blob: b52a3ddabfdc82942c15ced3dc1f11988f698a06 [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
Brian Silverman6260c092018-01-14 15:21:36 -080013#include "motors/peripheral/can.h"
Austin Schuhb402fd42019-04-13 00:02:53 -070014#include "motors/pistol_grip/controller_adc.h"
Brian Silverman6260c092018-01-14 15:21:36 -080015#include "motors/pistol_grip/motor_controls.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070016#include "motors/print/print.h"
Brian Silverman6260c092018-01-14 15:21:36 -080017#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080018
19#define MOTOR0_PWM_FTM FTM3
20#define MOTOR0_ENCODER_FTM FTM2
21#define MOTOR1_PWM_FTM FTM0
22#define MOTOR1_ENCODER_FTM FTM1
23
Austin Schuh745e4ed2019-04-07 15:50:16 -070024extern const float kWheelCoggingTorque0[4096];
25extern const float kWheelCoggingTorque1[4096];
26extern const float kTriggerCoggingTorque0[4096];
27extern const float kTriggerCoggingTorque1[4096];
Brian Silverman6260c092018-01-14 15:21:36 -080028
29namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070030namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080031namespace {
32
Austin Schuh745e4ed2019-04-07 15:50:16 -070033::std::atomic<const float *> trigger_cogging_torque{nullptr};
34::std::atomic<const float *> wheel_cogging_torque{nullptr};
35
36float TriggerCoggingTorque(uint32_t index) {
37 return trigger_cogging_torque.load(::std::memory_order_relaxed)[index];
38}
39
40float WheelCoggingTorque(uint32_t index) {
41 return wheel_cogging_torque.load(::std::memory_order_relaxed)[index];
42}
43
Brian Silverman6260c092018-01-14 15:21:36 -080044using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
45using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
46using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
47using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
48
Austin Schuh80b99932019-04-07 14:04:41 -070049// Returns an identifier for the processor we're running on.
50// This isn't guaranteed to be unique, but it should be close enough.
51uint8_t ProcessorIdentifier() {
52 // This XORs together all the bytes of the unique identifier provided by the
53 // hardware.
54 uint8_t r = 0;
55 for (uint8_t uid : {SIM_UIDH, SIM_UIDMH, SIM_UIDML, SIM_UIDL}) {
56 r = r ^ ((uid >> 0) & 0xFF);
57 r = r ^ ((uid >> 8) & 0xFF);
58 r = r ^ ((uid >> 16) & 0xFF);
59 r = r ^ ((uid >> 24) & 0xFF);
60 }
61 return r;
62}
63
64uint8_t ProcessorIndex() {
65 switch (ProcessorIdentifier()) {
66 case static_cast<uint8_t>(0xaa):
67 return 1;
68 default:
69 return 0;
70 }
71}
72
Brian Silverman9ed2cf12018-05-12 13:06:38 -070073
Brian Silverman6260c092018-01-14 15:21:36 -080074constexpr float kHapticWheelCurrentLimit = static_cast<float>(
75 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
76constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
77 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
78
79::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
Brian Silverman6260c092018-01-14 15:21:36 -080080
81// Angle last time the current loop ran.
82::std::atomic<float> global_wheel_angle{0.0f};
83::std::atomic<float> global_trigger_angle{0.0f};
84
85// Wheel observer/plant.
86::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
87 nullptr};
88::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
89// Throttle observer/plant.
90::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
91 nullptr};
92::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
93 nullptr};
94
95// Torques for the current loop to apply.
96::std::atomic<float> global_wheel_current{0.0f};
97::std::atomic<float> global_trigger_torque{0.0f};
98
99constexpr int kSwitchingDivisor = 2;
100
101float analog_ratio(uint16_t reading) {
102 static constexpr uint16_t kMin = 260, kMax = 3812;
103 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
104 kMin) /
105 static_cast<float>(kMax - kMin);
106}
107
108constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
109 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
110}
111
112float absolute_wheel(float wheel_position) {
Austin Schuh4a8d4922019-04-07 15:31:30 -0700113 const float kCenterOffset = (ProcessorIndex() == 1) ? -0.683f : -0.935f;
114
115 wheel_position += kCenterOffset;
116
117 if (wheel_position > 0.5f) {
118 wheel_position -= 1.0f;
119 } else if (wheel_position < -0.5f) {
Brian Silverman6260c092018-01-14 15:21:36 -0800120 wheel_position += 1.0f;
121 }
Brian Silverman6260c092018-01-14 15:21:36 -0800122 return wheel_position;
123}
124
125extern "C" {
126
127void *__stack_chk_guard = (void *)0x67111971;
128void __stack_chk_fail() {
129 while (true) {
130 GPIOC_PSOR = (1 << 5);
131 printf("Stack corruption detected\n");
132 delay(1000);
133 GPIOC_PCOR = (1 << 5);
134 delay(1000);
135 }
136}
137
Brian Silverman6260c092018-01-14 15:21:36 -0800138extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
139extern uint32_t __data_ram_start__[], __data_ram_end__[];
140extern uint32_t __heap_start__[], __heap_end__[];
141extern uint32_t __stack_end__[];
142
143} // extern "C"
144
145constexpr float kWheelMaxExtension = 1.0f;
146constexpr float kWheelFrictionMax = 0.2f;
147float WheelCenteringCurrent(float scalar, float angle, float velocity) {
148 float friction_goal_current = -angle * 10.0f;
149 if (friction_goal_current > kWheelFrictionMax) {
150 friction_goal_current = kWheelFrictionMax;
151 } else if (friction_goal_current < -kWheelFrictionMax) {
152 friction_goal_current = -kWheelFrictionMax;
153 }
154
155 constexpr float kWheelSpringNonlinearity = 0.45f;
156
157 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
158 kWheelSpringNonlinearity * angle * angle * angle) *
159 6.0f -
160 velocity * 0.04f;
161 if (goal_current > 5.0f - scalar) {
162 goal_current = 5.0f - scalar;
163 } else if (goal_current < -5.0f + scalar) {
164 goal_current = -5.0f + scalar;
165 }
166
167 return goal_current * scalar + friction_goal_current;
168}
169
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700170float CoggingCurrent1(uint32_t encoder, int32_t absolute_encoder) {
171 constexpr float kP = 0.05f;
172 constexpr float kI = 0.00001f;
173 static int goal = -6700;
174
175 const int error = goal - static_cast<int>(absolute_encoder);
176 static float error_sum = 0.0f;
177 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
178
179 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
180
181 static int i = 0;
182 if (error == 0) {
183 ++i;
184 } else {
185 i = 0;
186 }
187 if (i >= 100) {
188 printf("reading1: %d %d a:%d e:%d\n", goal,
189 static_cast<int>(goal_current * 10000.0f),
190 static_cast<int>(encoder),
191 static_cast<int>(error));
192 static int counting_up = 0;
193 if (absolute_encoder <= -6900) {
194 counting_up = 1;
195 } else if (absolute_encoder >= 6900) {
196 counting_up = 0;
197 }
198 if (counting_up) {
199 ++goal;
200 } else {
201 --goal;
202 }
203 i = 0;
204 }
205
206 error_sum += static_cast<float>(error);
207 if (error_sum > 1.0f / kI) {
208 error_sum = 1.0f / kI;
209 } else if (error_sum < -1.0f / kI) {
210 error_sum = -1.0f / kI;
211 }
212 return goal_current;
213}
214
Brian Silverman6260c092018-01-14 15:21:36 -0800215extern "C" void ftm0_isr() {
216 SmallAdcReadings readings;
217 {
218 DisableInterrupts disable_interrupts;
219 readings = AdcReadSmall1(disable_interrupts);
220 }
221 uint32_t encoder =
222 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
223 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
224 ->absolute_encoder(encoder);
225
226 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
Brian Silverman6260c092018-01-14 15:21:36 -0800227
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700228 (void)CoggingCurrent1;
Austin Schuh54c8c842019-04-07 13:54:23 -0700229 float goal_current = global_wheel_current.load(::std::memory_order_relaxed) +
Austin Schuh745e4ed2019-04-07 15:50:16 -0700230 WheelCoggingTorque(encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700231 //float goal_current = CoggingCurrent1(encoder, absolute_encoder);
Austin Schuh54c8c842019-04-07 13:54:23 -0700232 //float goal_current = kWheelCoggingTorque[encoder];
233 //float goal_current = 0.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800234
235 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
236 global_motor1.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700237 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700238 //global_motor1.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Austin Schuh54c8c842019-04-07 13:54:23 -0700239
240 global_wheel_angle.store(angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700241
242 /*
243 SmallInitReadings position_readings;
244 {
245 DisableInterrupts disable_interrupts;
246 position_readings = AdcReadSmallInit(disable_interrupts);
247 }
248
249 static int i = 0;
250 if (i == 1000) {
251 i = 0;
252 float wheel_position =
253 absolute_wheel(analog_ratio(position_readings.wheel_abs));
254 printf(
255 "ecnt %" PRIu32 " arev:%d erev:%d abs:%d awp:%d uncalwheel:%d\n",
256 encoder,
257 static_cast<int>((1.0f - analog_ratio(position_readings.motor1_abs)) *
258 7000.0f),
259 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
260 static_cast<int>(absolute_encoder),
261 static_cast<int>(wheel_position * 1000.0f),
262 static_cast<int>(analog_ratio(position_readings.wheel_abs) * 1000.0f));
263 } else if (i == 200) {
264 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
265 global_motor1.load(::std::memory_order_relaxed)
266 ->output_registers()[0][2],
267 global_motor1.load(::std::memory_order_relaxed)
268 ->output_registers()[1][2],
269 global_motor1.load(::std::memory_order_relaxed)
270 ->output_registers()[2][2]);
271 }
272 ++i;
273 */
Brian Silverman6260c092018-01-14 15:21:36 -0800274}
275
Austin Schuh876b4f02018-03-10 19:16:59 -0800276constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800277constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800278constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800279float TriggerCenteringCurrent(float trigger_angle) {
280 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800281 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
282 if (knotch_goal_current < -kCenteringStiffness) {
283 knotch_goal_current = -kCenteringStiffness;
284 } else if (knotch_goal_current > kCenteringStiffness) {
285 knotch_goal_current = kCenteringStiffness;
286 }
287
288 goal_current += knotch_goal_current;
289
Brian Silverman6260c092018-01-14 15:21:36 -0800290 if (goal_current < -1.0f) {
291 goal_current = -1.0f;
292 } else if (goal_current > 1.0f) {
293 goal_current = 1.0f;
294 if (trigger_angle < kTriggerMaxExtension) {
295 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800296 if (goal_current > 4.0f) {
297 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800298 }
299 }
300 }
301 return goal_current;
302}
303
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700304float CoggingCurrent0(uint32_t encoder, int32_t absolute_encoder) {
305 constexpr float kP = 0.05f;
306 constexpr float kI = 0.00001f;
307 static int goal = 0;
308
309 const int error = goal - static_cast<int>(absolute_encoder);
310 static float error_sum = 0.0f;
311 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
312
313 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
314
315 static int i = 0;
316 if (error == 0) {
317 ++i;
318 } else {
319 i = 0;
320 }
321
322 if (i >= 100) {
323 printf("reading0: %d %d a:%d e:%d\n", goal,
324 static_cast<int>(goal_current * 10000.0f),
325 static_cast<int>(encoder),
326 static_cast<int>(error));
327 static int counting_up = 0;
328 if (absolute_encoder <= -1390) {
329 counting_up = 1;
330 } else if (absolute_encoder >= 1390) {
331 counting_up = 0;
332 }
333 if (counting_up) {
334 ++goal;
335 } else {
336 --goal;
337 }
338 }
339
340 error_sum += static_cast<float>(error);
341 if (error_sum > 1.0f / kI) {
342 error_sum = 1.0f / kI;
343 } else if (error_sum < -1.0f / kI) {
344 error_sum = -1.0f / kI;
345 }
346 return goal_current;
347}
348
Brian Silverman6260c092018-01-14 15:21:36 -0800349extern "C" void ftm3_isr() {
350 SmallAdcReadings readings;
351 {
352 DisableInterrupts disable_interrupts;
353 readings = AdcReadSmall0(disable_interrupts);
354 }
Brian Silverman6260c092018-01-14 15:21:36 -0800355
Austin Schuh54c8c842019-04-07 13:54:23 -0700356 const uint32_t encoder =
357 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
358 const int32_t absolute_encoder =
359 global_motor0.load(::std::memory_order_relaxed)
360 ->absolute_encoder(encoder);
361
362 const float trigger_angle = absolute_encoder / 1370.f;
Brian Silverman6260c092018-01-14 15:21:36 -0800363
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700364 (void)CoggingCurrent0;
Brian Silverman6260c092018-01-14 15:21:36 -0800365 const float goal_current =
Austin Schuh54c8c842019-04-07 13:54:23 -0700366 global_trigger_torque.load(::std::memory_order_relaxed) +
Austin Schuh745e4ed2019-04-07 15:50:16 -0700367 TriggerCoggingTorque(encoder);
Austin Schuh54c8c842019-04-07 13:54:23 -0700368 //const float goal_current = kTriggerCoggingTorque[encoder];
369 //const float goal_current = 0.0f;
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700370 //const float goal_current = CoggingCurrent0(encoder, absolute_encoder);
Brian Silverman6260c092018-01-14 15:21:36 -0800371
372 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
373 global_motor0.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700374 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700375 //global_motor0.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Brian Silverman6260c092018-01-14 15:21:36 -0800376
Brian Silverman6260c092018-01-14 15:21:36 -0800377 global_trigger_angle.store(trigger_angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700378
379 /*
380 SmallInitReadings position_readings;
381 {
382 DisableInterrupts disable_interrupts;
383 position_readings = AdcReadSmallInit(disable_interrupts);
384 }
385
386 static int i = 0;
387 if (i == 1000) {
388 i = 0;
389 printf("ecnt %" PRIu32 " arev:%d erev:%d abs:%d\n", encoder,
390 static_cast<int>((analog_ratio(position_readings.motor0_abs)) *
391 7000.0f),
392 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
393 static_cast<int>(absolute_encoder));
394 } else if (i == 200) {
395 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
396 global_motor0.load(::std::memory_order_relaxed)
397 ->output_registers()[0][2],
398 global_motor0.load(::std::memory_order_relaxed)
399 ->output_registers()[1][2],
400 global_motor0.load(::std::memory_order_relaxed)
401 ->output_registers()[2][2]);
402 }
403 ++i;
404 */
Brian Silverman6260c092018-01-14 15:21:36 -0800405}
406
Brian Silverman6260c092018-01-14 15:21:36 -0800407int ConvertFloat16(float val) {
408 int result = static_cast<int>(val * 32768.0f) + 32768;
409 if (result > 0xffff) {
410 result = 0xffff;
411 } else if (result < 0) {
412 result = 0;
413 }
414 return result;
415}
416int ConvertFloat14(float val) {
417 int result = static_cast<int>(val * 8192.0f) + 8192;
418 if (result > 0x3fff) {
419 result = 0x3fff;
420 } else if (result < 0) {
421 result = 0;
422 }
423 return result;
424}
425
426extern "C" void pit3_isr() {
427 PIT_TFLG3 = 1;
428 const float absolute_trigger_angle =
429 global_trigger_angle.load(::std::memory_order_relaxed);
430 const float absolute_wheel_angle =
431 global_wheel_angle.load(::std::memory_order_relaxed);
432
433 // Force a barrier here so we sample everything guaranteed at the beginning.
434 __asm__("" ::: "memory");
435 const float absolute_wheel_angle_radians =
436 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
437 const float absolute_trigger_angle_radians =
438 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
439
440 static uint32_t last_command_time = 0;
441 static float trigger_goal_position = 0.0f;
442 static float trigger_goal_velocity = 0.0f;
443 static float trigger_haptic_current = 0.0f;
444 static bool trigger_centering = true;
445 static bool trigger_haptics = false;
446 {
447 uint8_t data[8];
448 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700449 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800450 if (length > 0) {
451 last_command_time = micros();
452 trigger_goal_position =
453 static_cast<float>(
454 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
455 (static_cast<uint32_t>(data[1]) << 8)) -
456 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700457 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800458 trigger_goal_velocity =
459 static_cast<float>(
460 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
461 (static_cast<uint32_t>(data[3]) << 8)) -
462 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700463 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800464
465 trigger_haptic_current =
466 static_cast<float>(
467 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
468 (static_cast<uint32_t>(data[5]) << 8)) -
469 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700470 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800471 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
472 trigger_haptic_current = kHapticTriggerCurrentLimit;
473 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
474 trigger_haptic_current = -kHapticTriggerCurrentLimit;
475 }
476 trigger_centering = !!(data[7] & 0x01);
477 trigger_haptics = !!(data[7] & 0x02);
478 }
479 }
480
481 static float wheel_goal_position = 0.0f;
482 static float wheel_goal_velocity = 0.0f;
483 static float wheel_haptic_current = 0.0f;
484 static float wheel_kp = 0.0f;
485 static bool wheel_centering = true;
486 static float wheel_centering_scalar = 0.25f;
487 {
488 uint8_t data[8];
489 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700490 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800491 if (length == 8) {
492 last_command_time = micros();
493 wheel_goal_position =
494 static_cast<float>(
495 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
496 (static_cast<uint32_t>(data[1]) << 8)) -
497 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700498 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800499 wheel_goal_velocity =
500 static_cast<float>(
501 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
502 (static_cast<uint32_t>(data[3]) << 8)) -
503 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700504 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800505
506 wheel_haptic_current =
507 static_cast<float>(
508 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
509 (static_cast<uint32_t>(data[5]) << 8)) -
510 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700511 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800512 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
513 wheel_haptic_current = kHapticWheelCurrentLimit;
514 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
515 wheel_haptic_current = -kHapticWheelCurrentLimit;
516 }
517 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
518 wheel_centering = !!(data[7] & 0x01);
519 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
520 }
521 }
522
523 static constexpr uint32_t kTimeout = 100000;
524 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
525 last_command_time = time_subtract(micros(), kTimeout);
526 trigger_goal_position = 0.0f;
527 trigger_goal_velocity = 0.0f;
528 trigger_haptic_current = 0.0f;
529 trigger_centering = true;
530 trigger_haptics = false;
531
532 wheel_goal_position = 0.0f;
533 wheel_goal_velocity = 0.0f;
534 wheel_haptic_current = 0.0f;
535 wheel_centering = true;
536 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800537 // Avoid wrapping back into the valid range.
538 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800539 }
540
541 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
542 global_trigger_plant.load(::std::memory_order_relaxed);
543 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
544 global_trigger_observer.load(::std::memory_order_relaxed);
545 ::Eigen::Matrix<float, 1, 1> trigger_Y;
546 trigger_Y << absolute_trigger_angle_radians;
547 trigger_observer->Correct(*trigger_plant,
548 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
549
550 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
551 global_wheel_plant.load(::std::memory_order_relaxed);
552 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
553 global_wheel_observer.load(::std::memory_order_relaxed);
554 ::Eigen::Matrix<float, 1, 1> wheel_Y;
555 wheel_Y << absolute_wheel_angle_radians;
556 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
557 wheel_Y);
558
559 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
560 if (wheel_kp < 0.5f) {
561 kWheelD = wheel_kp * 0.05f / 0.5f;
562 } else if (wheel_kp < 1.0f) {
563 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
564 } else if (wheel_kp < 2.0f) {
565 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
566 } else if (wheel_kp < 3.0f) {
567 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
568 } else if (wheel_kp < 5.0f) {
569 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
570 } else if (wheel_kp < 10.0f) {
571 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
572 }
573
574 float wheel_goal_current = wheel_haptic_current;
575
576 wheel_goal_current +=
577 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
578 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
579
580 // Compute the torques to apply to each motor.
581 if (wheel_centering) {
582 wheel_goal_current +=
583 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
584 wheel_observer->X_hat()(1, 0));
585 }
586
587 if (wheel_goal_current > kHapticWheelCurrentLimit) {
588 wheel_goal_current = kHapticWheelCurrentLimit;
589 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
590 wheel_goal_current = -kHapticWheelCurrentLimit;
591 }
592 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
593
594 constexpr float kTriggerP =
595 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
596 constexpr float kTriggerD =
597 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
598 float trigger_goal_current = trigger_haptic_current;
599 if (trigger_haptics) {
600 trigger_goal_current +=
601 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
602 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
603 }
604
605 if (trigger_centering) {
606 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
607 }
608
609 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
610 trigger_goal_current = kHapticTriggerCurrentLimit;
611 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
612 trigger_goal_current = -kHapticTriggerCurrentLimit;
613 }
614 global_trigger_torque.store(trigger_goal_current,
615 ::std::memory_order_relaxed);
616
617 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500618 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800619 buttons |= 0x1;
620 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500621 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800622 buttons |= 0x2;
623 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500624 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800625 buttons |= 0x4;
626 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500627 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800628 buttons |= 0x8;
629 }
630
631 float trigger_angle = absolute_trigger_angle;
632
633 // Adjust the trigger range for reporting back.
634 // TODO(austin): We'll likely need to make this symmetric for the controls to
635 // work out well.
636 if (trigger_angle > kTriggerCenter) {
637 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
638 } else {
639 trigger_angle = (trigger_angle - kTriggerCenter) /
640 (kTriggerCenter - kTriggerMaxExtension);
641 }
642
643 // TODO(austin): Class + fns. This is a mess.
644 // TODO(austin): Move this to a separate file. It's too big.
645 int can_trigger = ConvertFloat16(absolute_trigger_angle);
646 int can_trigger_velocity =
647 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
648 int can_trigger_torque =
649 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
650 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
651
652 int can_wheel = ConvertFloat16(absolute_wheel_angle);
653 int can_wheel_velocity =
654 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
655 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
656 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
657
658 {
659 const uint8_t trigger_joystick_values[8] = {
660 static_cast<uint8_t>(can_trigger & 0xff),
661 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
662 static_cast<uint8_t>(can_trigger_velocity & 0xff),
663 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
664 static_cast<uint8_t>(can_trigger_torque & 0xff),
665 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
666 static_cast<uint8_t>(can_trigger_current & 0xff),
667 static_cast<uint8_t>(((buttons & 0x3) << 6) |
668 (can_trigger_current >> 8))};
669 const uint8_t wheel_joystick_values[8] = {
670 static_cast<uint8_t>(can_wheel & 0xff),
671 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
672 static_cast<uint8_t>(can_wheel_velocity & 0xff),
673 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
674 static_cast<uint8_t>(can_wheel_torque & 0xff),
675 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
676 static_cast<uint8_t>(can_wheel_current & 0xff),
677 static_cast<uint8_t>(((buttons & 0xc) << 4) |
678 (can_wheel_current >> 8))};
679
680 can_send(0, trigger_joystick_values, 8, 2);
681 can_send(1, wheel_joystick_values, 8, 3);
682 }
683
684 ::Eigen::Matrix<float, 1, 1> trigger_U;
685 trigger_U << trigger_goal_current;
686 ::Eigen::Matrix<float, 1, 1> wheel_U;
687 wheel_U << wheel_goal_current;
688 trigger_observer->Predict(trigger_plant, trigger_U,
689 ::std::chrono::milliseconds(1));
690 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
691}
692
693void ConfigurePwmFtm(BigFTM *pwm_ftm) {
694 // Put them all into combine active-high mode, and all the low ones staying
695 // off all the time by default. We'll then use only the low ones.
696 pwm_ftm->C0SC = FTM_CSC_ELSB;
697 pwm_ftm->C0V = 0;
698 pwm_ftm->C1SC = FTM_CSC_ELSB;
699 pwm_ftm->C1V = 0;
700 pwm_ftm->C2SC = FTM_CSC_ELSB;
701 pwm_ftm->C2V = 0;
702 pwm_ftm->C3SC = FTM_CSC_ELSB;
703 pwm_ftm->C3V = 0;
704 pwm_ftm->C4SC = FTM_CSC_ELSB;
705 pwm_ftm->C4V = 0;
706 pwm_ftm->C5SC = FTM_CSC_ELSB;
707 pwm_ftm->C5V = 0;
708 pwm_ftm->C6SC = FTM_CSC_ELSB;
709 pwm_ftm->C6V = 0;
710 pwm_ftm->C7SC = FTM_CSC_ELSB;
711 pwm_ftm->C7V = 0;
712
713 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
714 FTM_COMBINE_COMP3 /* Make them complementary */ |
715 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
716 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
717 FTM_COMBINE_COMP2 /* Make them complementary */ |
718 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
719 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
720 FTM_COMBINE_COMP1 /* Make them complementary */ |
721 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
722 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
723 FTM_COMBINE_COMP0 /* Make them complementary */ |
724 FTM_COMBINE_COMBINE0 /* Combine the channels */;
725}
726
727bool CountValid(uint32_t count) {
728 static constexpr int kMaxMovement = 1;
729 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
730}
731
732bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
733 uint16_t *wheel_offset) {
734 static constexpr int kNumberSamples = 1024;
735 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
736 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
737
738 // First clear both encoders.
739 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
740 for (int i = 0; i < kNumberSamples; ++i) {
741 delay(1);
742
743 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
744 printf("Motor 0 moved too much\n");
745 return false;
746 }
747 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
748 printf("Motor 1 moved too much\n");
749 return false;
750 }
751
752 DisableInterrupts disable_interrupts;
753 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
754 motor0_sum += readings.motor0_abs;
755 motor1_sum += readings.motor1_abs;
756 wheel_sum += readings.wheel_abs;
757 }
758
759 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
760 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
761 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
762
763 return true;
764}
765
766} // namespace
767
768extern "C" int main() {
769 // for background about this startup delay, please see these conversations
770 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
771 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
772 delay(400);
773
774 // Set all interrupts to the second-lowest priority to start with.
775 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
776
777 // Now set priorities for all the ones we care about. They only have meaning
778 // relative to each other, which means centralizing them here makes it a lot
779 // more manageable.
780 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
781 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
782 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
783 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
784
785 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500786 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800787 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
788
789 // Set up the CAN pins.
790 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
791 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
792
Brian Silvermanff7b3872018-03-10 18:08:30 -0800793 // .1ms filter time.
794 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
795
Brian Silverman6260c092018-01-14 15:21:36 -0800796 // BTN0
797 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800798 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800799 // BTN1
800 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800801 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800802 // BTN2
803 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800804 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800805 // BTN3
806 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800807 PORTD_DFER |= 1 << 0;
808 // BTN4
809 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
810 PORTD_DFER |= 1 << 7;
811 // BTN5 (only new revision)
812 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
813 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800814
815 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
816
Brian Silverman45564a82018-09-02 16:35:22 -0700817 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800818
Brian Silverman4787a6e2018-10-06 16:00:54 -0700819 PrintingParameters printing_parameters;
820 printing_parameters.dedicated_usb = true;
821 const ::std::unique_ptr<PrintingImplementation> printing =
822 CreatePrinting(printing_parameters);
823 printing->Initialize();
Brian Silverman6260c092018-01-14 15:21:36 -0800824
825 AdcInitSmall();
826 MathInit();
827 delay(100);
828 can_init(2, 3);
829
830 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500831 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800832 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
833 GPIOD_PSOR = 1 << 3;
834
835 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500836 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800837 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
838 GPIOC_PSOR = 1 << 4;
839
840 LittleMotorControlsImplementation controls0, controls1;
841
842 delay(100);
843
844 // M0_EA = FTM1_QD_PHB
845 PORTB_PCR19 = PORT_PCR_MUX(6);
846 // M0_EB = FTM1_QD_PHA
847 PORTB_PCR18 = PORT_PCR_MUX(6);
848
849 // M1_EA = FTM1_QD_PHA
850 PORTB_PCR0 = PORT_PCR_MUX(6);
851 // M1_EB = FTM1_QD_PHB
852 PORTB_PCR1 = PORT_PCR_MUX(6);
853
854 // M0_CH0 = FTM3_CH4
855 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
856 // M0_CH1 = FTM3_CH2
857 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
858 // M0_CH2 = FTM3_CH6
859 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
860
861 // M1_CH0 = FTM0_CH0
862 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
863 // M1_CH1 = FTM0_CH2
864 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
865 // M1_CH2 = FTM0_CH4
866 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
867
868 Motor motor0(
869 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
870 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700871 motor0.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800872 motor0.set_switching_divisor(kSwitchingDivisor);
873 Motor motor1(
874 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
875 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700876 motor1.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800877 motor1.set_switching_divisor(kSwitchingDivisor);
878 ConfigurePwmFtm(MOTOR0_PWM_FTM);
879 ConfigurePwmFtm(MOTOR1_PWM_FTM);
880 motor0.Init();
881 motor1.Init();
882 global_motor0.store(&motor0, ::std::memory_order_relaxed);
883 global_motor1.store(&motor1, ::std::memory_order_relaxed);
884
885 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400886 // Workaround for errata e7914.
887 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800888 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400889 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800890 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
891
892 // Have them both wait for the GTB signal.
893 FTM0->CONF = FTM3->CONF =
894 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
895 // Make FTM3's period half of what it should be so we can get it a half-cycle
896 // out of phase.
897 const uint32_t original_mod = FTM3->MOD;
898 FTM3->MOD = ((original_mod + 1) / 2) - 1;
899 FTM3->SYNC |= FTM_SYNC_SWSYNC;
900
901 // Output triggers to things like the PDBs on initialization.
902 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
903 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
904 // Don't let any memory accesses sneak past here, because we actually
905 // need everything to be starting up.
906 __asm__("" ::: "memory");
907
908 // Give everything a chance to get going.
909 delay(100);
910
911 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
912 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
913 printf("heap start: %p\n", __heap_start__);
914 printf("stack start: %p\n", __stack_end__);
915
Austin Schuh745e4ed2019-04-07 15:50:16 -0700916 trigger_cogging_torque.store(ProcessorIndex() == 0 ? kTriggerCoggingTorque0
917 : kTriggerCoggingTorque1);
918 wheel_cogging_torque.store(ProcessorIndex() == 0 ? kWheelCoggingTorque0
919 : kWheelCoggingTorque1);
920
Austin Schuh80b99932019-04-07 14:04:41 -0700921 printf("Zeroing motors for %d:%x\n", static_cast<int>(ProcessorIndex()),
922 (unsigned int)ProcessorIdentifier());
Brian Silverman6260c092018-01-14 15:21:36 -0800923 uint16_t motor0_offset, motor1_offset, wheel_offset;
924 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
925 }
926 printf("Done zeroing\n");
927
928 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
929 const float motor1_offset_scaled = analog_ratio(motor1_offset);
930 // Good for the initial trigger.
931 {
Austin Schuh4a8d4922019-04-07 15:31:30 -0700932 // Calibrate winding phase error here.
933 const float kZeroOffset0 = ProcessorIndex() == 1 ? 0.275f : 0.27f;
Brian Silverman6260c092018-01-14 15:21:36 -0800934 const int motor0_starting_point = static_cast<int>(
935 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
936 printf("Motor 0 starting at %d\n", motor0_starting_point);
937 motor0.set_encoder_calibration_offset(motor0_starting_point);
938 motor0.set_encoder_multiplier(-1);
939
Austin Schuh4a8d4922019-04-07 15:31:30 -0700940 // Calibrate output coordinate neutral here.
941 motor0.set_encoder_offset(
942 motor0.encoder_offset() +
943 (ProcessorIndex() == 1 ? (-3096 - 430 - 30 - 6) : (-2065 + 20)));
944
945 while (true) {
946 const uint32_t encoder =
947 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
948 const int32_t absolute_encoder =
949 global_motor0.load(::std::memory_order_relaxed)
950 ->absolute_encoder(encoder);
951
952 if (absolute_encoder > 2047) {
953 motor0.set_encoder_offset(motor0.encoder_offset() - 4096);
954 } else if (absolute_encoder < -2047) {
955 motor0.set_encoder_offset(motor0.encoder_offset() + 4096);
956 } else {
957 break;
958 }
959 }
Brian Silverman6260c092018-01-14 15:21:36 -0800960
961 uint32_t new_encoder = motor0.wrapped_encoder();
962 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
963 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
964 static_cast<int>(absolute_encoder));
965 }
966
967 {
Austin Schuh4a8d4922019-04-07 15:31:30 -0700968 const float kZeroOffset1 = ProcessorIndex() == 1 ? 0.420f : 0.26f;
Brian Silverman6260c092018-01-14 15:21:36 -0800969 const int motor1_starting_point = static_cast<int>(
970 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
971 printf("Motor 1 starting at %d\n", motor1_starting_point);
972 motor1.set_encoder_calibration_offset(motor1_starting_point);
973 motor1.set_encoder_multiplier(-1);
974
975 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
976
977 uint32_t encoder = motor1.wrapped_encoder();
978
979 printf("Wheel starting at %d, encoder %" PRId32 "\n",
980 static_cast<int>(wheel_position * 1000.0f), encoder);
981
982 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
Austin Schuh4a8d4922019-04-07 15:31:30 -0700983 const float kWrappedWheelAtZero =
984 ProcessorIndex() == 1 ? (0.934630859375f) : 0.6586310546875f;
Brian Silverman6260c092018-01-14 15:21:36 -0800985
986 const int encoder_wraps =
987 static_cast<int>(lround(wheel_position * kWheelGearRatio -
988 (encoder / 4096.f) + kWrappedWheelAtZero));
989
990 printf("Wraps: %d\n", encoder_wraps);
991 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
992 static_cast<int>(kWrappedWheelAtZero * 4096));
993 printf("Wheel encoder now at %d\n",
994 static_cast<int>(1000.f / 4096.f *
995 motor1.absolute_encoder(motor1.wrapped_encoder())));
996 }
997
998 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500999 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -08001000 GPIOC_PCOR = 1 << 6;
1001 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
1002
1003 // M0_THW
1004 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1005 // M0_FAULT
1006 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1007 // M1_THW
1008 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1009 // M1_FAULT
1010 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1011
1012 motor0.Start();
1013 motor1.Start();
1014 {
1015 // We rely on various things happening faster than the timer period, so make
1016 // sure slow USB or whatever interrupts don't prevent that.
1017 DisableInterrupts disable_interrupts;
1018
1019 // First clear the overflow flag.
1020 FTM3->SC &= ~FTM_SC_TOF;
1021
1022 // Now poke the GTB to actually start both timers.
1023 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
1024 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
1025
1026 // Wait for it to overflow twice. For some reason, just once doesn't work.
1027 while (!(FTM3->SC & FTM_SC_TOF)) {
1028 }
1029 FTM3->SC &= ~FTM_SC_TOF;
1030 while (!(FTM3->SC & FTM_SC_TOF)) {
1031 }
1032
1033 // Now put the MOD value back to what it was.
1034 FTM3->MOD = original_mod;
1035 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
1036
1037 // And then clear the overflow flags before enabling interrupts so we
1038 // actually wait until the next overflow to start doing interrupts.
1039 FTM0->SC &= ~FTM_SC_TOF;
1040 FTM3->SC &= ~FTM_SC_TOF;
1041 NVIC_ENABLE_IRQ(IRQ_FTM0);
1042 NVIC_ENABLE_IRQ(IRQ_FTM3);
1043 }
1044 global_trigger_plant.store(
1045 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
1046 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1047 MakeIntegralHapticTriggerObserver()));
1048 global_trigger_observer.load(::std::memory_order_relaxed)
1049 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
1050
1051 global_wheel_plant.store(
1052 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
1053 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1054 MakeIntegralHapticWheelObserver()));
1055 global_wheel_observer.load(::std::memory_order_relaxed)
1056 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
1057
1058 delay(1000);
1059
1060 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
1061
1062 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
1063 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001064 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
1065 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001066 printf("M0_THW\n");
1067 }
1068 GPIOC_PSOR = 1 << 5;
1069 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001070 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
1071 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001072 printf("M0_FAULT\n");
1073 }
1074 GPIOC_PSOR = 1 << 5;
1075 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001076 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
1077 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001078 printf("M1_THW\n");
1079 }
1080 GPIOC_PSOR = 1 << 5;
1081 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001082 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
1083 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001084 printf("M1_FAULT\n");
1085 }
1086 GPIOC_PSOR = 1 << 5;
1087 }
1088 }
1089
1090 return 0;
1091}
1092
Brian Silvermana96c1a42018-05-12 12:11:31 -07001093} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -08001094} // namespace frc971