blob: c79b97ab5cdf21949749c825dfd9ac4e399f8ae5 [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
Brian Silverman2ee175e2023-07-11 16:32:08 -070037//! * Rust's lifetimes are only flexible enough to track everything with a single big lifetime.
38//! All the callbacks can store references to things tied to the event loop's lifetime, but no
39//! other lifetimes.
Brian Silverman9809c5f2022-07-23 16:12:23 -070040//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
41//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
42//! a lending stream. This is very close to lending iterators, which is one of the motivating
43//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
44
Brian Silverman1431a772022-08-31 20:44:36 -070045use std::{
46 fmt,
47 future::Future,
48 marker::PhantomData,
Brian Silverman2ee175e2023-07-11 16:32:08 -070049 mem::ManuallyDrop,
Adam Snaider34072e12023-10-03 10:04:25 -070050 ops::{Add, Deref, DerefMut},
Brian Silverman1431a772022-08-31 20:44:36 -070051 panic::{catch_unwind, AssertUnwindSafe},
52 pin::Pin,
53 slice,
54 task::Poll,
55 time::Duration,
56};
Brian Silverman9809c5f2022-07-23 16:12:23 -070057
58use autocxx::{
Austin Schuhdad7a812023-07-26 21:11:22 -070059 subclass::{subclass, CppSubclass},
Brian Silverman9809c5f2022-07-23 16:12:23 -070060 WithinBox,
61};
62use cxx::UniquePtr;
Adam Snaider34072e12023-10-03 10:04:25 -070063use flatbuffers::{
64 root_unchecked, Allocator, FlatBufferBuilder, Follow, FollowWith, FullyQualifiedName,
65};
Adam Snaider163800b2023-07-12 00:21:17 -040066use futures::{future::pending, future::FusedFuture, never::Never};
Brian Silverman9809c5f2022-07-23 16:12:23 -070067use thiserror::Error;
68use uuid::Uuid;
69
Brian Silverman90221f82022-08-22 23:46:09 -070070pub use aos_configuration::{Channel, Configuration, Node};
71use aos_configuration::{ChannelLookupError, ConfigurationExt};
72
Brian Silverman9809c5f2022-07-23 16:12:23 -070073pub use aos_uuid::UUID;
Adam Snaider88097232023-10-17 18:43:14 -070074pub use ffi::aos::EventLoop as CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -070075pub use ffi::aos::EventLoopRuntime as CppEventLoopRuntime;
Adam Snaider163800b2023-07-12 00:21:17 -040076pub use ffi::aos::ExitHandle as CppExitHandle;
Brian Silverman9809c5f2022-07-23 16:12:23 -070077
78autocxx::include_cpp! (
79#include "aos/events/event_loop_runtime.h"
80
81safety!(unsafe)
82
83generate_pod!("aos::Context")
84generate!("aos::WatcherForRust")
85generate!("aos::RawSender_Error")
86generate!("aos::SenderForRust")
87generate!("aos::FetcherForRust")
Brian Silverman76f48362022-08-24 21:09:08 -070088generate!("aos::OnRunForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070089generate!("aos::EventLoopRuntime")
Adam Snaider163800b2023-07-12 00:21:17 -040090generate!("aos::ExitHandle")
Adam Snaidercc8c2f72023-06-25 20:56:13 -070091generate!("aos::TimerForRust")
Brian Silverman9809c5f2022-07-23 16:12:23 -070092
93subclass!("aos::ApplicationFuture", RustApplicationFuture)
94
95extern_cpp_type!("aos::Configuration", crate::Configuration)
96extern_cpp_type!("aos::Channel", crate::Channel)
97extern_cpp_type!("aos::Node", crate::Node)
98extern_cpp_type!("aos::UUID", crate::UUID)
99);
100
Brian Silverman2ee175e2023-07-11 16:32:08 -0700101/// A marker type which is invariant with respect to the given lifetime.
102///
103/// When interacting with functions that take and return things with a given lifetime, the lifetime
104/// becomes invariant. Because we don't store these functions as Rust types, we need a type like
105/// this to tell the Rust compiler that it can't substitute a shorter _or_ longer lifetime.
106pub type InvariantLifetime<'a> = PhantomData<fn(&'a ()) -> &'a ()>;
107
Brian Silverman9809c5f2022-07-23 16:12:23 -0700108/// # Safety
109///
110/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
111/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
112/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
113/// must be outlived by the EventLoop.
114#[doc(hidden)]
Austin Schuhdad7a812023-07-26 21:11:22 -0700115#[subclass]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700116pub struct RustApplicationFuture {
117 /// This logically has a `'event_loop` bound, see the class comment for details.
118 future: Pin<Box<dyn Future<Output = Never>>>,
119}
120
121impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
Brian Silverman1431a772022-08-31 20:44:36 -0700122 fn Poll(&mut self) -> bool {
123 catch_unwind(AssertUnwindSafe(|| {
124 // This is always allowed because it can never create a value of type `Ready<Never>` to
125 // return, so it must always return `Pending`. That also means the value it returns doesn't
126 // mean anything, so we ignore it.
127 let _ = Pin::new(&mut self.future)
128 .poll(&mut std::task::Context::from_waker(&panic_waker()));
129 }))
130 .is_ok()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700131 }
132}
133
134impl RustApplicationFuture {
135 pub fn new<'event_loop>(
136 future: impl Future<Output = Never> + 'event_loop,
137 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
138 /// # Safety
139 ///
140 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
141 /// sound.
142 unsafe fn remove_lifetime<'event_loop>(
143 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
144 ) -> Pin<Box<dyn Future<Output = Never>>> {
145 // SAFETY: Caller is responsible.
146 unsafe { std::mem::transmute(future) }
147 }
148
149 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
150 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
151 // details.
152 future: unsafe { remove_lifetime(Box::pin(future)) },
153 cpp_peer: Default::default(),
154 }))
155 }
156}
157
Brian Silverman2ee175e2023-07-11 16:32:08 -0700158/// An abstraction for objects which hold an `aos::EventLoop` from Rust code.
159///
160/// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
161/// [`EventLoopRuntime.new`] directly.
162///
163/// # Safety
164///
165/// Objects implementing this trait *must* have mostly-exclusive (except for running it) ownership
166/// of the `aos::EventLoop` *for its entire lifetime*, which *must* be dropped when this object is.
167/// See [`EventLoopRuntime.new`]'s safety requirements for why this can be important and details of
168/// mostly-exclusive. In other words, nothing else may mutate it in any way except processing events
169/// (including dropping, because this object has to be the one to drop it).
170///
Adam Snaider88097232023-10-17 18:43:14 -0700171/// This also implies semantics similar to `Pin<&mut CppEventLoop>` for the underlying object.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700172/// Implementations of this trait must have exclusive ownership of it, and the underlying object
173/// must not be moved.
174pub unsafe trait EventLoopHolder {
175 /// Converts this holder into a raw C++ pointer. This may be fed through other Rust and C++
176 /// code, and eventually passed back to [`from_raw`].
Adam Snaider88097232023-10-17 18:43:14 -0700177 fn into_raw(self) -> *mut CppEventLoop;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700178
179 /// Converts a raw C++ pointer back to a holder object.
180 ///
181 /// # Safety
182 ///
183 /// `raw` must be the result of [`into_raw`] on an instance of this same type. These raw
184 /// pointers *are not* interchangeable between implementations of this trait.
Adam Snaider88097232023-10-17 18:43:14 -0700185 unsafe fn from_raw(raw: *mut CppEventLoop) -> Self;
Brian Silverman2ee175e2023-07-11 16:32:08 -0700186}
187
188/// Owns an [`EventLoopRuntime`] and its underlying `aos::EventLoop`, with safe management of the
189/// associated Rust lifetimes.
190pub struct EventLoopRuntimeHolder<T: EventLoopHolder>(
191 ManuallyDrop<Pin<Box<CppEventLoopRuntime>>>,
192 PhantomData<T>,
193);
194
195impl<T: EventLoopHolder> EventLoopRuntimeHolder<T> {
196 /// Creates a new [`EventLoopRuntime`] and runs an initialization function on it. This is a
197 /// safe wrapper around [`EventLoopRuntime.new`] (although see [`EventLoopHolder`]'s safety
198 /// requirements, part of them are just delegated there).
199 ///
200 /// If you have an `aos::EventLoop` provided from C++ code, don't use this, just call
201 /// [`EventLoopRuntime.new`] directly.
202 ///
203 /// All setup of the runtime must be performed with `fun`, which is called before this function
204 /// returns. `fun` may create further objects to use in async functions via [`EventLoop.spawn`]
205 /// etc, but it is the only place to set things up before the EventLoop is run.
206 ///
207 /// `fun` cannot capture things outside of the event loop, because the event loop might outlive
208 /// them:
209 /// ```compile_fail
210 /// # use aos_events_event_loop_runtime::*;
211 /// # fn bad(event_loop: impl EventLoopHolder) {
212 /// let mut x = 0;
213 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
214 /// runtime.spawn(async {
215 /// x = 1;
216 /// loop {}
217 /// });
218 /// });
219 /// # }
220 /// ```
221 ///
222 /// But it can capture `'event_loop` references:
223 /// ```
224 /// # use aos_events_event_loop_runtime::*;
225 /// # use aos_configuration::ChannelExt;
226 /// # fn good(event_loop: impl EventLoopHolder) {
227 /// EventLoopRuntimeHolder::new(event_loop, |runtime| {
228 /// let channel = runtime.get_raw_channel("/test", "aos.examples.Ping").unwrap();
229 /// runtime.spawn(async {
230 /// loop {
231 /// eprintln!("{:?}", channel.type_());
232 /// }
233 /// });
234 /// });
235 /// # }
236 /// ```
237 pub fn new<F>(event_loop: T, fun: F) -> Self
238 where
Adam Snaidere4367cb2023-10-20 15:14:31 -0400239 F: for<'event_loop> FnOnce(EventLoopRuntime<'event_loop>),
Brian Silverman2ee175e2023-07-11 16:32:08 -0700240 {
Adam Snaidercd53e482023-10-23 09:37:42 -0400241 // SAFETY: The event loop pointer produced by into_raw must be valid.
Adam Snaidere98c2482023-10-17 19:02:03 -0700242 let cpp_runtime = unsafe { CppEventLoopRuntime::new(event_loop.into_raw()).within_box() };
Adam Snaidercd53e482023-10-23 09:37:42 -0400243 EventLoopRuntime::with(&cpp_runtime, fun);
Adam Snaidere98c2482023-10-17 19:02:03 -0700244 Self(ManuallyDrop::new(cpp_runtime), PhantomData)
Brian Silverman2ee175e2023-07-11 16:32:08 -0700245 }
246}
247
248impl<T: EventLoopHolder> Drop for EventLoopRuntimeHolder<T> {
249 fn drop(&mut self) {
Adam Snaider48a54682023-09-28 21:50:42 -0700250 let event_loop = self.0.event_loop();
Brian Silverman2ee175e2023-07-11 16:32:08 -0700251 // SAFETY: We're not going to touch this field again. The underlying EventLoop will not be
252 // run again because we're going to drop it next.
253 unsafe { ManuallyDrop::drop(&mut self.0) };
254 // SAFETY: We took this from `into_raw`, and we just dropped the runtime which may contain
255 // Rust references to it.
256 unsafe { drop(T::from_raw(event_loop)) };
257 }
258}
259
Adam Snaidercd53e482023-10-23 09:37:42 -0400260/// Manages the Rust interface to a *single* `aos::EventLoop`.
261///
262/// This is intended to be used by a single application.
Adam Snaidere4367cb2023-10-20 15:14:31 -0400263#[derive(Copy, Clone)]
Brian Silverman9809c5f2022-07-23 16:12:23 -0700264pub struct EventLoopRuntime<'event_loop>(
Adam Snaidere98c2482023-10-17 19:02:03 -0700265 &'event_loop CppEventLoopRuntime,
Brian Silverman2ee175e2023-07-11 16:32:08 -0700266 // See documentation of [`new`] for details.
267 InvariantLifetime<'event_loop>,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700268);
269
Brian Silverman9809c5f2022-07-23 16:12:23 -0700270impl<'event_loop> EventLoopRuntime<'event_loop> {
Adam Snaidercd53e482023-10-23 09:37:42 -0400271 /// Creates a new runtime for the underlying event loop.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700272 ///
273 /// Consider using [`EventLoopRuntimeHolder.new`] instead, if you're working with an
Adam Snaidercd53e482023-10-23 09:37:42 -0400274 /// `aos::EventLoop` owned (indirectly) by Rust code or using [`EventLoopRuntime::with`] as a safe
275 /// alternative.
Brian Silverman2ee175e2023-07-11 16:32:08 -0700276 ///
277 /// One common pattern is calling this in the constructor of an object whose lifetime is managed
278 /// by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code that obeys
279 /// these rules implicitly.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700280 ///
281 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
282 /// this.
283 ///
284 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
285 /// documentation for details.
286 ///
287 /// # Safety
288 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700289 /// This function is where all the tricky lifetime guarantees to ensure soundness come
290 /// together. It all boils down to choosing `'event_loop` correctly, which is very complicated.
291 /// Here are the rules:
Brian Silverman9809c5f2022-07-23 16:12:23 -0700292 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700293 /// 1. The `aos::EventLoop` APIs, and any other consumer-facing APIs, of the underlying
294 /// `aos::EventLoop` *must* be exclusively used by this object, and things it calls, for
295 /// `'event_loop`.
296 /// 2. `'event_loop` extends until after the last time the underlying `aos::EventLoop` is run.
297 /// This is often beyond the lifetime of this Rust `EventLoopRuntime` object.
298 /// 3. `'event_loop` must outlive this object, because this object stores references to the
299 /// underlying `aos::EventLoop`.
300 /// 4. Any other references stored in the underlying `aos::EventLoop` must be valid for
301 /// `'event_loop`. The easiest way to ensure this is by not using the `aos::EventLoop` before
302 /// passing it to this object.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700303 ///
Brian Silverman2ee175e2023-07-11 16:32:08 -0700304 /// Here are some corollaries:
305 ///
306 /// 1. The underlying `aos::EventLoop` must be dropped after this object.
307 /// 2. This object will store various references valid for `'event_loop` with a duration of
308 /// `'event_loop`, which is safe as long as they're both the same `'event_loop`. Note that
309 /// this requires this type to be invariant with respect to `'event_loop`.
310 /// 3. `event_loop` (the pointer being passed in) is effectively `Pin`, which is also implied
311 /// by the underlying `aos::EventLoop` C++ type.
312 /// 4. You cannot create multiple `EventLoopRuntime`s from the same underlying `aos::EventLoop`
313 /// or otherwise use it from a different application. The first one may create
314 /// mutable Rust references while the second one expects exclusive ownership, for example.
315 ///
316 /// `aos::EventLoop`'s public API is exclusively for consumers of the event loop. Some
317 /// subclasses extend this API. Additionally, all useful implementations of `aos::EventLoop`
318 /// must have some way to process events. Sometimes this is additional API surface (such as
319 /// `aos::ShmEventLoop`), in other cases comes via other objects holding references to the
320 /// `aos::EventLoop` (such as `aos::SimulatedEventLoopFactory`). This access to run the event
321 /// loop functions independently of the consuming functions in every way except lifetime of the
322 /// `aos::EventLoop`, and may be used independently of `'event_loop`.
323 ///
324 /// ## Discussion of the rules
325 ///
326 /// Rule 1 is similar to rule 3 (they're both similar to mutable borrowing), but rule 1 extends
327 /// for the entire lifetime of the object instead of being limited to the lifetime of an
328 /// individual borrow by an instance of this type. This is similar to the way [`Pin`]'s
329 /// estrictions extend for the entire lifetime of the object, until it is dropped.
330 ///
331 /// Rule 2 and corollaries 2 and 3 go together, and are essential for making [`spawn`]ed tasks
332 /// useful. The `aos::EventLoop` is full of indirect circular references, both within itself
333 /// and via all of the callbacks. This is sound if all of these references have the *exact
334 /// same* Rust lifetime, which is `'event_loop`.
335 ///
336 /// ## Alternatives and why they don't work
337 ///
338 /// Making the argument `Pin<&'event_loop mut EventLoop>` would express some (but not all) of
339 /// these restrictions within the Rust type system. However, having an actual Rust mutable
340 /// reference like that prevents anything else from creating one via other pointers to the
341 /// same object from C++, which is a common operation. See the module-level documentation for
342 /// details.
343 ///
344 /// [`spawn`]ed tasks need to hold `&'event_loop` references to things like channels. Using a
345 /// separate `'config` lifetime wouldn't change much; the tasks still need to do things which
346 /// require them to not outlive something they don't control. This is fundamental to
347 /// self-referential objects, which `aos::EventLoop` is based around, but Rust requires unsafe
348 /// code to manage manually.
349 ///
350 /// ## Final cautions
351 ///
352 /// Following these rules is very tricky. Be very cautious calling this function. It exposes an
353 /// unbound lifetime, which means you should wrap it directly in a function that attaches a
354 /// correct lifetime.
Adam Snaidere98c2482023-10-17 19:02:03 -0700355 pub unsafe fn new(event_loop: &'event_loop CppEventLoopRuntime) -> Self {
356 Self(event_loop, InvariantLifetime::default())
Brian Silverman2ee175e2023-07-11 16:32:08 -0700357 }
358
Adam Snaidercd53e482023-10-23 09:37:42 -0400359 /// Safely builds a "constrained" EventLoopRuntime with `fun`.
360 ///
361 /// We constrain the scope of the `[EventLoopRuntime]` by tying it to **any** `'a` lifetime. The
362 /// idea is that the only things that satisfy this lifetime are either ``static` or produced by
363 /// the event loop itself with a '`event_loop` runtime.
364 pub fn with<F>(event_loop: &'event_loop CppEventLoopRuntime, fun: F)
365 where
366 F: for<'a> FnOnce(EventLoopRuntime<'a>),
367 {
368 // SAFETY: We satisfy the event loop lifetime constraint by scoping it inside of a higher-
369 // rank lifetime in FnOnce. This is similar to what is done in std::thread::scope, and the
370 // point is that `fun` can only assume that `'static` and types produced by this typewith a
371 // 'event_loop lifetime are the only lifetimes that will satisfy `'a`. This is possible due
372 // to this type's invariance over its lifetime, otherwise, one could easily make a Subtype
373 // that, due to its shorter lifetime, would include things from its outer scope.
374 unsafe {
375 fun(Self::new(event_loop));
376 }
377 }
378
Brian Silverman9809c5f2022-07-23 16:12:23 -0700379 /// Returns the pointer passed into the constructor.
380 ///
381 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
382 /// calling other C++ APIs.
Adam Snaider88097232023-10-17 18:43:14 -0700383 pub fn raw_event_loop(&self) -> *mut CppEventLoop {
Adam Snaider48a54682023-09-28 21:50:42 -0700384 self.0.event_loop()
Brian Silverman9809c5f2022-07-23 16:12:23 -0700385 }
386
Brian Silverman90221f82022-08-22 23:46:09 -0700387 /// Returns a reference to the name of this EventLoop.
388 ///
389 /// TODO(Brian): Come up with a nice way to expose this safely, without memory allocations, for
390 /// logging etc.
391 ///
392 /// # Safety
393 ///
394 /// The result must not be used after C++ could change it. Unfortunately C++ can change this
395 /// name from most places, so you should be really careful what you do with the result.
396 pub unsafe fn raw_name(&self) -> &str {
397 self.0.name()
398 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700399
400 pub fn get_raw_channel(
401 &self,
402 name: &str,
403 typename: &str,
Brian Silverman9809c5f2022-07-23 16:12:23 -0700404 ) -> Result<&'event_loop Channel, ChannelLookupError> {
Brian Silverman90221f82022-08-22 23:46:09 -0700405 self.configuration().get_channel(
406 name,
407 typename,
408 // SAFETY: We're not calling any EventLoop methods while C++ is using this for the
409 // channel lookup.
410 unsafe { self.raw_name() },
411 self.node(),
412 )
Brian Silverman9809c5f2022-07-23 16:12:23 -0700413 }
414
Brian Silverman90221f82022-08-22 23:46:09 -0700415 pub fn get_channel<T: FullyQualifiedName>(
416 &self,
417 name: &str,
418 ) -> Result<&'event_loop Channel, ChannelLookupError> {
419 self.get_raw_channel(name, T::get_fully_qualified_name())
420 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700421
422 /// Starts running the given `task`, which may not return (as specified by its type). If you
423 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
424 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
425 ///
Brian Silverman76f48362022-08-24 21:09:08 -0700426 /// Note that task will be polled immediately, to give it a chance to initialize. If you want to
427 /// defer work until the event loop starts running, await [`on_run`] in the task.
Brian Silverman9809c5f2022-07-23 16:12:23 -0700428 ///
429 /// # Panics
430 ///
431 /// Panics if called more than once. See the module-level documentation for alternatives if you
432 /// want to do this.
433 ///
434 /// # Examples with interesting return types
435 ///
436 /// These are all valid futures which never return:
437 /// ```
438 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
439 /// # use futures::{never::Never, future::pending};
440 /// async fn pending_wrapper() -> Never {
441 /// pending().await
442 /// }
443 /// async fn loop_forever() -> Never {
444 /// loop {}
445 /// }
446 ///
447 /// runtime.spawn(pending());
448 /// runtime.spawn(async { pending().await });
449 /// runtime.spawn(pending_wrapper());
450 /// runtime.spawn(async { loop {} });
451 /// runtime.spawn(loop_forever());
452 /// runtime.spawn(async { println!("all done"); pending().await });
453 /// # }
454 /// ```
455 /// but this is not:
456 /// ```compile_fail
457 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
458 /// # use futures::ready;
459 /// runtime.spawn(ready());
460 /// # }
461 /// ```
462 /// and neither is this:
463 /// ```compile_fail
464 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
465 /// # use futures::ready;
466 /// runtime.spawn(async { println!("all done") });
467 /// # }
468 /// ```
469 ///
470 /// # Examples with capturing
471 ///
472 /// The future can capture things. This is important to access other objects created from the
473 /// runtime, either before calling this function:
474 /// ```
475 /// # fn compile_check<'event_loop>(
476 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
477 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
478 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
479 /// # ) {
480 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
481 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
482 /// runtime.spawn(async move { loop {
483 /// watcher1.next().await;
484 /// watcher2.next().await;
485 /// }});
486 /// # }
487 /// ```
488 /// or after:
489 /// ```
490 /// # fn compile_check<'event_loop>(
491 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
492 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
493 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
494 /// # ) {
495 /// # use std::{cell::RefCell, rc::Rc};
496 /// let runtime = Rc::new(RefCell::new(runtime));
497 /// runtime.borrow_mut().spawn({
498 /// let mut runtime = runtime.clone();
499 /// async move {
500 /// let mut runtime = runtime.borrow_mut();
501 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
502 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
503 /// loop {
504 /// watcher1.next().await;
505 /// watcher2.next().await;
506 /// }
507 /// }
508 /// });
509 /// # }
510 /// ```
511 /// or both:
512 /// ```
513 /// # fn compile_check<'event_loop>(
514 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
515 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
516 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
517 /// # ) {
518 /// # use std::{cell::RefCell, rc::Rc};
519 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
520 /// let runtime = Rc::new(RefCell::new(runtime));
521 /// runtime.borrow_mut().spawn({
522 /// let mut runtime = runtime.clone();
523 /// async move {
524 /// let mut runtime = runtime.borrow_mut();
525 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
526 /// loop {
527 /// watcher1.next().await;
528 /// watcher2.next().await;
529 /// }
530 /// }
531 /// });
532 /// # }
533 /// ```
534 ///
535 /// But you cannot capture local variables:
536 /// ```compile_fail
537 /// # fn compile_check<'event_loop>(
538 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
539 /// # ) {
540 /// let mut local: i32 = 971;
541 /// let local = &mut local;
542 /// runtime.spawn(async move { loop {
543 /// println!("have: {}", local);
544 /// }});
545 /// # }
546 /// ```
Adam Snaider48a54682023-09-28 21:50:42 -0700547 pub fn spawn(&self, task: impl Future<Output = Never> + 'event_loop) {
548 self.0.Spawn(RustApplicationFuture::new(task));
Brian Silverman9809c5f2022-07-23 16:12:23 -0700549 }
550
551 pub fn configuration(&self) -> &'event_loop Configuration {
552 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
553 unsafe { &*self.0.configuration() }
554 }
555
556 pub fn node(&self) -> Option<&'event_loop Node> {
557 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
558 unsafe { self.0.node().as_ref() }
559 }
560
561 pub fn monotonic_now(&self) -> MonotonicInstant {
562 MonotonicInstant(self.0.monotonic_now())
563 }
564
Ryan Yin683a8672022-11-09 20:44:20 -0800565 pub fn realtime_now(&self) -> RealtimeInstant {
566 RealtimeInstant(self.0.realtime_now())
567 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700568 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
569 /// part of `self.configuration()`, which will always have this lifetime.
570 ///
571 /// # Panics
572 ///
573 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700574 pub fn make_raw_watcher(&self, channel: &'event_loop Channel) -> RawWatcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700575 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
576 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700577 RawWatcher(unsafe { self.0.MakeWatcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700578 }
579
Brian Silverman90221f82022-08-22 23:46:09 -0700580 /// Provides type-safe async blocking access to messages on a channel. `T` should be a
581 /// generated flatbuffers table type, the lifetime parameter does not matter, using `'static`
582 /// is easiest.
583 ///
584 /// # Panics
585 ///
586 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700587 pub fn make_watcher<T>(&self, channel_name: &str) -> Result<Watcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700588 where
589 for<'a> T: FollowWith<'a>,
590 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
591 T: FullyQualifiedName,
592 {
593 let channel = self.get_channel::<T>(channel_name)?;
594 Ok(Watcher(self.make_raw_watcher(channel), PhantomData))
595 }
596
Brian Silverman9809c5f2022-07-23 16:12:23 -0700597 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
598 /// part of `self.configuration()`, which will always have this lifetime.
599 ///
600 /// # Panics
601 ///
602 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700603 pub fn make_raw_sender(&self, channel: &'event_loop Channel) -> RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700604 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
605 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700606 RawSender(unsafe { self.0.MakeSender(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700607 }
608
Brian Silverman90221f82022-08-22 23:46:09 -0700609 /// Allows sending messages on a channel with a type-safe API.
610 ///
611 /// # Panics
612 ///
613 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700614 pub fn make_sender<T>(&self, channel_name: &str) -> Result<Sender<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700615 where
616 for<'a> T: FollowWith<'a>,
617 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
618 T: FullyQualifiedName,
619 {
620 let channel = self.get_channel::<T>(channel_name)?;
621 Ok(Sender(self.make_raw_sender(channel), PhantomData))
622 }
623
Brian Silverman9809c5f2022-07-23 16:12:23 -0700624 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
625 /// part of `self.configuration()`, which will always have this lifetime.
626 ///
627 /// # Panics
628 ///
629 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700630 pub fn make_raw_fetcher(&self, channel: &'event_loop Channel) -> RawFetcher {
Brian Silverman9809c5f2022-07-23 16:12:23 -0700631 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
632 // the usual autocxx heuristics.
Adam Snaider48a54682023-09-28 21:50:42 -0700633 RawFetcher(unsafe { self.0.MakeFetcher(channel) }.within_box())
Brian Silverman9809c5f2022-07-23 16:12:23 -0700634 }
635
Brian Silverman90221f82022-08-22 23:46:09 -0700636 /// Provides type-safe access to messages on a channel, without the ability to wait for a new
637 /// one. This provides APIs to get the latest message, and to follow along and retrieve each
638 /// message in order.
639 ///
640 /// # Panics
641 ///
642 /// Dropping `self` before the returned object is dropped will panic.
Adam Snaider48a54682023-09-28 21:50:42 -0700643 pub fn make_fetcher<T>(&self, channel_name: &str) -> Result<Fetcher<T>, ChannelLookupError>
Brian Silverman90221f82022-08-22 23:46:09 -0700644 where
645 for<'a> T: FollowWith<'a>,
646 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
647 T: FullyQualifiedName,
648 {
649 let channel = self.get_channel::<T>(channel_name)?;
650 Ok(Fetcher(self.make_raw_fetcher(channel), PhantomData))
651 }
652
Brian Silverman9809c5f2022-07-23 16:12:23 -0700653 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
654 // instead of / in addition to mirroring C++ with separate setup and wait?
655
Brian Silverman76f48362022-08-24 21:09:08 -0700656 /// Returns a Future to wait until the underlying EventLoop is running. Once this resolves, all
657 /// subsequent code will have any realtime scheduling applied. This means it can rely on
658 /// consistent timing, but it can no longer create any EventLoop child objects or do anything
659 /// else non-realtime.
Adam Snaider48a54682023-09-28 21:50:42 -0700660 pub fn on_run(&self) -> OnRun {
661 OnRun(self.0.MakeOnRun().within_box())
Brian Silverman76f48362022-08-24 21:09:08 -0700662 }
663
664 pub fn is_running(&self) -> bool {
665 self.0.is_running()
666 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700667
668 /// Returns an unarmed timer.
Adam Snaider48a54682023-09-28 21:50:42 -0700669 pub fn add_timer(&self) -> Timer {
670 Timer(self.0.AddTimer())
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700671 }
672
673 /// Returns a timer that goes off every `duration`-long ticks.
Adam Snaider48a54682023-09-28 21:50:42 -0700674 pub fn add_interval(&self, duration: Duration) -> Timer {
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700675 let mut timer = self.add_timer();
676 timer.setup(self.monotonic_now(), Some(duration));
677 timer
678 }
Adam Snaidercf0dac72023-10-02 14:41:58 -0700679
680 /// Sets the scheduler priority to run the event loop at.
681 pub fn set_realtime_priority(&self, priority: i32) {
682 self.0.SetRuntimeRealtimePriority(priority.into());
683 }
Adam Snaidercc8c2f72023-06-25 20:56:13 -0700684}
685
686/// An event loop primitive that allows sleeping asynchronously.
687///
688/// # Examples
689///
690/// ```no_run
691/// # use aos_events_event_loop_runtime::EventLoopRuntime;
692/// # use std::time::Duration;
693/// # fn compile_check(runtime: &mut EventLoopRuntime<'_>) {
694/// # let mut timer = runtime.add_timer();
695/// // Goes as soon as awaited.
696/// timer.setup(runtime.monotonic_now(), None);
697/// // Goes off once in 2 seconds.
698/// timer.setup(runtime.monotonic_now() + Duration::from_secs(2), None);
699/// // Goes off as soon as awaited and every 2 seconds afterwards.
700/// timer.setup(runtime.monotonic_now(), Some(Duration::from_secs(1)));
701/// async {
702/// for i in 0..10 {
703/// timer.tick().await;
704/// }
705/// // Timer won't off anymore. Next `tick` will never return.
706/// timer.disable();
707/// timer.tick().await;
708/// };
709/// # }
710/// ```
711pub struct Timer(UniquePtr<ffi::aos::TimerForRust>);
712
713/// A "tick" for a [`Timer`].
714///
715/// This is the raw future generated by the [`Timer::tick`] function.
716pub struct TimerTick<'a>(&'a mut Timer);
717
718impl Timer {
719 /// Arms the timer.
720 ///
721 /// The timer should sleep until `base`, `base + repeat`, `base + repeat * 2`, ...
722 /// If `repeat` is `None`, then the timer only expires once at `base`.
723 pub fn setup(&mut self, base: MonotonicInstant, repeat: Option<Duration>) {
724 self.0.pin_mut().Schedule(
725 base.0,
726 repeat
727 .unwrap_or(Duration::from_nanos(0))
728 .as_nanos()
729 .try_into()
730 .expect("Out of range: Internal clock uses 64 bits"),
731 );
732 }
733
734 /// Disarms the timer.
735 ///
736 /// Can be re-enabled by calling `setup` again.
737 pub fn disable(&mut self) {
738 self.0.pin_mut().Disable();
739 }
740
741 /// Returns `true` if the timer is enabled.
742 pub fn is_enabled(&self) -> bool {
743 !self.0.IsDisabled()
744 }
745
746 /// Sets the name of the timer.
747 ///
748 /// This can be useful to get a descriptive name in the timing reports.
749 pub fn set_name(&mut self, name: &str) {
750 self.0.pin_mut().set_name(name);
751 }
752
753 /// Gets the name of the timer.
754 pub fn name(&self) -> &str {
755 self.0.name()
756 }
757
758 /// Returns a tick which can be `.await`ed.
759 ///
760 /// This tick will resolve on the next timer expired.
761 pub fn tick(&mut self) -> TimerTick {
762 TimerTick(self)
763 }
764
765 /// Polls the timer, returning `[Poll::Ready]` only once the timer expired.
766 fn poll(&mut self) -> Poll<()> {
767 if self.0.pin_mut().Poll() {
768 Poll::Ready(())
769 } else {
770 Poll::Pending
771 }
772 }
773}
774
775impl Future for TimerTick<'_> {
776 type Output = ();
777
778 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
779 self.0.poll()
780 }
Brian Silverman9809c5f2022-07-23 16:12:23 -0700781}
782
Brian Silverman9809c5f2022-07-23 16:12:23 -0700783/// Provides async blocking access to messages on a channel. This will return every message on the
784/// channel, in order.
785///
786/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
787///
788/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
789/// for actually interpreting messages. You probably want a [`Watcher`] instead.
790///
791/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
792/// reasons.
793///
794/// # Design
795///
796/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
797/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
798/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
799/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
800/// another level doesn't help anything.
801///
802/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
803///
804/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
805/// the same one mentioned here:
806/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
807/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
808/// function with the if statement.
Brian Silverman90221f82022-08-22 23:46:09 -0700809// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
810#[repr(transparent)]
811pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
812
Brian Silverman9809c5f2022-07-23 16:12:23 -0700813impl RawWatcher {
814 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
815 /// without skipping any messages.
816 ///
817 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
818 /// will need to call this function again to get the succeeding message.
819 ///
820 /// # Examples
821 ///
822 /// The common use case is immediately awaiting the next message:
823 /// ```
824 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
825 /// println!("received: {:?}", watcher.next().await);
826 /// # }
827 /// ```
828 ///
829 /// You can also await the first message from any of a set of channels:
830 /// ```
831 /// # async fn select(
832 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
833 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
834 /// # ) {
835 /// futures::select! {
836 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
837 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
838 /// }
839 /// # }
840 /// ```
841 ///
842 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
843 /// enforce only having a single of these returned objects at a time. Drop the previous message
844 /// before asking for the next one. That means this will not compile:
845 /// ```compile_fail
846 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
847 /// let first = watcher.next();
848 /// let second = watcher.next();
849 /// first.await;
850 /// # }
851 /// ```
852 /// and nor will this:
853 /// ```compile_fail
854 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
855 /// let first = watcher.next().await;
856 /// watcher.next();
857 /// println!("still have: {:?}", first);
858 /// # }
859 /// ```
860 /// but this is fine:
861 /// ```
862 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
863 /// let first = watcher.next().await;
864 /// println!("have: {:?}", first);
865 /// watcher.next();
866 /// # }
867 /// ```
868 pub fn next(&mut self) -> RawWatcherNext {
869 RawWatcherNext(Some(self))
870 }
871}
872
873/// The type returned from [`RawWatcher::next`], see there for details.
874pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
875
876impl<'a> Future for RawWatcherNext<'a> {
877 type Output = Context<'a>;
878 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
879 let inner = self
880 .0
881 .take()
882 .expect("May not call poll after it returns Ready");
883 let maybe_context = inner.0.as_mut().PollNext();
884 if maybe_context.is_null() {
885 // We're not returning a reference into it, so we can safely replace the reference to
886 // use again in the future.
887 self.0.replace(inner);
888 Poll::Pending
889 } else {
890 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
891 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
892 // because we're dropping `inner` (which is that reference), so it will need to be
893 // borrowed again which cannot happen before the end of `'a`.
894 Poll::Ready(Context(unsafe { &*maybe_context }))
895 }
896 }
897}
898
899impl FusedFuture for RawWatcherNext<'_> {
900 fn is_terminated(&self) -> bool {
901 self.0.is_none()
902 }
903}
904
Brian Silverman90221f82022-08-22 23:46:09 -0700905/// Provides async blocking access to messages on a channel. This will return every message on the
906/// channel, in order.
907///
908/// Use [`EventLoopRuntime::make_watcher`] to create one of these.
909///
910/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
911/// reasons. See [`RawWatcher`]'s documentation for details.
912pub struct Watcher<T>(RawWatcher, PhantomData<*mut T>)
913where
914 for<'a> T: FollowWith<'a>,
915 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
916
917impl<T> Watcher<T>
918where
919 for<'a> T: FollowWith<'a>,
920 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
921{
922 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
923 /// without skipping any messages.
924 ///
925 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
926 /// will need to call this function again to get the succeeding message.
927 ///
928 /// # Examples
929 ///
930 /// The common use case is immediately awaiting the next message:
931 /// ```
932 /// # use pong_rust_fbs::aos::examples::Pong;
933 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
934 /// println!("received: {:?}", watcher.next().await);
935 /// # }
936 /// ```
937 ///
938 /// You can also await the first message from any of a set of channels:
939 /// ```
940 /// # use pong_rust_fbs::aos::examples::Pong;
941 /// # async fn select(
942 /// # mut watcher1: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
943 /// # mut watcher2: aos_events_event_loop_runtime::Watcher<Pong<'static>>,
944 /// # ) {
945 /// futures::select! {
946 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
947 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
948 /// }
949 /// # }
950 /// ```
951 ///
952 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
953 /// enforce only having a single of these returned objects at a time. Drop the previous message
954 /// before asking for the next one. That means this will not compile:
955 /// ```compile_fail
956 /// # use pong_rust_fbs::aos::examples::Pong;
957 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
958 /// let first = watcher.next();
959 /// let second = watcher.next();
960 /// first.await;
961 /// # }
962 /// ```
963 /// and nor will this:
964 /// ```compile_fail
965 /// # use pong_rust_fbs::aos::examples::Pong;
966 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
967 /// let first = watcher.next().await;
968 /// watcher.next();
969 /// println!("still have: {:?}", first);
970 /// # }
971 /// ```
972 /// but this is fine:
973 /// ```
974 /// # use pong_rust_fbs::aos::examples::Pong;
975 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::Watcher<Pong<'static>>) {
976 /// let first = watcher.next().await;
977 /// println!("have: {:?}", first);
978 /// watcher.next();
979 /// # }
980 /// ```
981 pub fn next(&mut self) -> WatcherNext<'_, <T as FollowWith<'_>>::Inner> {
982 WatcherNext(self.0.next(), PhantomData)
983 }
984}
985
986/// The type returned from [`Watcher::next`], see there for details.
987pub struct WatcherNext<'watcher, T>(RawWatcherNext<'watcher>, PhantomData<*mut T>)
988where
989 T: Follow<'watcher> + 'watcher;
990
991impl<'watcher, T> Future for WatcherNext<'watcher, T>
992where
993 T: Follow<'watcher> + 'watcher,
994{
995 type Output = TypedContext<'watcher, T>;
996
997 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> Poll<Self::Output> {
998 Pin::new(&mut self.get_mut().0).poll(cx).map(|context|
999 // SAFETY: The Watcher this was created from verified that the channel is the
1000 // right type, and the C++ guarantees that the buffer's type matches.
1001 TypedContext(context, PhantomData))
1002 }
1003}
1004
1005impl<'watcher, T> FusedFuture for WatcherNext<'watcher, T>
1006where
1007 T: Follow<'watcher> + 'watcher,
1008{
1009 fn is_terminated(&self) -> bool {
1010 self.0.is_terminated()
1011 }
1012}
1013
1014/// A wrapper around [`Context`] which exposes the flatbuffer message with the appropriate type.
1015pub struct TypedContext<'a, T>(
1016 // SAFETY: This must have a message, and it must be a valid `T` flatbuffer.
1017 Context<'a>,
1018 PhantomData<*mut T>,
1019)
1020where
1021 T: Follow<'a> + 'a;
1022
Brian Silverman90221f82022-08-22 23:46:09 -07001023impl<'a, T> TypedContext<'a, T>
1024where
1025 T: Follow<'a> + 'a,
1026{
1027 pub fn message(&self) -> Option<T::Inner> {
1028 self.0.data().map(|data| {
1029 // SAFETY: C++ guarantees that this is a valid flatbuffer. We guarantee it's the right
1030 // type based on invariants for our type.
1031 unsafe { root_unchecked::<T>(data) }
1032 })
1033 }
1034
1035 pub fn monotonic_event_time(&self) -> MonotonicInstant {
1036 self.0.monotonic_event_time()
1037 }
1038 pub fn monotonic_remote_time(&self) -> MonotonicInstant {
1039 self.0.monotonic_remote_time()
1040 }
Ryan Yin683a8672022-11-09 20:44:20 -08001041 pub fn realtime_event_time(&self) -> RealtimeInstant {
1042 self.0.realtime_event_time()
1043 }
1044 pub fn realtime_remote_time(&self) -> RealtimeInstant {
1045 self.0.realtime_remote_time()
1046 }
Brian Silverman90221f82022-08-22 23:46:09 -07001047 pub fn queue_index(&self) -> u32 {
1048 self.0.queue_index()
1049 }
1050 pub fn remote_queue_index(&self) -> u32 {
1051 self.0.remote_queue_index()
1052 }
1053 pub fn buffer_index(&self) -> i32 {
1054 self.0.buffer_index()
1055 }
1056 pub fn source_boot_uuid(&self) -> &Uuid {
1057 self.0.source_boot_uuid()
1058 }
1059}
1060
1061impl<'a, T> fmt::Debug for TypedContext<'a, T>
1062where
1063 T: Follow<'a> + 'a,
1064 T::Inner: fmt::Debug,
1065{
1066 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman90221f82022-08-22 23:46:09 -07001067 f.debug_struct("TypedContext")
1068 .field("monotonic_event_time", &self.monotonic_event_time())
1069 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001070 .field("realtime_event_time", &self.realtime_event_time())
1071 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman90221f82022-08-22 23:46:09 -07001072 .field("queue_index", &self.queue_index())
1073 .field("remote_queue_index", &self.remote_queue_index())
1074 .field("message", &self.message())
1075 .field("buffer_index", &self.buffer_index())
1076 .field("source_boot_uuid", &self.source_boot_uuid())
1077 .finish()
1078 }
1079}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001080
1081/// Provides access to messages on a channel, without the ability to wait for a new one. This
Brian Silverman90221f82022-08-22 23:46:09 -07001082/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001083///
1084/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
1085///
1086/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1087/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
Brian Silverman90221f82022-08-22 23:46:09 -07001088// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1089#[repr(transparent)]
1090pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
1091
Brian Silverman9809c5f2022-07-23 16:12:23 -07001092impl RawFetcher {
1093 pub fn fetch_next(&mut self) -> bool {
1094 self.0.as_mut().FetchNext()
1095 }
1096
1097 pub fn fetch(&mut self) -> bool {
1098 self.0.as_mut().Fetch()
1099 }
1100
1101 pub fn context(&self) -> Context {
1102 Context(self.0.context())
1103 }
1104}
1105
Brian Silverman90221f82022-08-22 23:46:09 -07001106/// Provides access to messages on a channel, without the ability to wait for a new one. This
1107/// provides APIs to get the latest message, and to follow along and retrieve each message in order.
1108///
1109/// Use [`EventLoopRuntime::make_fetcher`] to create one of these.
1110pub struct Fetcher<T>(
1111 // SAFETY: This must produce messages of type `T`.
1112 RawFetcher,
1113 PhantomData<*mut T>,
1114)
1115where
1116 for<'a> T: FollowWith<'a>,
1117 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1118
1119impl<T> Fetcher<T>
1120where
1121 for<'a> T: FollowWith<'a>,
1122 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1123{
1124 pub fn fetch_next(&mut self) -> bool {
1125 self.0.fetch_next()
1126 }
1127 pub fn fetch(&mut self) -> bool {
1128 self.0.fetch()
1129 }
1130
1131 pub fn context(&self) -> TypedContext<'_, <T as FollowWith<'_>>::Inner> {
1132 // SAFETY: We verified that this is the correct type, and C++ guarantees that the buffer's
1133 // type matches.
1134 TypedContext(self.0.context(), PhantomData)
1135 }
1136}
Brian Silverman9809c5f2022-07-23 16:12:23 -07001137
1138/// Allows sending messages on a channel.
1139///
1140/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
1141/// for actually creating messages to send. You probably want a [`Sender`] instead.
1142///
1143/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
Brian Silverman90221f82022-08-22 23:46:09 -07001144// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1145#[repr(transparent)]
1146pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
1147
Brian Silverman9809c5f2022-07-23 16:12:23 -07001148impl RawSender {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001149 /// Returns an object which can be used to build a message.
1150 ///
1151 /// # Examples
1152 ///
1153 /// ```
1154 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1155 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1156 /// # unsafe {
1157 /// let mut builder = sender.make_builder();
1158 /// let pong = PongBuilder::new(builder.fbb()).finish();
1159 /// builder.send(pong);
1160 /// # }
1161 /// # }
1162 /// ```
1163 ///
1164 /// You can bail out of building a message and build another one:
1165 /// ```
1166 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1167 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1168 /// # unsafe {
1169 /// let mut builder1 = sender.make_builder();
1170 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001171 /// drop(builder1);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001172 /// let mut builder2 = sender.make_builder();
1173 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1174 /// builder2.send(pong);
1175 /// # }
1176 /// # }
1177 /// ```
1178 /// but you cannot build two messages at the same time with a single builder:
1179 /// ```compile_fail
1180 /// # use pong_rust_fbs::aos::examples::PongBuilder;
1181 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
1182 /// # unsafe {
1183 /// let mut builder1 = sender.make_builder();
1184 /// let mut builder2 = sender.make_builder();
1185 /// PongBuilder::new(builder2.fbb()).finish();
1186 /// PongBuilder::new(builder1.fbb()).finish();
1187 /// # }
1188 /// # }
1189 /// ```
1190 pub fn make_builder(&mut self) -> RawBuilder {
Adam Snaider34072e12023-10-03 10:04:25 -07001191 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment
1192 // requirements. Additionally, the lifetime of the builder is tied to
1193 // the lifetime of self so the buffer won't be accessible again until
1194 // the builder is destroyed.
1195 let allocator = ChannelPreallocatedAllocator::new(unsafe {
1196 slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size())
1197 });
1198 let fbb = FlatBufferBuilder::new_in(allocator);
Brian Silverman9809c5f2022-07-23 16:12:23 -07001199 RawBuilder {
1200 raw_sender: self,
1201 fbb,
1202 }
1203 }
1204}
1205
Brian Silverman9809c5f2022-07-23 16:12:23 -07001206/// Used for building a message. See [`RawSender::make_builder`] for details.
1207pub struct RawBuilder<'sender> {
1208 raw_sender: &'sender mut RawSender,
Adam Snaider34072e12023-10-03 10:04:25 -07001209 fbb: FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>>,
Brian Silverman9809c5f2022-07-23 16:12:23 -07001210}
1211
1212impl<'sender> RawBuilder<'sender> {
Adam Snaider34072e12023-10-03 10:04:25 -07001213 pub fn fbb(
1214 &mut self,
1215 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001216 &mut self.fbb
1217 }
1218
1219 /// # Safety
1220 ///
1221 /// `T` must match the type of the channel of the sender this builder was created from.
1222 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
1223 self.fbb.finish_minimal(root);
1224 let data = self.fbb.finished_data();
1225
1226 use ffi::aos::RawSender_Error as FfiError;
1227 // SAFETY: This is a valid buffer we're passing.
Adam Snaider4769bb42023-11-22 11:01:46 -08001228 match unsafe { self.raw_sender.0.as_mut().SendBuffer(data.len()) } {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001229 FfiError::kOk => Ok(()),
1230 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
1231 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
1232 }
1233 }
1234}
1235
Brian Silverman90221f82022-08-22 23:46:09 -07001236/// Allows sending messages on a channel with a type-safe API.
1237///
1238/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
1239pub struct Sender<T>(
1240 // SAFETY: This must accept messages of type `T`.
1241 RawSender,
1242 PhantomData<*mut T>,
1243)
1244where
1245 for<'a> T: FollowWith<'a>,
1246 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1247
1248impl<T> Sender<T>
1249where
1250 for<'a> T: FollowWith<'a>,
1251 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1252{
1253 /// Returns an object which can be used to build a message.
1254 ///
1255 /// # Examples
1256 ///
1257 /// ```
1258 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1259 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1260 /// let mut builder = sender.make_builder();
1261 /// let pong = PongBuilder::new(builder.fbb()).finish();
1262 /// builder.send(pong);
1263 /// # }
1264 /// ```
1265 ///
1266 /// You can bail out of building a message and build another one:
1267 /// ```
1268 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1269 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1270 /// let mut builder1 = sender.make_builder();
1271 /// builder1.fbb();
Adam Snaider0126d832023-10-03 09:59:34 -07001272 /// drop(builder1);
Brian Silverman90221f82022-08-22 23:46:09 -07001273 /// let mut builder2 = sender.make_builder();
1274 /// let pong = PongBuilder::new(builder2.fbb()).finish();
1275 /// builder2.send(pong);
1276 /// # }
1277 /// ```
1278 /// but you cannot build two messages at the same time with a single builder:
1279 /// ```compile_fail
1280 /// # use pong_rust_fbs::aos::examples::{Pong, PongBuilder};
1281 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::Sender<Pong<'static>>) {
1282 /// let mut builder1 = sender.make_builder();
1283 /// let mut builder2 = sender.make_builder();
1284 /// PongBuilder::new(builder2.fbb()).finish();
1285 /// PongBuilder::new(builder1.fbb()).finish();
1286 /// # }
1287 /// ```
1288 pub fn make_builder(&mut self) -> Builder<T> {
1289 Builder(self.0.make_builder(), PhantomData)
1290 }
1291}
1292
1293/// Used for building a message. See [`Sender::make_builder`] for details.
1294pub struct Builder<'sender, T>(
1295 // SAFETY: This must accept messages of type `T`.
1296 RawBuilder<'sender>,
1297 PhantomData<*mut T>,
1298)
1299where
1300 for<'a> T: FollowWith<'a>,
1301 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>;
1302
1303impl<'sender, T> Builder<'sender, T>
1304where
1305 for<'a> T: FollowWith<'a>,
1306 for<'a> <T as FollowWith<'a>>::Inner: Follow<'a>,
1307{
Adam Snaider34072e12023-10-03 10:04:25 -07001308 pub fn fbb(
1309 &mut self,
1310 ) -> &mut FlatBufferBuilder<'sender, ChannelPreallocatedAllocator<'sender>> {
Brian Silverman90221f82022-08-22 23:46:09 -07001311 self.0.fbb()
1312 }
1313
1314 pub fn send<'a>(
1315 self,
1316 root: flatbuffers::WIPOffset<<T as FollowWith<'a>>::Inner>,
1317 ) -> Result<(), SendError> {
1318 // SAFETY: We guarantee this is the right type based on invariants for our type.
1319 unsafe { self.0.send(root) }
1320 }
1321}
1322
1323#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
1324pub enum SendError {
1325 #[error("messages have been sent too fast on this channel")]
1326 MessagesSentTooFast,
1327 #[error("invalid redzone data, shared memory corruption detected")]
1328 InvalidRedzone,
1329}
1330
Brian Silverman9809c5f2022-07-23 16:12:23 -07001331#[repr(transparent)]
1332#[derive(Clone, Copy)]
1333pub struct Context<'context>(&'context ffi::aos::Context);
1334
1335impl fmt::Debug for Context<'_> {
1336 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Brian Silverman9809c5f2022-07-23 16:12:23 -07001337 f.debug_struct("Context")
1338 .field("monotonic_event_time", &self.monotonic_event_time())
1339 .field("monotonic_remote_time", &self.monotonic_remote_time())
Ryan Yin683a8672022-11-09 20:44:20 -08001340 .field("realtime_event_time", &self.realtime_event_time())
1341 .field("realtime_remote_time", &self.realtime_remote_time())
Brian Silverman9809c5f2022-07-23 16:12:23 -07001342 .field("queue_index", &self.queue_index())
1343 .field("remote_queue_index", &self.remote_queue_index())
1344 .field("size", &self.data().map(|data| data.len()))
1345 .field("buffer_index", &self.buffer_index())
1346 .field("source_boot_uuid", &self.source_boot_uuid())
1347 .finish()
1348 }
1349}
1350
Brian Silverman9809c5f2022-07-23 16:12:23 -07001351impl<'context> Context<'context> {
1352 pub fn monotonic_event_time(self) -> MonotonicInstant {
1353 MonotonicInstant(self.0.monotonic_event_time)
1354 }
1355
1356 pub fn monotonic_remote_time(self) -> MonotonicInstant {
1357 MonotonicInstant(self.0.monotonic_remote_time)
1358 }
1359
Ryan Yin683a8672022-11-09 20:44:20 -08001360 pub fn realtime_event_time(self) -> RealtimeInstant {
1361 RealtimeInstant(self.0.realtime_event_time)
1362 }
1363
1364 pub fn realtime_remote_time(self) -> RealtimeInstant {
1365 RealtimeInstant(self.0.realtime_remote_time)
1366 }
1367
Brian Silverman9809c5f2022-07-23 16:12:23 -07001368 pub fn queue_index(self) -> u32 {
1369 self.0.queue_index
1370 }
1371 pub fn remote_queue_index(self) -> u32 {
1372 self.0.remote_queue_index
1373 }
1374
1375 pub fn data(self) -> Option<&'context [u8]> {
1376 if self.0.data.is_null() {
1377 None
1378 } else {
1379 // SAFETY:
1380 // * `u8` has no alignment requirements
1381 // * It must be a single initialized flatbuffers buffer
1382 // * The borrow in `self.0` guarantees it won't be modified for `'context`
1383 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
1384 }
1385 }
1386
1387 pub fn buffer_index(self) -> i32 {
1388 self.0.buffer_index
1389 }
1390
1391 pub fn source_boot_uuid(self) -> &'context Uuid {
1392 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
1393 // valid until something changes the context, which is `'context`.
1394 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
1395 }
1396}
1397
Brian Silverman76f48362022-08-24 21:09:08 -07001398/// The type returned from [`EventLoopRuntime::on_run`], see there for details.
1399// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
1400#[repr(transparent)]
1401pub struct OnRun(Pin<Box<ffi::aos::OnRunForRust>>);
1402
Adam Snaidera3317c82023-10-02 16:02:36 -07001403impl Future for &'_ OnRun {
Brian Silverman76f48362022-08-24 21:09:08 -07001404 type Output = ();
1405
1406 fn poll(self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<()> {
1407 if self.0.is_running() {
1408 Poll::Ready(())
1409 } else {
1410 Poll::Pending
1411 }
1412 }
1413}
1414
Brian Silverman9809c5f2022-07-23 16:12:23 -07001415/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
1416/// is intended to have the same API as [`std::time::Instant`], any missing
1417/// functionality can be added if useful.
Brian Silverman9809c5f2022-07-23 16:12:23 -07001418#[repr(transparent)]
1419#[derive(Clone, Copy, Eq, PartialEq)]
1420pub struct MonotonicInstant(i64);
1421
1422impl MonotonicInstant {
1423 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
1424 pub const MIN_TIME: Self = Self(i64::MIN);
1425
1426 pub fn is_min_time(self) -> bool {
1427 self == Self::MIN_TIME
1428 }
1429
1430 pub fn duration_since_epoch(self) -> Option<Duration> {
1431 if self.is_min_time() {
1432 None
1433 } else {
1434 Some(Duration::from_nanos(self.0.try_into().expect(
1435 "monotonic_clock::time_point should always be after the epoch",
1436 )))
1437 }
1438 }
1439}
1440
Adam Snaidercc8c2f72023-06-25 20:56:13 -07001441impl Add<Duration> for MonotonicInstant {
1442 type Output = MonotonicInstant;
1443
1444 fn add(self, rhs: Duration) -> Self::Output {
1445 Self(self.0 + i64::try_from(rhs.as_nanos()).unwrap())
1446 }
1447}
1448
Adam Snaiderde51c672023-09-28 21:55:43 -07001449impl From<MonotonicInstant> for i64 {
1450 fn from(value: MonotonicInstant) -> Self {
1451 value.0
1452 }
1453}
1454
Brian Silverman9809c5f2022-07-23 16:12:23 -07001455impl fmt::Debug for MonotonicInstant {
1456 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1457 self.duration_since_epoch().fmt(f)
1458 }
1459}
1460
Ryan Yin683a8672022-11-09 20:44:20 -08001461#[repr(transparent)]
1462#[derive(Clone, Copy, Eq, PartialEq)]
1463pub struct RealtimeInstant(i64);
1464
1465impl RealtimeInstant {
1466 pub const MIN_TIME: Self = Self(i64::MIN);
1467
1468 pub fn is_min_time(self) -> bool {
1469 self == Self::MIN_TIME
1470 }
1471
1472 pub fn duration_since_epoch(self) -> Option<Duration> {
1473 if self.is_min_time() {
1474 None
1475 } else {
1476 Some(Duration::from_nanos(self.0.try_into().expect(
1477 "monotonic_clock::time_point should always be after the epoch",
1478 )))
1479 }
1480 }
1481}
1482
Adam Snaiderde51c672023-09-28 21:55:43 -07001483impl From<RealtimeInstant> for i64 {
1484 fn from(value: RealtimeInstant) -> Self {
1485 value.0
1486 }
1487}
1488
Ryan Yin683a8672022-11-09 20:44:20 -08001489impl fmt::Debug for RealtimeInstant {
1490 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1491 self.duration_since_epoch().fmt(f)
1492 }
1493}
1494
Brian Silverman9809c5f2022-07-23 16:12:23 -07001495mod panic_waker {
1496 use std::task::{RawWaker, RawWakerVTable, Waker};
1497
1498 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
1499 raw_panic_waker()
1500 }
1501
1502 unsafe fn noop(_data: *const ()) {}
1503
1504 unsafe fn wake_panic(_data: *const ()) {
1505 panic!("Nothing should wake EventLoopRuntime's waker");
1506 }
1507
1508 const PANIC_WAKER_VTABLE: RawWakerVTable =
1509 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
1510
1511 fn raw_panic_waker() -> RawWaker {
1512 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
1513 }
1514
1515 pub fn panic_waker() -> Waker {
1516 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
1517 unsafe { Waker::from_raw(raw_panic_waker()) }
1518 }
1519}
1520
1521use panic_waker::panic_waker;
Adam Snaider163800b2023-07-12 00:21:17 -04001522
1523pub struct ExitHandle(UniquePtr<CppExitHandle>);
1524
1525impl ExitHandle {
1526 /// Exits the EventLoops represented by this handle. You probably want to immediately return
1527 /// from the context this is called in. Awaiting [`exit`] instead of using this function is an
1528 /// easy way to do that.
1529 pub fn exit_sync(mut self) {
1530 self.0.as_mut().unwrap().Exit();
1531 }
1532
1533 /// Exits the EventLoops represented by this handle, and never returns. Immediately awaiting
1534 /// this from a [`EventLoopRuntime::spawn`]ed task is usually what you want, it will ensure
1535 /// that no more code from that task runs.
1536 pub async fn exit(self) -> Never {
1537 self.exit_sync();
1538 pending().await
1539 }
1540}
1541
1542impl From<UniquePtr<CppExitHandle>> for ExitHandle {
1543 fn from(inner: UniquePtr<ffi::aos::ExitHandle>) -> Self {
1544 Self(inner)
1545 }
1546}
Adam Snaider34072e12023-10-03 10:04:25 -07001547
1548pub struct ChannelPreallocatedAllocator<'a> {
1549 buffer: &'a mut [u8],
1550}
1551
1552impl<'a> ChannelPreallocatedAllocator<'a> {
1553 pub fn new(buffer: &'a mut [u8]) -> Self {
1554 Self { buffer }
1555 }
1556}
1557
1558#[derive(Debug, Error)]
1559#[error("Can't allocate more memory with a fixed size allocator")]
1560pub struct OutOfMemory;
1561
1562// SAFETY: Allocator follows the required behavior.
1563unsafe impl Allocator for ChannelPreallocatedAllocator<'_> {
1564 type Error = OutOfMemory;
1565 fn grow_downwards(&mut self) -> Result<(), Self::Error> {
1566 // Fixed size allocator can't grow.
1567 Err(OutOfMemory)
1568 }
1569
1570 fn len(&self) -> usize {
1571 self.buffer.len()
1572 }
1573}
1574
1575impl Deref for ChannelPreallocatedAllocator<'_> {
1576 type Target = [u8];
1577
1578 fn deref(&self) -> &Self::Target {
1579 self.buffer
1580 }
1581}
1582
1583impl DerefMut for ChannelPreallocatedAllocator<'_> {
1584 fn deref_mut(&mut self) -> &mut Self::Target {
1585 self.buffer
1586 }
1587}