blob: 2bb3e0161f95f816623f55ad29086b0d47bc42e2 [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
13#include "motors/peripheral/adc.h"
14#include "motors/peripheral/can.h"
15#include "motors/pistol_grip/motor_controls.h"
16#include "motors/usb/cdc.h"
17#include "motors/usb/usb.h"
18#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080019
20#define MOTOR0_PWM_FTM FTM3
21#define MOTOR0_ENCODER_FTM FTM2
22#define MOTOR1_PWM_FTM FTM0
23#define MOTOR1_ENCODER_FTM FTM1
24
25extern const float kWheelCoggingTorque[4096];
26extern const float kTriggerCoggingTorque[4096];
27
28namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070029namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080030namespace {
31
32using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
33using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
34using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
35using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
36
Brian Silverman9ed2cf12018-05-12 13:06:38 -070037struct SmallAdcReadings {
38 uint16_t currents[3];
39};
40
41struct SmallInitReadings {
42 uint16_t motor0_abs;
43 uint16_t motor1_abs;
44 uint16_t wheel_abs;
45};
46
47void AdcInitSmall() {
48 AdcInitCommon();
49
50 // M0_CH0F ADC1_SE17
51 PORTA_PCR17 = PORT_PCR_MUX(0);
52
53 // M0_CH1F ADC1_SE14
54 PORTB_PCR10 = PORT_PCR_MUX(0);
55
56 // M0_CH2F ADC1_SE15
57 PORTB_PCR11 = PORT_PCR_MUX(0);
58
59 // M0_ABS ADC0_SE5b
60 PORTD_PCR1 = PORT_PCR_MUX(0);
61
62 // M1_CH0F ADC0_SE13
63 PORTB_PCR3 = PORT_PCR_MUX(0);
64
65 // M1_CH1F ADC0_SE12
66 PORTB_PCR2 = PORT_PCR_MUX(0);
67
68 // M1_CH2F ADC0_SE14
69 PORTC_PCR0 = PORT_PCR_MUX(0);
70
71 // M1_ABS ADC0_SE17
72 PORTE_PCR24 = PORT_PCR_MUX(0);
73
74 // WHEEL_ABS ADC0_SE18
75 PORTE_PCR25 = PORT_PCR_MUX(0);
76
77 // VIN ADC1_SE5B
78 PORTC_PCR9 = PORT_PCR_MUX(0);
79}
80
81SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
82 SmallAdcReadings r;
83
84 ADC1_SC1A = 17;
85 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
86 }
87 ADC1_SC1A = 14;
88 r.currents[0] = ADC1_RA;
89 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
90 }
91 ADC1_SC1A = 15;
92 r.currents[1] = ADC1_RA;
93 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
94 }
95 r.currents[2] = ADC1_RA;
96
97 return r;
98}
99
100SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
101 SmallAdcReadings r;
102
103 ADC0_SC1A = 13;
104 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
105 }
106 ADC0_SC1A = 12;
107 r.currents[0] = ADC0_RA;
108 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
109 }
110 ADC0_SC1A = 14;
111 r.currents[1] = ADC0_RA;
112 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
113 }
114 r.currents[2] = ADC0_RA;
115
116 return r;
117}
118
119SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
120 SmallInitReadings r;
121
122 ADC0_SC1A = 5;
123 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
124 }
125 ADC0_SC1A = 17;
126 r.motor0_abs = ADC0_RA;
127 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
128 }
129 ADC0_SC1A = 18;
130 r.motor1_abs = ADC0_RA;
131 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
132 }
133 r.wheel_abs = ADC0_RA;
134
135 return r;
136}
137
Brian Silverman6260c092018-01-14 15:21:36 -0800138constexpr float kHapticWheelCurrentLimit = static_cast<float>(
139 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
140constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
141 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
142
143::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
144::std::atomic<teensy::AcmTty *> global_stdout{nullptr};
145
146// Angle last time the current loop ran.
147::std::atomic<float> global_wheel_angle{0.0f};
148::std::atomic<float> global_trigger_angle{0.0f};
149
150// Wheel observer/plant.
151::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
152 nullptr};
153::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
154// Throttle observer/plant.
155::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
156 nullptr};
157::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
158 nullptr};
159
160// Torques for the current loop to apply.
161::std::atomic<float> global_wheel_current{0.0f};
162::std::atomic<float> global_trigger_torque{0.0f};
163
164constexpr int kSwitchingDivisor = 2;
165
166float analog_ratio(uint16_t reading) {
167 static constexpr uint16_t kMin = 260, kMax = 3812;
168 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
169 kMin) /
170 static_cast<float>(kMax - kMin);
171}
172
173constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
174 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
175}
176
177float absolute_wheel(float wheel_position) {
178 if (wheel_position < 0.43f) {
179 wheel_position += 1.0f;
180 }
181 wheel_position -= 0.462f + 0.473f;
182 return wheel_position;
183}
184
185extern "C" {
186
187void *__stack_chk_guard = (void *)0x67111971;
188void __stack_chk_fail() {
189 while (true) {
190 GPIOC_PSOR = (1 << 5);
191 printf("Stack corruption detected\n");
192 delay(1000);
193 GPIOC_PCOR = (1 << 5);
194 delay(1000);
195 }
196}
197
198int _write(int /*file*/, char *ptr, int len) {
199 teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire);
200 if (tty != nullptr) {
201 return tty->Write(ptr, len);
202 }
203 return 0;
204}
205
206extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
207extern uint32_t __data_ram_start__[], __data_ram_end__[];
208extern uint32_t __heap_start__[], __heap_end__[];
209extern uint32_t __stack_end__[];
210
211} // extern "C"
212
213constexpr float kWheelMaxExtension = 1.0f;
214constexpr float kWheelFrictionMax = 0.2f;
215float WheelCenteringCurrent(float scalar, float angle, float velocity) {
216 float friction_goal_current = -angle * 10.0f;
217 if (friction_goal_current > kWheelFrictionMax) {
218 friction_goal_current = kWheelFrictionMax;
219 } else if (friction_goal_current < -kWheelFrictionMax) {
220 friction_goal_current = -kWheelFrictionMax;
221 }
222
223 constexpr float kWheelSpringNonlinearity = 0.45f;
224
225 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
226 kWheelSpringNonlinearity * angle * angle * angle) *
227 6.0f -
228 velocity * 0.04f;
229 if (goal_current > 5.0f - scalar) {
230 goal_current = 5.0f - scalar;
231 } else if (goal_current < -5.0f + scalar) {
232 goal_current = -5.0f + scalar;
233 }
234
235 return goal_current * scalar + friction_goal_current;
236}
237
238extern "C" void ftm0_isr() {
239 SmallAdcReadings readings;
240 {
241 DisableInterrupts disable_interrupts;
242 readings = AdcReadSmall1(disable_interrupts);
243 }
244 uint32_t encoder =
245 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
246 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
247 ->absolute_encoder(encoder);
248
249 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
250 global_wheel_angle.store(angle);
251
252 float goal_current = -global_wheel_current.load(::std::memory_order_relaxed) +
253 kWheelCoggingTorque[encoder];
254
255 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
256 global_motor1.load(::std::memory_order_relaxed)
257 ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
258}
259
Austin Schuh876b4f02018-03-10 19:16:59 -0800260constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800261constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800262constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800263float TriggerCenteringCurrent(float trigger_angle) {
264 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800265 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
266 if (knotch_goal_current < -kCenteringStiffness) {
267 knotch_goal_current = -kCenteringStiffness;
268 } else if (knotch_goal_current > kCenteringStiffness) {
269 knotch_goal_current = kCenteringStiffness;
270 }
271
272 goal_current += knotch_goal_current;
273
Brian Silverman6260c092018-01-14 15:21:36 -0800274 if (goal_current < -1.0f) {
275 goal_current = -1.0f;
276 } else if (goal_current > 1.0f) {
277 goal_current = 1.0f;
278 if (trigger_angle < kTriggerMaxExtension) {
279 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800280 if (goal_current > 4.0f) {
281 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800282 }
283 }
284 }
285 return goal_current;
286}
287
288extern "C" void ftm3_isr() {
289 SmallAdcReadings readings;
290 {
291 DisableInterrupts disable_interrupts;
292 readings = AdcReadSmall0(disable_interrupts);
293 }
294 uint32_t encoder =
295 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
296 int32_t absolute_encoder = global_motor0.load(::std::memory_order_relaxed)
297 ->absolute_encoder(encoder);
298
299 float trigger_angle = absolute_encoder / 1370.f;
300
301 const float goal_current =
302 -global_trigger_torque.load(::std::memory_order_relaxed) +
303 kTriggerCoggingTorque[encoder];
304
305 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
306 global_motor0.load(::std::memory_order_relaxed)
307 ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
308
Brian Silverman6260c092018-01-14 15:21:36 -0800309 global_trigger_angle.store(trigger_angle);
310}
311
Brian Silverman6260c092018-01-14 15:21:36 -0800312int ConvertFloat16(float val) {
313 int result = static_cast<int>(val * 32768.0f) + 32768;
314 if (result > 0xffff) {
315 result = 0xffff;
316 } else if (result < 0) {
317 result = 0;
318 }
319 return result;
320}
321int ConvertFloat14(float val) {
322 int result = static_cast<int>(val * 8192.0f) + 8192;
323 if (result > 0x3fff) {
324 result = 0x3fff;
325 } else if (result < 0) {
326 result = 0;
327 }
328 return result;
329}
330
331extern "C" void pit3_isr() {
332 PIT_TFLG3 = 1;
333 const float absolute_trigger_angle =
334 global_trigger_angle.load(::std::memory_order_relaxed);
335 const float absolute_wheel_angle =
336 global_wheel_angle.load(::std::memory_order_relaxed);
337
338 // Force a barrier here so we sample everything guaranteed at the beginning.
339 __asm__("" ::: "memory");
340 const float absolute_wheel_angle_radians =
341 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
342 const float absolute_trigger_angle_radians =
343 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
344
345 static uint32_t last_command_time = 0;
346 static float trigger_goal_position = 0.0f;
347 static float trigger_goal_velocity = 0.0f;
348 static float trigger_haptic_current = 0.0f;
349 static bool trigger_centering = true;
350 static bool trigger_haptics = false;
351 {
352 uint8_t data[8];
353 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700354 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800355 if (length > 0) {
356 last_command_time = micros();
357 trigger_goal_position =
358 static_cast<float>(
359 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
360 (static_cast<uint32_t>(data[1]) << 8)) -
361 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700362 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800363 trigger_goal_velocity =
364 static_cast<float>(
365 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
366 (static_cast<uint32_t>(data[3]) << 8)) -
367 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700368 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800369
370 trigger_haptic_current =
371 static_cast<float>(
372 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
373 (static_cast<uint32_t>(data[5]) << 8)) -
374 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700375 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800376 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
377 trigger_haptic_current = kHapticTriggerCurrentLimit;
378 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
379 trigger_haptic_current = -kHapticTriggerCurrentLimit;
380 }
381 trigger_centering = !!(data[7] & 0x01);
382 trigger_haptics = !!(data[7] & 0x02);
383 }
384 }
385
386 static float wheel_goal_position = 0.0f;
387 static float wheel_goal_velocity = 0.0f;
388 static float wheel_haptic_current = 0.0f;
389 static float wheel_kp = 0.0f;
390 static bool wheel_centering = true;
391 static float wheel_centering_scalar = 0.25f;
392 {
393 uint8_t data[8];
394 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700395 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800396 if (length == 8) {
397 last_command_time = micros();
398 wheel_goal_position =
399 static_cast<float>(
400 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
401 (static_cast<uint32_t>(data[1]) << 8)) -
402 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700403 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800404 wheel_goal_velocity =
405 static_cast<float>(
406 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
407 (static_cast<uint32_t>(data[3]) << 8)) -
408 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700409 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800410
411 wheel_haptic_current =
412 static_cast<float>(
413 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
414 (static_cast<uint32_t>(data[5]) << 8)) -
415 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700416 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800417 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
418 wheel_haptic_current = kHapticWheelCurrentLimit;
419 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
420 wheel_haptic_current = -kHapticWheelCurrentLimit;
421 }
422 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
423 wheel_centering = !!(data[7] & 0x01);
424 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
425 }
426 }
427
428 static constexpr uint32_t kTimeout = 100000;
429 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
430 last_command_time = time_subtract(micros(), kTimeout);
431 trigger_goal_position = 0.0f;
432 trigger_goal_velocity = 0.0f;
433 trigger_haptic_current = 0.0f;
434 trigger_centering = true;
435 trigger_haptics = false;
436
437 wheel_goal_position = 0.0f;
438 wheel_goal_velocity = 0.0f;
439 wheel_haptic_current = 0.0f;
440 wheel_centering = true;
441 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800442 // Avoid wrapping back into the valid range.
443 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800444 }
445
446 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
447 global_trigger_plant.load(::std::memory_order_relaxed);
448 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
449 global_trigger_observer.load(::std::memory_order_relaxed);
450 ::Eigen::Matrix<float, 1, 1> trigger_Y;
451 trigger_Y << absolute_trigger_angle_radians;
452 trigger_observer->Correct(*trigger_plant,
453 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
454
455 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
456 global_wheel_plant.load(::std::memory_order_relaxed);
457 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
458 global_wheel_observer.load(::std::memory_order_relaxed);
459 ::Eigen::Matrix<float, 1, 1> wheel_Y;
460 wheel_Y << absolute_wheel_angle_radians;
461 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
462 wheel_Y);
463
464 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
465 if (wheel_kp < 0.5f) {
466 kWheelD = wheel_kp * 0.05f / 0.5f;
467 } else if (wheel_kp < 1.0f) {
468 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
469 } else if (wheel_kp < 2.0f) {
470 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
471 } else if (wheel_kp < 3.0f) {
472 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
473 } else if (wheel_kp < 5.0f) {
474 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
475 } else if (wheel_kp < 10.0f) {
476 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
477 }
478
479 float wheel_goal_current = wheel_haptic_current;
480
481 wheel_goal_current +=
482 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
483 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
484
485 // Compute the torques to apply to each motor.
486 if (wheel_centering) {
487 wheel_goal_current +=
488 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
489 wheel_observer->X_hat()(1, 0));
490 }
491
492 if (wheel_goal_current > kHapticWheelCurrentLimit) {
493 wheel_goal_current = kHapticWheelCurrentLimit;
494 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
495 wheel_goal_current = -kHapticWheelCurrentLimit;
496 }
497 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
498
499 constexpr float kTriggerP =
500 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
501 constexpr float kTriggerD =
502 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
503 float trigger_goal_current = trigger_haptic_current;
504 if (trigger_haptics) {
505 trigger_goal_current +=
506 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
507 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
508 }
509
510 if (trigger_centering) {
511 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
512 }
513
514 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
515 trigger_goal_current = kHapticTriggerCurrentLimit;
516 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
517 trigger_goal_current = -kHapticTriggerCurrentLimit;
518 }
519 global_trigger_torque.store(trigger_goal_current,
520 ::std::memory_order_relaxed);
521
522 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500523 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800524 buttons |= 0x1;
525 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500526 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800527 buttons |= 0x2;
528 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500529 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800530 buttons |= 0x4;
531 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500532 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800533 buttons |= 0x8;
534 }
535
536 float trigger_angle = absolute_trigger_angle;
537
538 // Adjust the trigger range for reporting back.
539 // TODO(austin): We'll likely need to make this symmetric for the controls to
540 // work out well.
541 if (trigger_angle > kTriggerCenter) {
542 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
543 } else {
544 trigger_angle = (trigger_angle - kTriggerCenter) /
545 (kTriggerCenter - kTriggerMaxExtension);
546 }
547
548 // TODO(austin): Class + fns. This is a mess.
549 // TODO(austin): Move this to a separate file. It's too big.
550 int can_trigger = ConvertFloat16(absolute_trigger_angle);
551 int can_trigger_velocity =
552 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
553 int can_trigger_torque =
554 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
555 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
556
557 int can_wheel = ConvertFloat16(absolute_wheel_angle);
558 int can_wheel_velocity =
559 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
560 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
561 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
562
563 {
564 const uint8_t trigger_joystick_values[8] = {
565 static_cast<uint8_t>(can_trigger & 0xff),
566 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
567 static_cast<uint8_t>(can_trigger_velocity & 0xff),
568 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
569 static_cast<uint8_t>(can_trigger_torque & 0xff),
570 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
571 static_cast<uint8_t>(can_trigger_current & 0xff),
572 static_cast<uint8_t>(((buttons & 0x3) << 6) |
573 (can_trigger_current >> 8))};
574 const uint8_t wheel_joystick_values[8] = {
575 static_cast<uint8_t>(can_wheel & 0xff),
576 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
577 static_cast<uint8_t>(can_wheel_velocity & 0xff),
578 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
579 static_cast<uint8_t>(can_wheel_torque & 0xff),
580 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
581 static_cast<uint8_t>(can_wheel_current & 0xff),
582 static_cast<uint8_t>(((buttons & 0xc) << 4) |
583 (can_wheel_current >> 8))};
584
585 can_send(0, trigger_joystick_values, 8, 2);
586 can_send(1, wheel_joystick_values, 8, 3);
587 }
588
589 ::Eigen::Matrix<float, 1, 1> trigger_U;
590 trigger_U << trigger_goal_current;
591 ::Eigen::Matrix<float, 1, 1> wheel_U;
592 wheel_U << wheel_goal_current;
593 trigger_observer->Predict(trigger_plant, trigger_U,
594 ::std::chrono::milliseconds(1));
595 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
596}
597
598void ConfigurePwmFtm(BigFTM *pwm_ftm) {
599 // Put them all into combine active-high mode, and all the low ones staying
600 // off all the time by default. We'll then use only the low ones.
601 pwm_ftm->C0SC = FTM_CSC_ELSB;
602 pwm_ftm->C0V = 0;
603 pwm_ftm->C1SC = FTM_CSC_ELSB;
604 pwm_ftm->C1V = 0;
605 pwm_ftm->C2SC = FTM_CSC_ELSB;
606 pwm_ftm->C2V = 0;
607 pwm_ftm->C3SC = FTM_CSC_ELSB;
608 pwm_ftm->C3V = 0;
609 pwm_ftm->C4SC = FTM_CSC_ELSB;
610 pwm_ftm->C4V = 0;
611 pwm_ftm->C5SC = FTM_CSC_ELSB;
612 pwm_ftm->C5V = 0;
613 pwm_ftm->C6SC = FTM_CSC_ELSB;
614 pwm_ftm->C6V = 0;
615 pwm_ftm->C7SC = FTM_CSC_ELSB;
616 pwm_ftm->C7V = 0;
617
618 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
619 FTM_COMBINE_COMP3 /* Make them complementary */ |
620 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
621 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
622 FTM_COMBINE_COMP2 /* Make them complementary */ |
623 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
624 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
625 FTM_COMBINE_COMP1 /* Make them complementary */ |
626 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
627 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
628 FTM_COMBINE_COMP0 /* Make them complementary */ |
629 FTM_COMBINE_COMBINE0 /* Combine the channels */;
630}
631
632bool CountValid(uint32_t count) {
633 static constexpr int kMaxMovement = 1;
634 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
635}
636
637bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
638 uint16_t *wheel_offset) {
639 static constexpr int kNumberSamples = 1024;
640 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
641 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
642
643 // First clear both encoders.
644 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
645 for (int i = 0; i < kNumberSamples; ++i) {
646 delay(1);
647
648 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
649 printf("Motor 0 moved too much\n");
650 return false;
651 }
652 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
653 printf("Motor 1 moved too much\n");
654 return false;
655 }
656
657 DisableInterrupts disable_interrupts;
658 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
659 motor0_sum += readings.motor0_abs;
660 motor1_sum += readings.motor1_abs;
661 wheel_sum += readings.wheel_abs;
662 }
663
664 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
665 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
666 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
667
668 return true;
669}
670
671} // namespace
672
673extern "C" int main() {
674 // for background about this startup delay, please see these conversations
675 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
676 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
677 delay(400);
678
679 // Set all interrupts to the second-lowest priority to start with.
680 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
681
682 // Now set priorities for all the ones we care about. They only have meaning
683 // relative to each other, which means centralizing them here makes it a lot
684 // more manageable.
685 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
686 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
687 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
688 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
689
690 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500691 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800692 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
693
694 // Set up the CAN pins.
695 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
696 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
697
Brian Silvermanff7b3872018-03-10 18:08:30 -0800698 // .1ms filter time.
699 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
700
Brian Silverman6260c092018-01-14 15:21:36 -0800701 // BTN0
702 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800703 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800704 // BTN1
705 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800706 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800707 // BTN2
708 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800709 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800710 // BTN3
711 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800712 PORTD_DFER |= 1 << 0;
713 // BTN4
714 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
715 PORTD_DFER |= 1 << 7;
716 // BTN5 (only new revision)
717 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
718 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800719
720 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
721
Brian Silverman45564a82018-09-02 16:35:22 -0700722 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800723
724 teensy::UsbDevice usb_device(0, 0x16c0, 0x0490);
725 usb_device.SetManufacturer("FRC 971 Spartan Robotics");
726 usb_device.SetProduct("Pistol Grip Controller debug");
727 teensy::AcmTty tty1(&usb_device);
728 teensy::AcmTty tty2(&usb_device);
729 global_stdout.store(&tty1, ::std::memory_order_release);
730 usb_device.Initialize();
731
732 AdcInitSmall();
733 MathInit();
734 delay(100);
735 can_init(2, 3);
736
737 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500738 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800739 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
740 GPIOD_PSOR = 1 << 3;
741
742 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500743 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800744 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
745 GPIOC_PSOR = 1 << 4;
746
747 LittleMotorControlsImplementation controls0, controls1;
748
749 delay(100);
750
751 // M0_EA = FTM1_QD_PHB
752 PORTB_PCR19 = PORT_PCR_MUX(6);
753 // M0_EB = FTM1_QD_PHA
754 PORTB_PCR18 = PORT_PCR_MUX(6);
755
756 // M1_EA = FTM1_QD_PHA
757 PORTB_PCR0 = PORT_PCR_MUX(6);
758 // M1_EB = FTM1_QD_PHB
759 PORTB_PCR1 = PORT_PCR_MUX(6);
760
761 // M0_CH0 = FTM3_CH4
762 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
763 // M0_CH1 = FTM3_CH2
764 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
765 // M0_CH2 = FTM3_CH6
766 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
767
768 // M1_CH0 = FTM0_CH0
769 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
770 // M1_CH1 = FTM0_CH2
771 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
772 // M1_CH2 = FTM0_CH4
773 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
774
775 Motor motor0(
776 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
777 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
778 motor0.set_debug_tty(&tty2);
779 motor0.set_switching_divisor(kSwitchingDivisor);
780 Motor motor1(
781 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
782 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
783 motor1.set_debug_tty(&tty2);
784 motor1.set_switching_divisor(kSwitchingDivisor);
785 ConfigurePwmFtm(MOTOR0_PWM_FTM);
786 ConfigurePwmFtm(MOTOR1_PWM_FTM);
787 motor0.Init();
788 motor1.Init();
789 global_motor0.store(&motor0, ::std::memory_order_relaxed);
790 global_motor1.store(&motor1, ::std::memory_order_relaxed);
791
792 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400793 // Workaround for errata e7914.
794 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800795 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400796 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800797 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
798
799 // Have them both wait for the GTB signal.
800 FTM0->CONF = FTM3->CONF =
801 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
802 // Make FTM3's period half of what it should be so we can get it a half-cycle
803 // out of phase.
804 const uint32_t original_mod = FTM3->MOD;
805 FTM3->MOD = ((original_mod + 1) / 2) - 1;
806 FTM3->SYNC |= FTM_SYNC_SWSYNC;
807
808 // Output triggers to things like the PDBs on initialization.
809 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
810 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
811 // Don't let any memory accesses sneak past here, because we actually
812 // need everything to be starting up.
813 __asm__("" ::: "memory");
814
815 // Give everything a chance to get going.
816 delay(100);
817
818 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
819 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
820 printf("heap start: %p\n", __heap_start__);
821 printf("stack start: %p\n", __stack_end__);
822
823 printf("Zeroing motors\n");
824 uint16_t motor0_offset, motor1_offset, wheel_offset;
825 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
826 }
827 printf("Done zeroing\n");
828
829 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
830 const float motor1_offset_scaled = analog_ratio(motor1_offset);
831 // Good for the initial trigger.
832 {
833 constexpr float kZeroOffset0 = 0.27f;
834 const int motor0_starting_point = static_cast<int>(
835 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
836 printf("Motor 0 starting at %d\n", motor0_starting_point);
837 motor0.set_encoder_calibration_offset(motor0_starting_point);
838 motor0.set_encoder_multiplier(-1);
839
840 // Calibrate neutral here.
841 motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20);
842
843 uint32_t new_encoder = motor0.wrapped_encoder();
844 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
845 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
846 static_cast<int>(absolute_encoder));
847 }
848
849 {
850 constexpr float kZeroOffset1 = 0.26f;
851 const int motor1_starting_point = static_cast<int>(
852 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
853 printf("Motor 1 starting at %d\n", motor1_starting_point);
854 motor1.set_encoder_calibration_offset(motor1_starting_point);
855 motor1.set_encoder_multiplier(-1);
856
857 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
858
859 uint32_t encoder = motor1.wrapped_encoder();
860
861 printf("Wheel starting at %d, encoder %" PRId32 "\n",
862 static_cast<int>(wheel_position * 1000.0f), encoder);
863
864 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
865 constexpr float kWrappedWheelAtZero = 0.6586310546875f;
866
867 const int encoder_wraps =
868 static_cast<int>(lround(wheel_position * kWheelGearRatio -
869 (encoder / 4096.f) + kWrappedWheelAtZero));
870
871 printf("Wraps: %d\n", encoder_wraps);
872 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
873 static_cast<int>(kWrappedWheelAtZero * 4096));
874 printf("Wheel encoder now at %d\n",
875 static_cast<int>(1000.f / 4096.f *
876 motor1.absolute_encoder(motor1.wrapped_encoder())));
877 }
878
879 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500880 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800881 GPIOC_PCOR = 1 << 6;
882 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
883
884 // M0_THW
885 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
886 // M0_FAULT
887 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
888 // M1_THW
889 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
890 // M1_FAULT
891 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
892
893 motor0.Start();
894 motor1.Start();
895 {
896 // We rely on various things happening faster than the timer period, so make
897 // sure slow USB or whatever interrupts don't prevent that.
898 DisableInterrupts disable_interrupts;
899
900 // First clear the overflow flag.
901 FTM3->SC &= ~FTM_SC_TOF;
902
903 // Now poke the GTB to actually start both timers.
904 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
905 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
906
907 // Wait for it to overflow twice. For some reason, just once doesn't work.
908 while (!(FTM3->SC & FTM_SC_TOF)) {
909 }
910 FTM3->SC &= ~FTM_SC_TOF;
911 while (!(FTM3->SC & FTM_SC_TOF)) {
912 }
913
914 // Now put the MOD value back to what it was.
915 FTM3->MOD = original_mod;
916 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
917
918 // And then clear the overflow flags before enabling interrupts so we
919 // actually wait until the next overflow to start doing interrupts.
920 FTM0->SC &= ~FTM_SC_TOF;
921 FTM3->SC &= ~FTM_SC_TOF;
922 NVIC_ENABLE_IRQ(IRQ_FTM0);
923 NVIC_ENABLE_IRQ(IRQ_FTM3);
924 }
925 global_trigger_plant.store(
926 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
927 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
928 MakeIntegralHapticTriggerObserver()));
929 global_trigger_observer.load(::std::memory_order_relaxed)
930 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
931
932 global_wheel_plant.store(
933 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
934 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
935 MakeIntegralHapticWheelObserver()));
936 global_wheel_observer.load(::std::memory_order_relaxed)
937 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
938
939 delay(1000);
940
941 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
942
943 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
944 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500945 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
946 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800947 printf("M0_THW\n");
948 }
949 GPIOC_PSOR = 1 << 5;
950 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500951 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
952 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800953 printf("M0_FAULT\n");
954 }
955 GPIOC_PSOR = 1 << 5;
956 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500957 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
958 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800959 printf("M1_THW\n");
960 }
961 GPIOC_PSOR = 1 << 5;
962 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500963 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
964 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800965 printf("M1_FAULT\n");
966 }
967 GPIOC_PSOR = 1 << 5;
968 }
969 }
970
971 return 0;
972}
973
Brian Silvermana96c1a42018-05-12 12:11:31 -0700974} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -0800975} // namespace frc971