
592 /// # Panics
593 ///
594 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700595 pub fn make_raw_sender(&self, channel: &'event_loop Channel) -> RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700596 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
597 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700598 RawSender(unsafe { self.0.MakeSender(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700599 }
600
Brian Silverman90221f82022-08-22 23:46:09 -0700601 /// Allows sending messages on a channel with a type-safe API.
602 ///
603 /// # Panics
604 ///
605 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700606 pub fn make_sender<T>(&self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700607 where
608 for<'a> T: FollowWith<'a>,
609 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
610 T: FullyQualifiedName,
611 {
612 let channel = self.get_channel::<T>(channel_name)?;
613 Ok(Sender(self.make_raw_sender(channel), PhantomData))
614 }
615
Brian Silverman9809c5f2022-07-23 16:12:23 -0700616 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
617 /// part of `self.configuration()`, which will always have this lifetime.
618 ///
619 /// # Panics
620 ///
621 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700622 pub fn make_raw_fetcher(&self, channel: &'event_loop Channel) -> RawFetcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700623 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
624 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700625 RawFetcher(unsafe { self.0.MakeFetcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700626 }
627
Brian Silverman90221f82022-08-22 23:46:09 -0700628 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
629 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
630 /// message in order.
631 ///
632 /// # Panics
633 ///
634 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700635 pub fn make_fetcher<T>(&self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700636 where
637 for<'a> T: FollowWith<'a>,
638 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
639 T: FullyQualifiedName,
640 {
641 let channel = self.get_channel::<T>(channel_name)?;
642 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
643 }
644
Brian Silverman9809c5f2022-07-23 16:12:23 -0700645 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
646 // instead of / in addition to mirroring C++ with separate setup and wait?
647
Brian Silverman76f48362022-08-24 21:09:08 -0700648 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
649 /// subsequent code will have any realtime scheduling applied. This means it can rely on
650 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
651 /// else non-realtime.
Adam Snaider48a54682023-09-28 21:50:42 -0700652 pub fn on_run(&self) -> OnRun {
653 OnRun(self.0.MakeOnRun().within_box())
Brian Silverman76f48362022-08-24 21:09:08 -0700654 }
655
656 pub fn is_running(&self) -> bool {
657 self.0.is_running()
658 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700659
660 /// Returns an unarmed timer.
Adam Snaider48a54682023-09-28 21:50:42 -0700661 pub fn add_timer(&self) -> Timer {
662 Timer(self.0.AddTimer())
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700663 }
664
665 /// Returns a timer that goes off every `duration`-long ticks.
Adam Snaider48a54682023-09-28 21:50:42 -0700666 pub fn add_interval(&self, duration: Duration) -> Timer {
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700667 let mut timer = self.add_timer();
668 timer.setup(self.monotonic_now(), Some(duration));
669 timer
670 }
Adam Snaidercf0dac72023-10-02 14:41:58 -0700671
672 /// Sets the scheduler priority to run the event loop at.
673 pub fn set_realtime_priority(&self, priority: i32) {
674 self.0.SetRuntimeRealtimePriority(priority.into());
675 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700676}
677
678/// An event loop primitive that allows sleeping asynchronously.
679///
680/// # Examples
681///
682/// ```no_run
683/// # use aos_events_event_loop_runtime::EventLoopRuntime;
684/// # use std::time::Duration;
685/// # fn compile_check(runtime: &mut EventLoopRuntime<'_>) {
686/// # let mut timer = runtime.add_timer();
687/// // Goes as soon as awaited.
688/// timer.setup(runtime.monotonic_now(), None);
689/// // Goes off once in 2 seconds.
690/// timer.setup(runtime.monotonic_now() + Duration::from_secs(2), None);
691/// // Goes off as soon as awaited and every 2 seconds afterwards.
692/// timer.setup(runtime.monotonic_now(), Some(Duration::from_secs(1)));
693/// async {
694/// for i in 0..10 {
695/// timer.tick().await;
696/// }
697/// // Timer won't off anymore. Next `tick` will never return.
698/// timer.disable();
699/// timer.tick().await;
700/// };
701/// # }
702/// ```
703pub struct Timer(UniquePtr<ffi::aos::TimerForRust>);
704
705/// A "tick" for a [`Timer`].
706///
707/// This is the raw future generated by the [`Timer::tick`] function.
708pub struct TimerTick<'a>(&'a mut Timer);
709
710impl Timer {
711 /// Arms the timer.
712 ///
713 /// The timer should sleep until `base`, `base + repeat`, `base + repeat * 2`, ...
714 /// If `repeat` is `None`, then the timer only expires once at `base`.
715 pub fn setup(&mut self, base: MonotonicInstant, repeat: Option<Duration>) {
716 self.0.pin_mut().Schedule(
717 base.0,
718 repeat
719 .unwrap_or(Duration::from_nanos(0))
720 .as_nanos()
721 .try_into()
722 .expect("Out of range: Internal clock uses 64 bits"),
723 );
724 }
725
726 /// Disarms the timer.
727 ///
728 /// Can be re-enabled by calling `setup` again.
729 pub fn disable(&mut self) {
730 self.0.pin_mut().Disable();
731 }
732
733 /// Returns `true` if the timer is enabled.
734 pub fn is_enabled(&self) -> bool {
735 !self.0.IsDisabled()
736 }
737
738 /// Sets the name of the timer.
739 ///
740 /// This can be useful to get a descriptive name in the timing reports.
741 pub fn set_name(&mut self, name: &str) {
742 self.0.pin_mut().set_name(name);
743 }
744
745 /// Gets the name of the timer.
746 pub fn name(&self) -> &str {
747 self.0.name()
748 }
749
750 /// Returns a tick which can be `.await`ed.
751 ///
752 /// This tick will resolve on the next timer expired.
753 pub fn tick(&mut self) -> TimerTick {
754 TimerTick(self)
755 }
756
757 /// Polls the timer, returning `[Poll::Ready]` only once the timer expired.
758 fn poll(&mut self) -> Poll<()> {
759 if self.0.pin_mut().Poll() {
760 Poll::Ready(())
761 } else {
762 Poll::Pending
763 }
764 }
765}
766
767impl Future for TimerTick<'_> {
768 type Output = ();
769
770 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
771 self.0.poll()
772 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700773}
774
Brian Silverman9809c5f2022-07-23 16:12:23 -0700775/// Provides async blocking access to messages on a channel. This will return every message on the
776/// channel, in order.
777///
778/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
779///
780/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
781/// for actually interpreting messages. You probably want a [`Watcher`] instead.
782///
783/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
784/// reasons.
785///
786/// # Design
787///
788/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
789/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
790/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
791/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
792/// another level doesn't help anything.
793///
794/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
795///
796/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
797/// the same one mentioned here:
798/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
799/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
800/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700801// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
802#[repr(transparent)]
803pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
804
Brian Silverman9809c5f2022-07-23 16:12:23 -0700805impl RawWatcher {
806 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
807 /// without skipping any messages.
808 ///
809 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
810 /// will need to call this function again to get the succeeding message.
811 ///
812 /// # Examples
813 ///
814 /// The common use case is immediately awaiting the next message:
815 /// ```
816 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
817 /// println!("received: {:?}", watcher.next().await);
818 /// # }
819 /// ```
820 ///
821 /// You can also await the first message from any of a set of channels:
822 /// ```
823 /// # async fn select(
824 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
825 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
826 /// # ) {
827 /// futures::select! {
828 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
829 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
830 /// }
831 /// # }
832 /// ```
833 ///
834 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
835 /// enforce only having a single of these returned objects at a time. Drop the previous message
836 /// before asking for the next one. That means this will not compile:
837 /// ```compile_fail
838 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
839 /// let first = watcher.next();
840 /// let second = watcher.next();
841 /// first.await;
842 /// # }
843 /// ```
844 /// and nor will this:
845 /// ```compile_fail
846 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
847 /// let first = watcher.next().await;
848 /// watcher.next();
849 /// println!("still have: {:?}", first);
850 /// # }
851 /// ```
852 /// but this is fine:
853 /// ```
854 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
855 /// let first = watcher.next().await;
856 /// println!("have: {:?}", first);
857 /// watcher.next();
858 /// # }
859 /// ```
860 pub fn next(&mut self) -> RawWatcherNext {
861 RawWatcherNext(Some(self))
862 }
863}
864
865/// The type returned from [`RawWatcher::next`], see there for details.
866pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
867
868impl<'a> Future for RawWatcherNext<'a> {
869 type Output = Context<'a>;
870 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
871 let inner = self
872 .0
873 .take()
874 .expect("May not call poll after it returns Ready");
875 let maybe_context = inner.0.as_mut().PollNext();
876 if maybe_context.is_null() {
877 // We're not returning a reference into it, so we can safely replace the reference to
878 // use again in the future.
879 self.0.replace(inner);
880 Poll::Pending
881 } else {
882 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
883 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
884 // because we're dropping `inner` (which is that reference), so it will need to be
885 // borrowed again which cannot happen before the end of `'a`.
886 Poll::Ready(Context(unsafe { &*maybe_context }))
887 }
888 }
889}
890
891impl FusedFuture for RawWatcherNext<'_> {
892 fn is_terminated(&self) -> bool {
893 self.0.is_none()
894 }
895}
896
Brian Silverman90221f82022-08-22 23:46:09 -0700897/// Provides async blocking access to messages on a channel. This will return every message on the
898/// channel, in order.
899///
900/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
901///
902/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
903/// reasons. See [`RawWatcher`]'s documentation for details.
904pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
905where
906 for<'a> T: FollowWith<'a>,
907 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
908
909impl<T> Watcher<T>
910where
911 for<'a> T: FollowWith<'a>,
912 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
913{
914 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
915 /// without skipping any messages.
916 ///
917 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
918 /// will need to call this function again to get the succeeding message.
919 ///
920 /// # Examples
921 ///
922 /// The common use case is immediately awaiting the next message:
923 /// ```
924 /// # use pong_rust_fbs::aos::examples::Pong;
925 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
926 /// println!("received: {:?}", watcher.next().await);
927 /// # }
928 /// ```
929 ///
930 /// You can also await the first message from any of a set of channels:
931 /// ```
932 /// # use pong_rust_fbs::aos::examples::Pong;
933 /// # async fn select(
934 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
935 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
936 /// # ) {
937 /// futures::select! {
938 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
939 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
940 /// }
941 /// # }
942 /// ```
943 ///
944 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
945 /// enforce only having a single of these returned objects at a time. Drop the previous message
946 /// before asking for the next one. That means this will not compile:
947 /// ```compile_fail
948 /// # use pong_rust_fbs::aos::examples::Pong;
949 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
950 /// let first = watcher.next();
951 /// let second = watcher.next();
952 /// first.await;
953 /// # }
954 /// ```
955 /// and nor will this:
956 /// ```compile_fail
957 /// # use pong_rust_fbs::aos::examples::Pong;
958 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
959 /// let first = watcher.next().await;
960 /// watcher.next();
961 /// println!("still have: {:?}", first);
962 /// # }
963 /// ```
964 /// but this is fine:
965 /// ```
966 /// # use pong_rust_fbs::aos::examples::Pong;
967 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
968 /// let first = watcher.next().await;
969 /// println!("have: {:?}", first);
970 /// watcher.next();
971 /// # }
972 /// ```
973 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
974 WatcherNext(self.0.next(), PhantomData)
975 }
976}
977
978/// The type returned from [`Watcher::next`], see there for details.
979pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
980where
981 T: Follow<'watcher> + 'watcher;
982
983impl<'watcher, T> Future for WatcherNext<'watcher, T>
984where
985 T: Follow<'watcher> + 'watcher,
986{
987 type Output = TypedContext<'watcher, T>;
988
989 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
990 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
991 // SAFETY: The Watcher this was created from verified that the channel is the
992 // right type, and the C++ guarantees that the buffer's type matches.
993 TypedContext(context, PhantomData))
994 }
995}
996
997impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
998where
999 T: Follow<'watcher> + 'watcher,
1000{
1001 fn is_terminated(&self) -> bool {
1002 self.0.is_terminated()
1003 }
1004}
1005
1006/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
1007pub struct TypedContext<'a, T>(
1008 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
1009 Context<'a>,
1010 PhantomData<*mut T>,
1011)
1012where
1013 T: Follow<'a> + 'a;
1014
Brian Silverman90221f82022-08-22 23:46:09 -07001015impl<'a, T> TypedContext<'a, T>
1016where
1017 T: Follow<'a> + 'a,
1018{
1019 pub fn message(&self) -> Option<T::Inner> {
1020 self.0.data().map(|data| {
1021 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
1022 // type based on invariants for our type.
1023 unsafe { root_unchecked::<T>(data) }
1024 })
1025 }
1026
1027 pub fn monotonic_event_time(&self) -> MonotonicInstant {
1028 self.0.monotonic_event_time()
1029 }
1030 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
1031 self.0.monotonic_remote_time()
1032 }
Ryan Yin683a8672022-11-09 20:44:20 -08001033 pub fn realtime_event_time(&self) -> RealtimeInstant {
1034 self.0.realtime_event_time()
1035 }
1036 pub fn realtime_remote_time(&self) -> RealtimeInstant {
1037 self.0.realtime_remote_time()
1038 }
Brian Silverman90221f82022-08-22 23:46:09 -07001039 pub fn queue_index(&self) -> u32 {
1040 self.0.queue_index()
1041 }
1042 pub fn remote_queue_index(&self) -> u32 {
1043 self.0.remote_queue_index()
1044 }
1045 pub fn buffer_index(&self) -> i32 {
1046 self.0.buffer_index()
1047 }
1048 pub fn source_boot_uuid(&self) -> &Uuid {
1049 self.0.source_boot_uuid()
1050 }
1051}
1052
1053impl<'a, T> fmt::Debug for TypedContext<'a, T>
1054where
1055 T: Follow<'a> + 'a,
1056 T::Inner: fmt::Debug,
1057{
1058 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -07001059 f.debug_struct("TypedContext")
1060 .field("monotonic_event_time", &self.monotonic_event_time())
1061 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001062 .field("realtime_event_time", &self.realtime_event_time())
1063 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -07001064 .field("queue_index", &self.queue_index())
1065 .field("remote_queue_index", &self.remote_queue_index())
1066 .field("message", &self.message())
1067 .field("buffer_index", &self.buffer_index())
1068 .field("source_boot_uuid", &self.source_boot_uuid())
1069 .finish()
1070 }
1071}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001072
1073/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -07001074/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001075///
1076/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
1077///
1078/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1079/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -07001080// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1081#[repr(transparent)]
1082pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
1083
Brian Silverman9809c5f2022-07-23 16:12:23 -07001084impl RawFetcher {
1085 pub fn fetch_next(&mut self) -> bool {
1086 self.0.as_mut().FetchNext()
1087 }
1088
1089 pub fn fetch(&mut self) -> bool {
1090 self.0.as_mut().Fetch()
1091 }
1092
1093 pub fn context(&self) -> Context {
1094 Context(self.0.context())
1095 }
1096}
1097
Brian Silverman90221f82022-08-22 23:46:09 -07001098/// Provides access to messages on a channel, without the ability to wait for a new one. This
1099/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
1100///
1101/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
1102pub struct Fetcher<T>(
1103 // SAFETY: This must produce messages of type `T`.
1104 RawFetcher,
1105 PhantomData<*mut T>,
1106)
1107where
1108 for<'a> T: FollowWith<'a>,
1109 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1110
1111impl<T> Fetcher<T>
1112where
1113 for<'a> T: FollowWith<'a>,
1114 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1115{
1116 pub fn fetch_next(&mut self) -> bool {
1117 self.0.fetch_next()
1118 }
1119 pub fn fetch(&mut self) -> bool {
1120 self.0.fetch()
1121 }
1122
1123 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
1124 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
1125 // type matches.
1126 TypedContext(self.0.context(), PhantomData)
1127 }
1128}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001129
1130/// Allows sending messages on a channel.
1131///
1132/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1133/// for actually creating messages to send. You probably want a [`Sender`] instead.
1134///
1135/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -07001136// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1137#[repr(transparent)]
1138pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
1139
Brian Silverman9809c5f2022-07-23 16:12:23 -07001140impl RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001141 /// Returns an object which can be used to build a message.
1142 ///
1143 /// # Examples
1144 ///
1145 /// ```
1146 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1147 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1148 /// # unsafe {
1149 /// let mut builder = sender.make_builder();
1150 /// let pong = PongBuilder::new(builder.fbb()).finish();
1151 /// builder.send(pong);
1152 /// # }
1153 /// # }
1154 /// ```
1155 ///
1156 /// You can bail out of building a message and build another one:
1157 /// ```
1158 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1159 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1160 /// # unsafe {
1161 /// let mut builder1 = sender.make_builder();
1162 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001163 /// drop(builder1);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001164 /// let mut builder2 = sender.make_builder();
1165 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1166 /// builder2.send(pong);
1167 /// # }
1168 /// # }
1169 /// ```
1170 /// but you cannot build two messages at the same time with a single builder:
1171 /// ```compile_fail
1172 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1173 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1174 /// # unsafe {
1175 /// let mut builder1 = sender.make_builder();
1176 /// let mut builder2 = sender.make_builder();
1177 /// PongBuilder::new(builder2.fbb()).finish();
1178 /// PongBuilder::new(builder1.fbb()).finish();
1179 /// # }
1180 /// # }
1181 /// ```
1182 pub fn make_builder(&mut self) -> RawBuilder {
Adam Snaider34072e12023-10-03 10:04:25 -07001183 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment
1184 // requirements. Additionally, the lifetime of the builder is tied to
1185 // the lifetime of self so the buffer won't be accessible again until
1186 // the builder is destroyed.
1187 let allocator = ChannelPreallocatedAllocator::new(unsafe {
1188 slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size())
1189 });
1190 let fbb = FlatBufferBuilder::new_in(allocator);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001191 RawBuilder {
1192 raw_sender: self,
1193 fbb,
1194 }
1195 }
1196}
1197
Brian Silverman9809c5f2022-07-23 16:12:23 -07001198/// Used for building a message. See [`RawSender::make_builder`] for details.
1199pub struct RawBuilder<'sender> {
1200 raw_sender: &'sender mut RawSender,
Adam Snaider34072e12023-10-03 10:04:25 -07001201 fbb: FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>>,
Brian Silverman9809c5f2022-07-23 16:12:23 -07001202}
1203
1204impl<'sender> RawBuilder<'sender> {
Adam Snaider34072e12023-10-03 10:04:25 -07001205 pub fn fbb(
1206 &mut self,
1207 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001208 &mut self.fbb
1209 }
1210
1211 /// # Safety
1212 ///
1213 /// `T` must match the type of the channel of the sender this builder was created from.
1214 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
1215 self.fbb.finish_minimal(root);
1216 let data = self.fbb.finished_data();
1217
1218 use ffi::aos::RawSender_Error as FfiError;
1219 // SAFETY: This is a valid buffer we're passing.
Adam Snaider4769bb42023-11-22 11:01:46 -08001220 match unsafe { self.raw_sender.0.as_mut().SendBuffer(data.len()) } {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001221 FfiError::kOk => Ok(()),
1222 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
1223 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
1224 }
1225 }
1226}
1227
Brian Silverman90221f82022-08-22 23:46:09 -07001228/// Allows sending messages on a channel with a type-safe API.
1229///
1230/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
1231pub struct Sender<T>(
1232 // SAFETY: This must accept messages of type `T`.
1233 RawSender,
1234 PhantomData<*mut T>,
1235)
1236where
1237 for<'a> T: FollowWith<'a>,
1238 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1239
1240impl<T> Sender<T>
1241where
1242 for<'a> T: FollowWith<'a>,
1243 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1244{
1245 /// Returns an object which can be used to build a message.
1246 ///
1247 /// # Examples
1248 ///
1249 /// ```
1250 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1251 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1252 /// let mut builder = sender.make_builder();
1253 /// let pong = PongBuilder::new(builder.fbb()).finish();
1254 /// builder.send(pong);
1255 /// # }
1256 /// ```
1257 ///
1258 /// You can bail out of building a message and build another one:
1259 /// ```
1260 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1261 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1262 /// let mut builder1 = sender.make_builder();
1263 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001264 /// drop(builder1);
Brian Silverman90221f82022-08-22 23:46:09 -07001265 /// let mut builder2 = sender.make_builder();
1266 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1267 /// builder2.send(pong);
1268 /// # }
1269 /// ```
1270 /// but you cannot build two messages at the same time with a single builder:
1271 /// ```compile_fail
1272 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1273 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1274 /// let mut builder1 = sender.make_builder();
1275 /// let mut builder2 = sender.make_builder();
1276 /// PongBuilder::new(builder2.fbb()).finish();
1277 /// PongBuilder::new(builder1.fbb()).finish();
1278 /// # }
1279 /// ```
1280 pub fn make_builder(&mut self) -> Builder<T> {
1281 Builder(self.0.make_builder(), PhantomData)
1282 }
1283}
1284
1285/// Used for building a message. See [`Sender::make_builder`] for details.
1286pub struct Builder<'sender, T>(
1287 // SAFETY: This must accept messages of type `T`.
1288 RawBuilder<'sender>,
1289 PhantomData<*mut T>,
1290)
1291where
1292 for<'a> T: FollowWith<'a>,
1293 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1294
1295impl<'sender, T> Builder<'sender, T>
1296where
1297 for<'a> T: FollowWith<'a>,
1298 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1299{
Adam Snaider34072e12023-10-03 10:04:25 -07001300 pub fn fbb(
1301 &mut self,
1302 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman90221f82022-08-22 23:46:09 -07001303 self.0.fbb()
1304 }
1305
1306 pub fn send<'a>(
1307 self,
1308 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1309 ) -> Result<(), SendError> {
1310 // SAFETY: We guarantee this is the right type based on invariants for our type.
1311 unsafe { self.0.send(root) }
1312 }
1313}
1314
1315#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1316pub enum SendError {
1317 #[error("messages have been sent too fast on this channel")]
1318 MessagesSentTooFast,
1319 #[error("invalid redzone data, shared memory corruption detected")]
1320 InvalidRedzone,
1321}
1322
Brian Silverman9809c5f2022-07-23 16:12:23 -07001323#[repr(transparent)]
1324#[derive(Clone, Copy)]
1325pub struct Context<'context>(&'context ffi::aos::Context);
1326
1327impl fmt::Debug for Context<'_> {
1328 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001329 f.debug_struct("Context")
1330 .field("monotonic_event_time", &self.monotonic_event_time())
1331 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001332 .field("realtime_event_time", &self.realtime_event_time())
1333 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001334 .field("queue_index", &self.queue_index())
1335 .field("remote_queue_index", &self.remote_queue_index())
1336 .field("size", &self.data().map(|data| data.len()))
1337 .field("buffer_index", &self.buffer_index())
1338 .field("source_boot_uuid", &self.source_boot_uuid())
1339 .finish()
1340 }
1341}
1342
Brian Silverman9809c5f2022-07-23 16:12:23 -07001343impl<'context> Context<'context> {
1344 pub fn monotonic_event_time(self) -> MonotonicInstant {
1345 MonotonicInstant(self.0.monotonic_event_time)
1346 }
1347
1348 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1349 MonotonicInstant(self.0.monotonic_remote_time)
1350 }
1351
Ryan Yin683a8672022-11-09 20:44:20 -08001352 pub fn realtime_event_time(self) -> RealtimeInstant {
1353 RealtimeInstant(self.0.realtime_event_time)
1354 }
1355
1356 pub fn realtime_remote_time(self) -> RealtimeInstant {
1357 RealtimeInstant(self.0.realtime_remote_time)
1358 }
1359
Brian Silverman9809c5f2022-07-23 16:12:23 -07001360 pub fn queue_index(self) -> u32 {
1361 self.0.queue_index
1362 }
1363 pub fn remote_queue_index(self) -> u32 {
1364 self.0.remote_queue_index
1365 }
1366
1367 pub fn data(self) -> Option<&'context [u8]> {
1368 if self.0.data.is_null() {
1369 None
1370 } else {
1371 // SAFETY:
1372 // * `u8` has no alignment requirements
1373 // * It must be a single initialized flatbuffers buffer
1374 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1375 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1376 }
1377 }
1378
1379 pub fn buffer_index(self) -> i32 {
1380 self.0.buffer_index
1381 }
1382
1383 pub fn source_boot_uuid(self) -> &'context Uuid {
1384 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1385 // valid until something changes the context, which is `'context`.
1386 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1387 }
1388}
1389
Brian Silverman76f48362022-08-24 21:09:08 -07001390/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1391// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1392#[repr(transparent)]
1393pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1394
Adam Snaidera3317c82023-10-02 16:02:36 -07001395impl Future for &'_ OnRun {
Brian Silverman76f48362022-08-24 21:09:08 -07001396 type Output = ();
1397
1398 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1399 if self.0.is_running() {
1400 Poll::Ready(())
1401 } else {
1402 Poll::Pending
1403 }
1404 }
1405}
1406
Brian Silverman9809c5f2022-07-23 16:12:23 -07001407/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1408/// is intended to have the same API as [`std::time::Instant`], any missing
1409/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001410#[repr(transparent)]
1411#[derive(Clone, Copy, Eq, PartialEq)]
1412pub struct MonotonicInstant(i64);
1413
1414impl MonotonicInstant {
1415 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1416 pub const MIN_TIME: Self = Self(i64::MIN);
1417
1418 pub fn is_min_time(self) -> bool {
1419 self == Self::MIN_TIME
1420 }
1421
1422 pub fn duration_since_epoch(self) -> Option<Duration> {
1423 if self.is_min_time() {
1424 None
1425 } else {
1426 Some(Duration::from_nanos(self.0.try_into().expect(
1427 "monotonic_clock::time_point should always be after the epoch",
1428 )))
1429 }
1430 }
1431}
1432
Adam Snaidercc8c2f72023-06-25 20:56:13 -07001433impl Add<Duration> for MonotonicInstant {
1434 type Output = MonotonicInstant;
1435
1436 fn add(self, rhs: Duration) -> Self::Output {
1437 Self(self.0 + i64::try_from(rhs.as_nanos()).unwrap())
1438 }
1439}
1440
Adam Snaiderde51c672023-09-28 21:55:43 -07001441impl From<MonotonicInstant> for i64 {
1442 fn from(value: MonotonicInstant) -> Self {
1443 value.0
1444 }
1445}
1446
Brian Silverman9809c5f2022-07-23 16:12:23 -07001447impl fmt::Debug for MonotonicInstant {
1448 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1449 self.duration_since_epoch().fmt(f)
1450 }
1451}
1452
Ryan Yin683a8672022-11-09 20:44:20 -08001453#[repr(transparent)]
1454#[derive(Clone, Copy, Eq, PartialEq)]
1455pub struct RealtimeInstant(i64);
1456
1457impl RealtimeInstant {
1458 pub const MIN_TIME: Self = Self(i64::MIN);
1459
1460 pub fn is_min_time(self) -> bool {
1461 self == Self::MIN_TIME
1462 }
1463
1464 pub fn duration_since_epoch(self) -> Option<Duration> {
1465 if self.is_min_time() {
1466 None
1467 } else {
1468 Some(Duration::from_nanos(self.0.try_into().expect(
1469 "monotonic_clock::time_point should always be after the epoch",
1470 )))
1471 }
1472 }
1473}
1474
Adam Snaiderde51c672023-09-28 21:55:43 -07001475impl From<RealtimeInstant> for i64 {
1476 fn from(value: RealtimeInstant) -> Self {
1477 value.0
1478 }
1479}
1480
Ryan Yin683a8672022-11-09 20:44:20 -08001481impl fmt::Debug for RealtimeInstant {
1482 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1483 self.duration_since_epoch().fmt(f)
1484 }
1485}
1486
Brian Silverman9809c5f2022-07-23 16:12:23 -07001487mod panic_waker {
1488 use std::task::{RawWaker, RawWakerVTable, Waker};
1489
1490 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1491 raw_panic_waker()
1492 }
1493
1494 unsafe fn noop(_data: *const ()) {}
1495
1496 unsafe fn wake_panic(_data: *const ()) {
1497 panic!("Nothing should wake EventLoopRuntime's waker");
1498 }
1499
1500 const PANIC_WAKER_VTABLE: RawWakerVTable =
1501 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1502
1503 fn raw_panic_waker() -> RawWaker {
1504 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1505 }
1506
1507 pub fn panic_waker() -> Waker {
1508 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1509 unsafe { Waker::from_raw(raw_panic_waker()) }
1510 }
1511}
1512
1513use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001514
1515pub struct ExitHandle(UniquePtr<CppExitHandle>);
1516
1517impl ExitHandle {
1518 /// Exits the EventLoops represented by this handle. You probably want to immediately return
1519 /// from the context this is called in. Awaiting [`exit`] instead of using this function is an
1520 /// easy way to do that.
1521 pub fn exit_sync(mut self) {
1522 self.0.as_mut().unwrap().Exit();
1523 }
1524
1525 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1526 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1527 /// that no more code from that task runs.
1528 pub async fn exit(self) -> Never {
1529 self.exit_sync();
1530 pending().await
1531 }
1532}
1533
1534impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1535 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1536 Self(inner)
1537 }
1538}
Adam Snaider34072e12023-10-03 10:04:25 -07001539
1540pub struct ChannelPreallocatedAllocator<'a> {
1541 buffer: &'a mut [u8],
1542}
1543
1544impl<'a> ChannelPreallocatedAllocator<'a> {
1545 pub fn new(buffer: &'a mut [u8]) -> Self {
1546 Self { buffer }
1547 }
1548}
1549
1550#[derive(Debug, Error)]
1551#[error("Can't allocate more memory with a fixed size allocator")]
1552pub struct OutOfMemory;
1553
1554// SAFETY: Allocator follows the required behavior.
1555unsafe impl Allocator for ChannelPreallocatedAllocator<'_> {
1556 type Error = OutOfMemory;
1557 fn grow_downwards(&mut self) -> Result<(), Self::Error> {
1558 // Fixed size allocator can't grow.
1559 Err(OutOfMemory)
1560 }
1561
1562 fn len(&self) -> usize {
1563 self.buffer.len()
1564 }
1565}
1566
1567impl Deref for ChannelPreallocatedAllocator<'_> {
1568 type Target = [u8];
1569
1570 fn deref(&self) -> &Self::Target {
1571 self.buffer
1572 }
1573}
1574
1575impl DerefMut for ChannelPreallocatedAllocator<'_> {
1576 fn deref_mut(&mut self) -> &mut Self::Target {
1577 self.buffer
1578 }
1579}