blob: acbfb29ad5bbd429940016ccc89590b8b7f7b9a7 [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
13#include "motors/peripheral/adc.h"
14#include "motors/peripheral/can.h"
15#include "motors/pistol_grip/motor_controls.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070016#include "motors/print/print.h"
Brian Silverman6260c092018-01-14 15:21:36 -080017#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080018
19#define MOTOR0_PWM_FTM FTM3
20#define MOTOR0_ENCODER_FTM FTM2
21#define MOTOR1_PWM_FTM FTM0
22#define MOTOR1_ENCODER_FTM FTM1
23
24extern const float kWheelCoggingTorque[4096];
25extern const float kTriggerCoggingTorque[4096];
26
27namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070028namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080029namespace {
30
31using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
32using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
33using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
34using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
35
Brian Silverman9ed2cf12018-05-12 13:06:38 -070036struct SmallAdcReadings {
37 uint16_t currents[3];
38};
39
40struct SmallInitReadings {
41 uint16_t motor0_abs;
42 uint16_t motor1_abs;
43 uint16_t wheel_abs;
44};
45
46void AdcInitSmall() {
47 AdcInitCommon();
48
49 // M0_CH0F ADC1_SE17
50 PORTA_PCR17 = PORT_PCR_MUX(0);
51
52 // M0_CH1F ADC1_SE14
53 PORTB_PCR10 = PORT_PCR_MUX(0);
54
55 // M0_CH2F ADC1_SE15
56 PORTB_PCR11 = PORT_PCR_MUX(0);
57
58 // M0_ABS ADC0_SE5b
59 PORTD_PCR1 = PORT_PCR_MUX(0);
60
61 // M1_CH0F ADC0_SE13
62 PORTB_PCR3 = PORT_PCR_MUX(0);
63
64 // M1_CH1F ADC0_SE12
65 PORTB_PCR2 = PORT_PCR_MUX(0);
66
67 // M1_CH2F ADC0_SE14
68 PORTC_PCR0 = PORT_PCR_MUX(0);
69
70 // M1_ABS ADC0_SE17
71 PORTE_PCR24 = PORT_PCR_MUX(0);
72
73 // WHEEL_ABS ADC0_SE18
74 PORTE_PCR25 = PORT_PCR_MUX(0);
75
76 // VIN ADC1_SE5B
77 PORTC_PCR9 = PORT_PCR_MUX(0);
78}
79
80SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
81 SmallAdcReadings r;
82
83 ADC1_SC1A = 17;
84 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
85 }
86 ADC1_SC1A = 14;
87 r.currents[0] = ADC1_RA;
88 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
89 }
90 ADC1_SC1A = 15;
91 r.currents[1] = ADC1_RA;
92 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
93 }
94 r.currents[2] = ADC1_RA;
95
96 return r;
97}
98
99SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
100 SmallAdcReadings r;
101
102 ADC0_SC1A = 13;
103 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
104 }
105 ADC0_SC1A = 12;
106 r.currents[0] = ADC0_RA;
107 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
108 }
109 ADC0_SC1A = 14;
110 r.currents[1] = ADC0_RA;
111 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
112 }
113 r.currents[2] = ADC0_RA;
114
115 return r;
116}
117
118SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
119 SmallInitReadings r;
120
121 ADC0_SC1A = 5;
122 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
123 }
124 ADC0_SC1A = 17;
125 r.motor0_abs = ADC0_RA;
126 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
127 }
128 ADC0_SC1A = 18;
129 r.motor1_abs = ADC0_RA;
130 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
131 }
132 r.wheel_abs = ADC0_RA;
133
134 return r;
135}
136
Brian Silverman6260c092018-01-14 15:21:36 -0800137constexpr float kHapticWheelCurrentLimit = static_cast<float>(
138 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
139constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
140 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
141
142::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
Brian Silverman6260c092018-01-14 15:21:36 -0800143
144// Angle last time the current loop ran.
145::std::atomic<float> global_wheel_angle{0.0f};
146::std::atomic<float> global_trigger_angle{0.0f};
147
148// Wheel observer/plant.
149::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
150 nullptr};
151::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
152// Throttle observer/plant.
153::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
154 nullptr};
155::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
156 nullptr};
157
158// Torques for the current loop to apply.
159::std::atomic<float> global_wheel_current{0.0f};
160::std::atomic<float> global_trigger_torque{0.0f};
161
162constexpr int kSwitchingDivisor = 2;
163
164float analog_ratio(uint16_t reading) {
165 static constexpr uint16_t kMin = 260, kMax = 3812;
166 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
167 kMin) /
168 static_cast<float>(kMax - kMin);
169}
170
171constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
172 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
173}
174
175float absolute_wheel(float wheel_position) {
176 if (wheel_position < 0.43f) {
177 wheel_position += 1.0f;
178 }
179 wheel_position -= 0.462f + 0.473f;
180 return wheel_position;
181}
182
183extern "C" {
184
185void *__stack_chk_guard = (void *)0x67111971;
186void __stack_chk_fail() {
187 while (true) {
188 GPIOC_PSOR = (1 << 5);
189 printf("Stack corruption detected\n");
190 delay(1000);
191 GPIOC_PCOR = (1 << 5);
192 delay(1000);
193 }
194}
195
Brian Silverman6260c092018-01-14 15:21:36 -0800196extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
197extern uint32_t __data_ram_start__[], __data_ram_end__[];
198extern uint32_t __heap_start__[], __heap_end__[];
199extern uint32_t __stack_end__[];
200
201} // extern "C"
202
203constexpr float kWheelMaxExtension = 1.0f;
204constexpr float kWheelFrictionMax = 0.2f;
205float WheelCenteringCurrent(float scalar, float angle, float velocity) {
206 float friction_goal_current = -angle * 10.0f;
207 if (friction_goal_current > kWheelFrictionMax) {
208 friction_goal_current = kWheelFrictionMax;
209 } else if (friction_goal_current < -kWheelFrictionMax) {
210 friction_goal_current = -kWheelFrictionMax;
211 }
212
213 constexpr float kWheelSpringNonlinearity = 0.45f;
214
215 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
216 kWheelSpringNonlinearity * angle * angle * angle) *
217 6.0f -
218 velocity * 0.04f;
219 if (goal_current > 5.0f - scalar) {
220 goal_current = 5.0f - scalar;
221 } else if (goal_current < -5.0f + scalar) {
222 goal_current = -5.0f + scalar;
223 }
224
225 return goal_current * scalar + friction_goal_current;
226}
227
228extern "C" void ftm0_isr() {
229 SmallAdcReadings readings;
230 {
231 DisableInterrupts disable_interrupts;
232 readings = AdcReadSmall1(disable_interrupts);
233 }
234 uint32_t encoder =
235 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
236 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
237 ->absolute_encoder(encoder);
238
239 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
Brian Silverman6260c092018-01-14 15:21:36 -0800240
Austin Schuh54c8c842019-04-07 13:54:23 -0700241 float goal_current = global_wheel_current.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800242 kWheelCoggingTorque[encoder];
Austin Schuh54c8c842019-04-07 13:54:23 -0700243 //float goal_current = kWheelCoggingTorque[encoder];
244 //float goal_current = 0.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800245
246 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
247 global_motor1.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700248 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
249
250 global_wheel_angle.store(angle);
Brian Silverman6260c092018-01-14 15:21:36 -0800251}
252
Austin Schuh876b4f02018-03-10 19:16:59 -0800253constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800254constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800255constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800256float TriggerCenteringCurrent(float trigger_angle) {
257 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800258 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
259 if (knotch_goal_current < -kCenteringStiffness) {
260 knotch_goal_current = -kCenteringStiffness;
261 } else if (knotch_goal_current > kCenteringStiffness) {
262 knotch_goal_current = kCenteringStiffness;
263 }
264
265 goal_current += knotch_goal_current;
266
Brian Silverman6260c092018-01-14 15:21:36 -0800267 if (goal_current < -1.0f) {
268 goal_current = -1.0f;
269 } else if (goal_current > 1.0f) {
270 goal_current = 1.0f;
271 if (trigger_angle < kTriggerMaxExtension) {
272 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800273 if (goal_current > 4.0f) {
274 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800275 }
276 }
277 }
278 return goal_current;
279}
280
281extern "C" void ftm3_isr() {
282 SmallAdcReadings readings;
283 {
284 DisableInterrupts disable_interrupts;
285 readings = AdcReadSmall0(disable_interrupts);
286 }
Brian Silverman6260c092018-01-14 15:21:36 -0800287
Austin Schuh54c8c842019-04-07 13:54:23 -0700288 const uint32_t encoder =
289 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
290 const int32_t absolute_encoder =
291 global_motor0.load(::std::memory_order_relaxed)
292 ->absolute_encoder(encoder);
293
294 const float trigger_angle = absolute_encoder / 1370.f;
Brian Silverman6260c092018-01-14 15:21:36 -0800295
296 const float goal_current =
Austin Schuh54c8c842019-04-07 13:54:23 -0700297 global_trigger_torque.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800298 kTriggerCoggingTorque[encoder];
Austin Schuh54c8c842019-04-07 13:54:23 -0700299 //const float goal_current = kTriggerCoggingTorque[encoder];
300 //const float goal_current = 0.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800301
302 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
303 global_motor0.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700304 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Brian Silverman6260c092018-01-14 15:21:36 -0800305
Brian Silverman6260c092018-01-14 15:21:36 -0800306 global_trigger_angle.store(trigger_angle);
307}
308
Brian Silverman6260c092018-01-14 15:21:36 -0800309int ConvertFloat16(float val) {
310 int result = static_cast<int>(val * 32768.0f) + 32768;
311 if (result > 0xffff) {
312 result = 0xffff;
313 } else if (result < 0) {
314 result = 0;
315 }
316 return result;
317}
318int ConvertFloat14(float val) {
319 int result = static_cast<int>(val * 8192.0f) + 8192;
320 if (result > 0x3fff) {
321 result = 0x3fff;
322 } else if (result < 0) {
323 result = 0;
324 }
325 return result;
326}
327
328extern "C" void pit3_isr() {
329 PIT_TFLG3 = 1;
330 const float absolute_trigger_angle =
331 global_trigger_angle.load(::std::memory_order_relaxed);
332 const float absolute_wheel_angle =
333 global_wheel_angle.load(::std::memory_order_relaxed);
334
335 // Force a barrier here so we sample everything guaranteed at the beginning.
336 __asm__("" ::: "memory");
337 const float absolute_wheel_angle_radians =
338 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
339 const float absolute_trigger_angle_radians =
340 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
341
342 static uint32_t last_command_time = 0;
343 static float trigger_goal_position = 0.0f;
344 static float trigger_goal_velocity = 0.0f;
345 static float trigger_haptic_current = 0.0f;
346 static bool trigger_centering = true;
347 static bool trigger_haptics = false;
348 {
349 uint8_t data[8];
350 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700351 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800352 if (length > 0) {
353 last_command_time = micros();
354 trigger_goal_position =
355 static_cast<float>(
356 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
357 (static_cast<uint32_t>(data[1]) << 8)) -
358 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700359 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800360 trigger_goal_velocity =
361 static_cast<float>(
362 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
363 (static_cast<uint32_t>(data[3]) << 8)) -
364 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700365 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800366
367 trigger_haptic_current =
368 static_cast<float>(
369 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
370 (static_cast<uint32_t>(data[5]) << 8)) -
371 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700372 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800373 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
374 trigger_haptic_current = kHapticTriggerCurrentLimit;
375 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
376 trigger_haptic_current = -kHapticTriggerCurrentLimit;
377 }
378 trigger_centering = !!(data[7] & 0x01);
379 trigger_haptics = !!(data[7] & 0x02);
380 }
381 }
382
383 static float wheel_goal_position = 0.0f;
384 static float wheel_goal_velocity = 0.0f;
385 static float wheel_haptic_current = 0.0f;
386 static float wheel_kp = 0.0f;
387 static bool wheel_centering = true;
388 static float wheel_centering_scalar = 0.25f;
389 {
390 uint8_t data[8];
391 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700392 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800393 if (length == 8) {
394 last_command_time = micros();
395 wheel_goal_position =
396 static_cast<float>(
397 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
398 (static_cast<uint32_t>(data[1]) << 8)) -
399 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700400 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800401 wheel_goal_velocity =
402 static_cast<float>(
403 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
404 (static_cast<uint32_t>(data[3]) << 8)) -
405 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700406 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800407
408 wheel_haptic_current =
409 static_cast<float>(
410 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
411 (static_cast<uint32_t>(data[5]) << 8)) -
412 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700413 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800414 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
415 wheel_haptic_current = kHapticWheelCurrentLimit;
416 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
417 wheel_haptic_current = -kHapticWheelCurrentLimit;
418 }
419 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
420 wheel_centering = !!(data[7] & 0x01);
421 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
422 }
423 }
424
425 static constexpr uint32_t kTimeout = 100000;
426 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
427 last_command_time = time_subtract(micros(), kTimeout);
428 trigger_goal_position = 0.0f;
429 trigger_goal_velocity = 0.0f;
430 trigger_haptic_current = 0.0f;
431 trigger_centering = true;
432 trigger_haptics = false;
433
434 wheel_goal_position = 0.0f;
435 wheel_goal_velocity = 0.0f;
436 wheel_haptic_current = 0.0f;
437 wheel_centering = true;
438 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800439 // Avoid wrapping back into the valid range.
440 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800441 }
442
443 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
444 global_trigger_plant.load(::std::memory_order_relaxed);
445 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
446 global_trigger_observer.load(::std::memory_order_relaxed);
447 ::Eigen::Matrix<float, 1, 1> trigger_Y;
448 trigger_Y << absolute_trigger_angle_radians;
449 trigger_observer->Correct(*trigger_plant,
450 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
451
452 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
453 global_wheel_plant.load(::std::memory_order_relaxed);
454 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
455 global_wheel_observer.load(::std::memory_order_relaxed);
456 ::Eigen::Matrix<float, 1, 1> wheel_Y;
457 wheel_Y << absolute_wheel_angle_radians;
458 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
459 wheel_Y);
460
461 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
462 if (wheel_kp < 0.5f) {
463 kWheelD = wheel_kp * 0.05f / 0.5f;
464 } else if (wheel_kp < 1.0f) {
465 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
466 } else if (wheel_kp < 2.0f) {
467 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
468 } else if (wheel_kp < 3.0f) {
469 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
470 } else if (wheel_kp < 5.0f) {
471 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
472 } else if (wheel_kp < 10.0f) {
473 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
474 }
475
476 float wheel_goal_current = wheel_haptic_current;
477
478 wheel_goal_current +=
479 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
480 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
481
482 // Compute the torques to apply to each motor.
483 if (wheel_centering) {
484 wheel_goal_current +=
485 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
486 wheel_observer->X_hat()(1, 0));
487 }
488
489 if (wheel_goal_current > kHapticWheelCurrentLimit) {
490 wheel_goal_current = kHapticWheelCurrentLimit;
491 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
492 wheel_goal_current = -kHapticWheelCurrentLimit;
493 }
494 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
495
496 constexpr float kTriggerP =
497 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
498 constexpr float kTriggerD =
499 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
500 float trigger_goal_current = trigger_haptic_current;
501 if (trigger_haptics) {
502 trigger_goal_current +=
503 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
504 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
505 }
506
507 if (trigger_centering) {
508 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
509 }
510
511 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
512 trigger_goal_current = kHapticTriggerCurrentLimit;
513 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
514 trigger_goal_current = -kHapticTriggerCurrentLimit;
515 }
516 global_trigger_torque.store(trigger_goal_current,
517 ::std::memory_order_relaxed);
518
519 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500520 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800521 buttons |= 0x1;
522 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500523 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800524 buttons |= 0x2;
525 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500526 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800527 buttons |= 0x4;
528 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500529 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800530 buttons |= 0x8;
531 }
532
533 float trigger_angle = absolute_trigger_angle;
534
535 // Adjust the trigger range for reporting back.
536 // TODO(austin): We'll likely need to make this symmetric for the controls to
537 // work out well.
538 if (trigger_angle > kTriggerCenter) {
539 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
540 } else {
541 trigger_angle = (trigger_angle - kTriggerCenter) /
542 (kTriggerCenter - kTriggerMaxExtension);
543 }
544
545 // TODO(austin): Class + fns. This is a mess.
546 // TODO(austin): Move this to a separate file. It's too big.
547 int can_trigger = ConvertFloat16(absolute_trigger_angle);
548 int can_trigger_velocity =
549 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
550 int can_trigger_torque =
551 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
552 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
553
554 int can_wheel = ConvertFloat16(absolute_wheel_angle);
555 int can_wheel_velocity =
556 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
557 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
558 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
559
560 {
561 const uint8_t trigger_joystick_values[8] = {
562 static_cast<uint8_t>(can_trigger & 0xff),
563 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
564 static_cast<uint8_t>(can_trigger_velocity & 0xff),
565 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
566 static_cast<uint8_t>(can_trigger_torque & 0xff),
567 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
568 static_cast<uint8_t>(can_trigger_current & 0xff),
569 static_cast<uint8_t>(((buttons & 0x3) << 6) |
570 (can_trigger_current >> 8))};
571 const uint8_t wheel_joystick_values[8] = {
572 static_cast<uint8_t>(can_wheel & 0xff),
573 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
574 static_cast<uint8_t>(can_wheel_velocity & 0xff),
575 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
576 static_cast<uint8_t>(can_wheel_torque & 0xff),
577 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
578 static_cast<uint8_t>(can_wheel_current & 0xff),
579 static_cast<uint8_t>(((buttons & 0xc) << 4) |
580 (can_wheel_current >> 8))};
581
582 can_send(0, trigger_joystick_values, 8, 2);
583 can_send(1, wheel_joystick_values, 8, 3);
584 }
585
586 ::Eigen::Matrix<float, 1, 1> trigger_U;
587 trigger_U << trigger_goal_current;
588 ::Eigen::Matrix<float, 1, 1> wheel_U;
589 wheel_U << wheel_goal_current;
590 trigger_observer->Predict(trigger_plant, trigger_U,
591 ::std::chrono::milliseconds(1));
592 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
593}
594
595void ConfigurePwmFtm(BigFTM *pwm_ftm) {
596 // Put them all into combine active-high mode, and all the low ones staying
597 // off all the time by default. We'll then use only the low ones.
598 pwm_ftm->C0SC = FTM_CSC_ELSB;
599 pwm_ftm->C0V = 0;
600 pwm_ftm->C1SC = FTM_CSC_ELSB;
601 pwm_ftm->C1V = 0;
602 pwm_ftm->C2SC = FTM_CSC_ELSB;
603 pwm_ftm->C2V = 0;
604 pwm_ftm->C3SC = FTM_CSC_ELSB;
605 pwm_ftm->C3V = 0;
606 pwm_ftm->C4SC = FTM_CSC_ELSB;
607 pwm_ftm->C4V = 0;
608 pwm_ftm->C5SC = FTM_CSC_ELSB;
609 pwm_ftm->C5V = 0;
610 pwm_ftm->C6SC = FTM_CSC_ELSB;
611 pwm_ftm->C6V = 0;
612 pwm_ftm->C7SC = FTM_CSC_ELSB;
613 pwm_ftm->C7V = 0;
614
615 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
616 FTM_COMBINE_COMP3 /* Make them complementary */ |
617 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
618 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
619 FTM_COMBINE_COMP2 /* Make them complementary */ |
620 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
621 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
622 FTM_COMBINE_COMP1 /* Make them complementary */ |
623 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
624 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
625 FTM_COMBINE_COMP0 /* Make them complementary */ |
626 FTM_COMBINE_COMBINE0 /* Combine the channels */;
627}
628
629bool CountValid(uint32_t count) {
630 static constexpr int kMaxMovement = 1;
631 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
632}
633
634bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
635 uint16_t *wheel_offset) {
636 static constexpr int kNumberSamples = 1024;
637 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
638 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
639
640 // First clear both encoders.
641 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
642 for (int i = 0; i < kNumberSamples; ++i) {
643 delay(1);
644
645 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
646 printf("Motor 0 moved too much\n");
647 return false;
648 }
649 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
650 printf("Motor 1 moved too much\n");
651 return false;
652 }
653
654 DisableInterrupts disable_interrupts;
655 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
656 motor0_sum += readings.motor0_abs;
657 motor1_sum += readings.motor1_abs;
658 wheel_sum += readings.wheel_abs;
659 }
660
661 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
662 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
663 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
664
665 return true;
666}
667
Brian Silverman22e491f2018-09-16 17:03:24 -0700668// Returns an identifier for the processor we're running on.
669// This isn't guaranteed to be unique, but it should be close enough.
670uint8_t ProcessorIdentifier() {
671 // This XORs together all the bytes of the unique identifier provided by the
672 // hardware.
673 uint8_t r = 0;
674 for (uint8_t uid : {SIM_UIDH, SIM_UIDMH, SIM_UIDML, SIM_UIDL}) {
675 r = r ^ ((uid >> 0) & 0xFF);
676 r = r ^ ((uid >> 8) & 0xFF);
677 r = r ^ ((uid >> 16) & 0xFF);
678 r = r ^ ((uid >> 24) & 0xFF);
679 }
680 return r;
681}
682
Brian Silverman6260c092018-01-14 15:21:36 -0800683} // namespace
684
685extern "C" int main() {
686 // for background about this startup delay, please see these conversations
687 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
688 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
689 delay(400);
690
691 // Set all interrupts to the second-lowest priority to start with.
692 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
693
694 // Now set priorities for all the ones we care about. They only have meaning
695 // relative to each other, which means centralizing them here makes it a lot
696 // more manageable.
697 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
698 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
699 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
700 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
701
702 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500703 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800704 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
705
706 // Set up the CAN pins.
707 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
708 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
709
Brian Silvermanff7b3872018-03-10 18:08:30 -0800710 // .1ms filter time.
711 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
712
Brian Silverman6260c092018-01-14 15:21:36 -0800713 // BTN0
714 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800715 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800716 // BTN1
717 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800718 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800719 // BTN2
720 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800721 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800722 // BTN3
723 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800724 PORTD_DFER |= 1 << 0;
725 // BTN4
726 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
727 PORTD_DFER |= 1 << 7;
728 // BTN5 (only new revision)
729 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
730 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800731
732 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
733
Brian Silverman45564a82018-09-02 16:35:22 -0700734 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800735
Brian Silverman4787a6e2018-10-06 16:00:54 -0700736 PrintingParameters printing_parameters;
737 printing_parameters.dedicated_usb = true;
738 const ::std::unique_ptr<PrintingImplementation> printing =
739 CreatePrinting(printing_parameters);
740 printing->Initialize();
Brian Silverman6260c092018-01-14 15:21:36 -0800741
742 AdcInitSmall();
743 MathInit();
744 delay(100);
745 can_init(2, 3);
746
747 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500748 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800749 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
750 GPIOD_PSOR = 1 << 3;
751
752 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500753 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800754 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
755 GPIOC_PSOR = 1 << 4;
756
757 LittleMotorControlsImplementation controls0, controls1;
758
759 delay(100);
760
761 // M0_EA = FTM1_QD_PHB
762 PORTB_PCR19 = PORT_PCR_MUX(6);
763 // M0_EB = FTM1_QD_PHA
764 PORTB_PCR18 = PORT_PCR_MUX(6);
765
766 // M1_EA = FTM1_QD_PHA
767 PORTB_PCR0 = PORT_PCR_MUX(6);
768 // M1_EB = FTM1_QD_PHB
769 PORTB_PCR1 = PORT_PCR_MUX(6);
770
771 // M0_CH0 = FTM3_CH4
772 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
773 // M0_CH1 = FTM3_CH2
774 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
775 // M0_CH2 = FTM3_CH6
776 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
777
778 // M1_CH0 = FTM0_CH0
779 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
780 // M1_CH1 = FTM0_CH2
781 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
782 // M1_CH2 = FTM0_CH4
783 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
784
785 Motor motor0(
786 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
787 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700788 motor0.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800789 motor0.set_switching_divisor(kSwitchingDivisor);
790 Motor motor1(
791 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
792 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700793 motor1.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800794 motor1.set_switching_divisor(kSwitchingDivisor);
795 ConfigurePwmFtm(MOTOR0_PWM_FTM);
796 ConfigurePwmFtm(MOTOR1_PWM_FTM);
797 motor0.Init();
798 motor1.Init();
799 global_motor0.store(&motor0, ::std::memory_order_relaxed);
800 global_motor1.store(&motor1, ::std::memory_order_relaxed);
801
802 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400803 // Workaround for errata e7914.
804 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800805 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400806 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800807 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
808
809 // Have them both wait for the GTB signal.
810 FTM0->CONF = FTM3->CONF =
811 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
812 // Make FTM3's period half of what it should be so we can get it a half-cycle
813 // out of phase.
814 const uint32_t original_mod = FTM3->MOD;
815 FTM3->MOD = ((original_mod + 1) / 2) - 1;
816 FTM3->SYNC |= FTM_SYNC_SWSYNC;
817
818 // Output triggers to things like the PDBs on initialization.
819 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
820 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
821 // Don't let any memory accesses sneak past here, because we actually
822 // need everything to be starting up.
823 __asm__("" ::: "memory");
824
825 // Give everything a chance to get going.
826 delay(100);
827
828 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
829 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
830 printf("heap start: %p\n", __heap_start__);
831 printf("stack start: %p\n", __stack_end__);
832
Brian Silverman22e491f2018-09-16 17:03:24 -0700833 printf("Zeroing motors for %x\n", (unsigned int)ProcessorIdentifier());
Brian Silverman6260c092018-01-14 15:21:36 -0800834 uint16_t motor0_offset, motor1_offset, wheel_offset;
835 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
836 }
837 printf("Done zeroing\n");
838
839 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
840 const float motor1_offset_scaled = analog_ratio(motor1_offset);
841 // Good for the initial trigger.
842 {
843 constexpr float kZeroOffset0 = 0.27f;
844 const int motor0_starting_point = static_cast<int>(
845 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
846 printf("Motor 0 starting at %d\n", motor0_starting_point);
847 motor0.set_encoder_calibration_offset(motor0_starting_point);
848 motor0.set_encoder_multiplier(-1);
849
850 // Calibrate neutral here.
851 motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20);
852
853 uint32_t new_encoder = motor0.wrapped_encoder();
854 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
855 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
856 static_cast<int>(absolute_encoder));
857 }
858
859 {
860 constexpr float kZeroOffset1 = 0.26f;
861 const int motor1_starting_point = static_cast<int>(
862 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
863 printf("Motor 1 starting at %d\n", motor1_starting_point);
864 motor1.set_encoder_calibration_offset(motor1_starting_point);
865 motor1.set_encoder_multiplier(-1);
866
867 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
868
869 uint32_t encoder = motor1.wrapped_encoder();
870
871 printf("Wheel starting at %d, encoder %" PRId32 "\n",
872 static_cast<int>(wheel_position * 1000.0f), encoder);
873
874 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
875 constexpr float kWrappedWheelAtZero = 0.6586310546875f;
876
877 const int encoder_wraps =
878 static_cast<int>(lround(wheel_position * kWheelGearRatio -
879 (encoder / 4096.f) + kWrappedWheelAtZero));
880
881 printf("Wraps: %d\n", encoder_wraps);
882 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
883 static_cast<int>(kWrappedWheelAtZero * 4096));
884 printf("Wheel encoder now at %d\n",
885 static_cast<int>(1000.f / 4096.f *
886 motor1.absolute_encoder(motor1.wrapped_encoder())));
887 }
888
889 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500890 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800891 GPIOC_PCOR = 1 << 6;
892 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
893
894 // M0_THW
895 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
896 // M0_FAULT
897 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
898 // M1_THW
899 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
900 // M1_FAULT
901 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
902
903 motor0.Start();
904 motor1.Start();
905 {
906 // We rely on various things happening faster than the timer period, so make
907 // sure slow USB or whatever interrupts don't prevent that.
908 DisableInterrupts disable_interrupts;
909
910 // First clear the overflow flag.
911 FTM3->SC &= ~FTM_SC_TOF;
912
913 // Now poke the GTB to actually start both timers.
914 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
915 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
916
917 // Wait for it to overflow twice. For some reason, just once doesn't work.
918 while (!(FTM3->SC & FTM_SC_TOF)) {
919 }
920 FTM3->SC &= ~FTM_SC_TOF;
921 while (!(FTM3->SC & FTM_SC_TOF)) {
922 }
923
924 // Now put the MOD value back to what it was.
925 FTM3->MOD = original_mod;
926 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
927
928 // And then clear the overflow flags before enabling interrupts so we
929 // actually wait until the next overflow to start doing interrupts.
930 FTM0->SC &= ~FTM_SC_TOF;
931 FTM3->SC &= ~FTM_SC_TOF;
932 NVIC_ENABLE_IRQ(IRQ_FTM0);
933 NVIC_ENABLE_IRQ(IRQ_FTM3);
934 }
935 global_trigger_plant.store(
936 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
937 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
938 MakeIntegralHapticTriggerObserver()));
939 global_trigger_observer.load(::std::memory_order_relaxed)
940 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
941
942 global_wheel_plant.store(
943 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
944 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
945 MakeIntegralHapticWheelObserver()));
946 global_wheel_observer.load(::std::memory_order_relaxed)
947 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
948
949 delay(1000);
950
951 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
952
953 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
954 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500955 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
956 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800957 printf("M0_THW\n");
958 }
959 GPIOC_PSOR = 1 << 5;
960 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500961 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
962 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800963 printf("M0_FAULT\n");
964 }
965 GPIOC_PSOR = 1 << 5;
966 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500967 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
968 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800969 printf("M1_THW\n");
970 }
971 GPIOC_PSOR = 1 << 5;
972 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500973 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
974 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800975 printf("M1_FAULT\n");
976 }
977 GPIOC_PSOR = 1 << 5;
978 }
979 }
980
981 return 0;
982}
983
Brian Silvermana96c1a42018-05-12 12:11:31 -0700984} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -0800985} // namespace frc971