blob: 9f292d1cda82cb4e5c325a8b2e18497b0cf68e3e [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
13#include "motors/peripheral/adc.h"
14#include "motors/peripheral/can.h"
15#include "motors/pistol_grip/motor_controls.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070016#include "motors/print/print.h"
Brian Silverman6260c092018-01-14 15:21:36 -080017#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080018
19#define MOTOR0_PWM_FTM FTM3
20#define MOTOR0_ENCODER_FTM FTM2
21#define MOTOR1_PWM_FTM FTM0
22#define MOTOR1_ENCODER_FTM FTM1
23
24extern const float kWheelCoggingTorque[4096];
25extern const float kTriggerCoggingTorque[4096];
26
27namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070028namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080029namespace {
30
31using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
32using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
33using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
34using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
35
Brian Silverman9ed2cf12018-05-12 13:06:38 -070036struct SmallAdcReadings {
37 uint16_t currents[3];
38};
39
40struct SmallInitReadings {
41 uint16_t motor0_abs;
42 uint16_t motor1_abs;
43 uint16_t wheel_abs;
44};
45
46void AdcInitSmall() {
47 AdcInitCommon();
48
49 // M0_CH0F ADC1_SE17
50 PORTA_PCR17 = PORT_PCR_MUX(0);
51
52 // M0_CH1F ADC1_SE14
53 PORTB_PCR10 = PORT_PCR_MUX(0);
54
55 // M0_CH2F ADC1_SE15
56 PORTB_PCR11 = PORT_PCR_MUX(0);
57
58 // M0_ABS ADC0_SE5b
59 PORTD_PCR1 = PORT_PCR_MUX(0);
60
61 // M1_CH0F ADC0_SE13
62 PORTB_PCR3 = PORT_PCR_MUX(0);
63
64 // M1_CH1F ADC0_SE12
65 PORTB_PCR2 = PORT_PCR_MUX(0);
66
67 // M1_CH2F ADC0_SE14
68 PORTC_PCR0 = PORT_PCR_MUX(0);
69
70 // M1_ABS ADC0_SE17
71 PORTE_PCR24 = PORT_PCR_MUX(0);
72
73 // WHEEL_ABS ADC0_SE18
74 PORTE_PCR25 = PORT_PCR_MUX(0);
75
76 // VIN ADC1_SE5B
77 PORTC_PCR9 = PORT_PCR_MUX(0);
78}
79
80SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
81 SmallAdcReadings r;
82
83 ADC1_SC1A = 17;
84 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
85 }
86 ADC1_SC1A = 14;
87 r.currents[0] = ADC1_RA;
88 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
89 }
90 ADC1_SC1A = 15;
91 r.currents[1] = ADC1_RA;
92 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
93 }
94 r.currents[2] = ADC1_RA;
95
96 return r;
97}
98
99SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
100 SmallAdcReadings r;
101
102 ADC0_SC1A = 13;
103 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
104 }
105 ADC0_SC1A = 12;
106 r.currents[0] = ADC0_RA;
107 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
108 }
109 ADC0_SC1A = 14;
110 r.currents[1] = ADC0_RA;
111 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
112 }
113 r.currents[2] = ADC0_RA;
114
115 return r;
116}
117
118SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
119 SmallInitReadings r;
120
121 ADC0_SC1A = 5;
122 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
123 }
124 ADC0_SC1A = 17;
125 r.motor0_abs = ADC0_RA;
126 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
127 }
128 ADC0_SC1A = 18;
129 r.motor1_abs = ADC0_RA;
130 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
131 }
132 r.wheel_abs = ADC0_RA;
133
134 return r;
135}
136
Brian Silverman6260c092018-01-14 15:21:36 -0800137constexpr float kHapticWheelCurrentLimit = static_cast<float>(
138 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
139constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
140 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
141
142::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
Brian Silverman6260c092018-01-14 15:21:36 -0800143
144// Angle last time the current loop ran.
145::std::atomic<float> global_wheel_angle{0.0f};
146::std::atomic<float> global_trigger_angle{0.0f};
147
148// Wheel observer/plant.
149::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
150 nullptr};
151::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
152// Throttle observer/plant.
153::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
154 nullptr};
155::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
156 nullptr};
157
158// Torques for the current loop to apply.
159::std::atomic<float> global_wheel_current{0.0f};
160::std::atomic<float> global_trigger_torque{0.0f};
161
162constexpr int kSwitchingDivisor = 2;
163
164float analog_ratio(uint16_t reading) {
165 static constexpr uint16_t kMin = 260, kMax = 3812;
166 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
167 kMin) /
168 static_cast<float>(kMax - kMin);
169}
170
171constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
172 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
173}
174
175float absolute_wheel(float wheel_position) {
176 if (wheel_position < 0.43f) {
177 wheel_position += 1.0f;
178 }
179 wheel_position -= 0.462f + 0.473f;
180 return wheel_position;
181}
182
183extern "C" {
184
185void *__stack_chk_guard = (void *)0x67111971;
186void __stack_chk_fail() {
187 while (true) {
188 GPIOC_PSOR = (1 << 5);
189 printf("Stack corruption detected\n");
190 delay(1000);
191 GPIOC_PCOR = (1 << 5);
192 delay(1000);
193 }
194}
195
Brian Silverman6260c092018-01-14 15:21:36 -0800196extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
197extern uint32_t __data_ram_start__[], __data_ram_end__[];
198extern uint32_t __heap_start__[], __heap_end__[];
199extern uint32_t __stack_end__[];
200
201} // extern "C"
202
203constexpr float kWheelMaxExtension = 1.0f;
204constexpr float kWheelFrictionMax = 0.2f;
205float WheelCenteringCurrent(float scalar, float angle, float velocity) {
206 float friction_goal_current = -angle * 10.0f;
207 if (friction_goal_current > kWheelFrictionMax) {
208 friction_goal_current = kWheelFrictionMax;
209 } else if (friction_goal_current < -kWheelFrictionMax) {
210 friction_goal_current = -kWheelFrictionMax;
211 }
212
213 constexpr float kWheelSpringNonlinearity = 0.45f;
214
215 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
216 kWheelSpringNonlinearity * angle * angle * angle) *
217 6.0f -
218 velocity * 0.04f;
219 if (goal_current > 5.0f - scalar) {
220 goal_current = 5.0f - scalar;
221 } else if (goal_current < -5.0f + scalar) {
222 goal_current = -5.0f + scalar;
223 }
224
225 return goal_current * scalar + friction_goal_current;
226}
227
228extern "C" void ftm0_isr() {
229 SmallAdcReadings readings;
230 {
231 DisableInterrupts disable_interrupts;
232 readings = AdcReadSmall1(disable_interrupts);
233 }
234 uint32_t encoder =
235 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
236 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
237 ->absolute_encoder(encoder);
238
239 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
240 global_wheel_angle.store(angle);
241
242 float goal_current = -global_wheel_current.load(::std::memory_order_relaxed) +
243 kWheelCoggingTorque[encoder];
244
245 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
246 global_motor1.load(::std::memory_order_relaxed)
247 ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
248}
249
Austin Schuh876b4f02018-03-10 19:16:59 -0800250constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800251constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800252constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800253float TriggerCenteringCurrent(float trigger_angle) {
254 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800255 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
256 if (knotch_goal_current < -kCenteringStiffness) {
257 knotch_goal_current = -kCenteringStiffness;
258 } else if (knotch_goal_current > kCenteringStiffness) {
259 knotch_goal_current = kCenteringStiffness;
260 }
261
262 goal_current += knotch_goal_current;
263
Brian Silverman6260c092018-01-14 15:21:36 -0800264 if (goal_current < -1.0f) {
265 goal_current = -1.0f;
266 } else if (goal_current > 1.0f) {
267 goal_current = 1.0f;
268 if (trigger_angle < kTriggerMaxExtension) {
269 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800270 if (goal_current > 4.0f) {
271 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800272 }
273 }
274 }
275 return goal_current;
276}
277
278extern "C" void ftm3_isr() {
279 SmallAdcReadings readings;
280 {
281 DisableInterrupts disable_interrupts;
282 readings = AdcReadSmall0(disable_interrupts);
283 }
284 uint32_t encoder =
285 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
286 int32_t absolute_encoder = global_motor0.load(::std::memory_order_relaxed)
287 ->absolute_encoder(encoder);
288
289 float trigger_angle = absolute_encoder / 1370.f;
290
291 const float goal_current =
292 -global_trigger_torque.load(::std::memory_order_relaxed) +
293 kTriggerCoggingTorque[encoder];
294
295 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
296 global_motor0.load(::std::memory_order_relaxed)
297 ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
298
Brian Silverman6260c092018-01-14 15:21:36 -0800299 global_trigger_angle.store(trigger_angle);
300}
301
Brian Silverman6260c092018-01-14 15:21:36 -0800302int ConvertFloat16(float val) {
303 int result = static_cast<int>(val * 32768.0f) + 32768;
304 if (result > 0xffff) {
305 result = 0xffff;
306 } else if (result < 0) {
307 result = 0;
308 }
309 return result;
310}
311int ConvertFloat14(float val) {
312 int result = static_cast<int>(val * 8192.0f) + 8192;
313 if (result > 0x3fff) {
314 result = 0x3fff;
315 } else if (result < 0) {
316 result = 0;
317 }
318 return result;
319}
320
321extern "C" void pit3_isr() {
322 PIT_TFLG3 = 1;
323 const float absolute_trigger_angle =
324 global_trigger_angle.load(::std::memory_order_relaxed);
325 const float absolute_wheel_angle =
326 global_wheel_angle.load(::std::memory_order_relaxed);
327
328 // Force a barrier here so we sample everything guaranteed at the beginning.
329 __asm__("" ::: "memory");
330 const float absolute_wheel_angle_radians =
331 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
332 const float absolute_trigger_angle_radians =
333 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
334
335 static uint32_t last_command_time = 0;
336 static float trigger_goal_position = 0.0f;
337 static float trigger_goal_velocity = 0.0f;
338 static float trigger_haptic_current = 0.0f;
339 static bool trigger_centering = true;
340 static bool trigger_haptics = false;
341 {
342 uint8_t data[8];
343 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700344 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800345 if (length > 0) {
346 last_command_time = micros();
347 trigger_goal_position =
348 static_cast<float>(
349 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
350 (static_cast<uint32_t>(data[1]) << 8)) -
351 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700352 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800353 trigger_goal_velocity =
354 static_cast<float>(
355 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
356 (static_cast<uint32_t>(data[3]) << 8)) -
357 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700358 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800359
360 trigger_haptic_current =
361 static_cast<float>(
362 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
363 (static_cast<uint32_t>(data[5]) << 8)) -
364 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700365 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800366 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
367 trigger_haptic_current = kHapticTriggerCurrentLimit;
368 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
369 trigger_haptic_current = -kHapticTriggerCurrentLimit;
370 }
371 trigger_centering = !!(data[7] & 0x01);
372 trigger_haptics = !!(data[7] & 0x02);
373 }
374 }
375
376 static float wheel_goal_position = 0.0f;
377 static float wheel_goal_velocity = 0.0f;
378 static float wheel_haptic_current = 0.0f;
379 static float wheel_kp = 0.0f;
380 static bool wheel_centering = true;
381 static float wheel_centering_scalar = 0.25f;
382 {
383 uint8_t data[8];
384 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700385 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800386 if (length == 8) {
387 last_command_time = micros();
388 wheel_goal_position =
389 static_cast<float>(
390 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
391 (static_cast<uint32_t>(data[1]) << 8)) -
392 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700393 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800394 wheel_goal_velocity =
395 static_cast<float>(
396 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
397 (static_cast<uint32_t>(data[3]) << 8)) -
398 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700399 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800400
401 wheel_haptic_current =
402 static_cast<float>(
403 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
404 (static_cast<uint32_t>(data[5]) << 8)) -
405 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700406 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800407 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
408 wheel_haptic_current = kHapticWheelCurrentLimit;
409 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
410 wheel_haptic_current = -kHapticWheelCurrentLimit;
411 }
412 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
413 wheel_centering = !!(data[7] & 0x01);
414 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
415 }
416 }
417
418 static constexpr uint32_t kTimeout = 100000;
419 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
420 last_command_time = time_subtract(micros(), kTimeout);
421 trigger_goal_position = 0.0f;
422 trigger_goal_velocity = 0.0f;
423 trigger_haptic_current = 0.0f;
424 trigger_centering = true;
425 trigger_haptics = false;
426
427 wheel_goal_position = 0.0f;
428 wheel_goal_velocity = 0.0f;
429 wheel_haptic_current = 0.0f;
430 wheel_centering = true;
431 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800432 // Avoid wrapping back into the valid range.
433 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800434 }
435
436 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
437 global_trigger_plant.load(::std::memory_order_relaxed);
438 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
439 global_trigger_observer.load(::std::memory_order_relaxed);
440 ::Eigen::Matrix<float, 1, 1> trigger_Y;
441 trigger_Y << absolute_trigger_angle_radians;
442 trigger_observer->Correct(*trigger_plant,
443 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
444
445 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
446 global_wheel_plant.load(::std::memory_order_relaxed);
447 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
448 global_wheel_observer.load(::std::memory_order_relaxed);
449 ::Eigen::Matrix<float, 1, 1> wheel_Y;
450 wheel_Y << absolute_wheel_angle_radians;
451 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
452 wheel_Y);
453
454 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
455 if (wheel_kp < 0.5f) {
456 kWheelD = wheel_kp * 0.05f / 0.5f;
457 } else if (wheel_kp < 1.0f) {
458 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
459 } else if (wheel_kp < 2.0f) {
460 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
461 } else if (wheel_kp < 3.0f) {
462 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
463 } else if (wheel_kp < 5.0f) {
464 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
465 } else if (wheel_kp < 10.0f) {
466 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
467 }
468
469 float wheel_goal_current = wheel_haptic_current;
470
471 wheel_goal_current +=
472 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
473 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
474
475 // Compute the torques to apply to each motor.
476 if (wheel_centering) {
477 wheel_goal_current +=
478 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
479 wheel_observer->X_hat()(1, 0));
480 }
481
482 if (wheel_goal_current > kHapticWheelCurrentLimit) {
483 wheel_goal_current = kHapticWheelCurrentLimit;
484 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
485 wheel_goal_current = -kHapticWheelCurrentLimit;
486 }
487 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
488
489 constexpr float kTriggerP =
490 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
491 constexpr float kTriggerD =
492 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
493 float trigger_goal_current = trigger_haptic_current;
494 if (trigger_haptics) {
495 trigger_goal_current +=
496 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
497 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
498 }
499
500 if (trigger_centering) {
501 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
502 }
503
504 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
505 trigger_goal_current = kHapticTriggerCurrentLimit;
506 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
507 trigger_goal_current = -kHapticTriggerCurrentLimit;
508 }
509 global_trigger_torque.store(trigger_goal_current,
510 ::std::memory_order_relaxed);
511
512 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500513 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800514 buttons |= 0x1;
515 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500516 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800517 buttons |= 0x2;
518 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500519 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800520 buttons |= 0x4;
521 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500522 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800523 buttons |= 0x8;
524 }
525
526 float trigger_angle = absolute_trigger_angle;
527
528 // Adjust the trigger range for reporting back.
529 // TODO(austin): We'll likely need to make this symmetric for the controls to
530 // work out well.
531 if (trigger_angle > kTriggerCenter) {
532 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
533 } else {
534 trigger_angle = (trigger_angle - kTriggerCenter) /
535 (kTriggerCenter - kTriggerMaxExtension);
536 }
537
538 // TODO(austin): Class + fns. This is a mess.
539 // TODO(austin): Move this to a separate file. It's too big.
540 int can_trigger = ConvertFloat16(absolute_trigger_angle);
541 int can_trigger_velocity =
542 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
543 int can_trigger_torque =
544 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
545 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
546
547 int can_wheel = ConvertFloat16(absolute_wheel_angle);
548 int can_wheel_velocity =
549 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
550 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
551 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
552
553 {
554 const uint8_t trigger_joystick_values[8] = {
555 static_cast<uint8_t>(can_trigger & 0xff),
556 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
557 static_cast<uint8_t>(can_trigger_velocity & 0xff),
558 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
559 static_cast<uint8_t>(can_trigger_torque & 0xff),
560 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
561 static_cast<uint8_t>(can_trigger_current & 0xff),
562 static_cast<uint8_t>(((buttons & 0x3) << 6) |
563 (can_trigger_current >> 8))};
564 const uint8_t wheel_joystick_values[8] = {
565 static_cast<uint8_t>(can_wheel & 0xff),
566 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
567 static_cast<uint8_t>(can_wheel_velocity & 0xff),
568 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
569 static_cast<uint8_t>(can_wheel_torque & 0xff),
570 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
571 static_cast<uint8_t>(can_wheel_current & 0xff),
572 static_cast<uint8_t>(((buttons & 0xc) << 4) |
573 (can_wheel_current >> 8))};
574
575 can_send(0, trigger_joystick_values, 8, 2);
576 can_send(1, wheel_joystick_values, 8, 3);
577 }
578
579 ::Eigen::Matrix<float, 1, 1> trigger_U;
580 trigger_U << trigger_goal_current;
581 ::Eigen::Matrix<float, 1, 1> wheel_U;
582 wheel_U << wheel_goal_current;
583 trigger_observer->Predict(trigger_plant, trigger_U,
584 ::std::chrono::milliseconds(1));
585 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
586}
587
588void ConfigurePwmFtm(BigFTM *pwm_ftm) {
589 // Put them all into combine active-high mode, and all the low ones staying
590 // off all the time by default. We'll then use only the low ones.
591 pwm_ftm->C0SC = FTM_CSC_ELSB;
592 pwm_ftm->C0V = 0;
593 pwm_ftm->C1SC = FTM_CSC_ELSB;
594 pwm_ftm->C1V = 0;
595 pwm_ftm->C2SC = FTM_CSC_ELSB;
596 pwm_ftm->C2V = 0;
597 pwm_ftm->C3SC = FTM_CSC_ELSB;
598 pwm_ftm->C3V = 0;
599 pwm_ftm->C4SC = FTM_CSC_ELSB;
600 pwm_ftm->C4V = 0;
601 pwm_ftm->C5SC = FTM_CSC_ELSB;
602 pwm_ftm->C5V = 0;
603 pwm_ftm->C6SC = FTM_CSC_ELSB;
604 pwm_ftm->C6V = 0;
605 pwm_ftm->C7SC = FTM_CSC_ELSB;
606 pwm_ftm->C7V = 0;
607
608 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
609 FTM_COMBINE_COMP3 /* Make them complementary */ |
610 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
611 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
612 FTM_COMBINE_COMP2 /* Make them complementary */ |
613 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
614 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
615 FTM_COMBINE_COMP1 /* Make them complementary */ |
616 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
617 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
618 FTM_COMBINE_COMP0 /* Make them complementary */ |
619 FTM_COMBINE_COMBINE0 /* Combine the channels */;
620}
621
622bool CountValid(uint32_t count) {
623 static constexpr int kMaxMovement = 1;
624 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
625}
626
627bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
628 uint16_t *wheel_offset) {
629 static constexpr int kNumberSamples = 1024;
630 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
631 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
632
633 // First clear both encoders.
634 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
635 for (int i = 0; i < kNumberSamples; ++i) {
636 delay(1);
637
638 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
639 printf("Motor 0 moved too much\n");
640 return false;
641 }
642 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
643 printf("Motor 1 moved too much\n");
644 return false;
645 }
646
647 DisableInterrupts disable_interrupts;
648 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
649 motor0_sum += readings.motor0_abs;
650 motor1_sum += readings.motor1_abs;
651 wheel_sum += readings.wheel_abs;
652 }
653
654 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
655 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
656 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
657
658 return true;
659}
660
Brian Silverman22e491f2018-09-16 17:03:24 -0700661// Returns an identifier for the processor we're running on.
662// This isn't guaranteed to be unique, but it should be close enough.
663uint8_t ProcessorIdentifier() {
664 // This XORs together all the bytes of the unique identifier provided by the
665 // hardware.
666 uint8_t r = 0;
667 for (uint8_t uid : {SIM_UIDH, SIM_UIDMH, SIM_UIDML, SIM_UIDL}) {
668 r = r ^ ((uid >> 0) & 0xFF);
669 r = r ^ ((uid >> 8) & 0xFF);
670 r = r ^ ((uid >> 16) & 0xFF);
671 r = r ^ ((uid >> 24) & 0xFF);
672 }
673 return r;
674}
675
Brian Silverman6260c092018-01-14 15:21:36 -0800676} // namespace
677
678extern "C" int main() {
679 // for background about this startup delay, please see these conversations
680 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
681 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
682 delay(400);
683
684 // Set all interrupts to the second-lowest priority to start with.
685 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
686
687 // Now set priorities for all the ones we care about. They only have meaning
688 // relative to each other, which means centralizing them here makes it a lot
689 // more manageable.
690 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
691 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
692 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
693 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
694
695 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500696 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800697 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
698
699 // Set up the CAN pins.
700 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
701 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
702
Brian Silvermanff7b3872018-03-10 18:08:30 -0800703 // .1ms filter time.
704 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
705
Brian Silverman6260c092018-01-14 15:21:36 -0800706 // BTN0
707 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800708 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800709 // BTN1
710 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800711 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800712 // BTN2
713 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800714 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800715 // BTN3
716 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800717 PORTD_DFER |= 1 << 0;
718 // BTN4
719 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
720 PORTD_DFER |= 1 << 7;
721 // BTN5 (only new revision)
722 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
723 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800724
725 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
726
Brian Silverman45564a82018-09-02 16:35:22 -0700727 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800728
Brian Silverman4787a6e2018-10-06 16:00:54 -0700729 PrintingParameters printing_parameters;
730 printing_parameters.dedicated_usb = true;
731 const ::std::unique_ptr<PrintingImplementation> printing =
732 CreatePrinting(printing_parameters);
733 printing->Initialize();
Brian Silverman6260c092018-01-14 15:21:36 -0800734
735 AdcInitSmall();
736 MathInit();
737 delay(100);
738 can_init(2, 3);
739
740 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500741 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800742 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
743 GPIOD_PSOR = 1 << 3;
744
745 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500746 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800747 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
748 GPIOC_PSOR = 1 << 4;
749
750 LittleMotorControlsImplementation controls0, controls1;
751
752 delay(100);
753
754 // M0_EA = FTM1_QD_PHB
755 PORTB_PCR19 = PORT_PCR_MUX(6);
756 // M0_EB = FTM1_QD_PHA
757 PORTB_PCR18 = PORT_PCR_MUX(6);
758
759 // M1_EA = FTM1_QD_PHA
760 PORTB_PCR0 = PORT_PCR_MUX(6);
761 // M1_EB = FTM1_QD_PHB
762 PORTB_PCR1 = PORT_PCR_MUX(6);
763
764 // M0_CH0 = FTM3_CH4
765 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
766 // M0_CH1 = FTM3_CH2
767 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
768 // M0_CH2 = FTM3_CH6
769 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
770
771 // M1_CH0 = FTM0_CH0
772 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
773 // M1_CH1 = FTM0_CH2
774 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
775 // M1_CH2 = FTM0_CH4
776 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
777
778 Motor motor0(
779 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
780 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700781 motor0.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800782 motor0.set_switching_divisor(kSwitchingDivisor);
783 Motor motor1(
784 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
785 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700786 motor1.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800787 motor1.set_switching_divisor(kSwitchingDivisor);
788 ConfigurePwmFtm(MOTOR0_PWM_FTM);
789 ConfigurePwmFtm(MOTOR1_PWM_FTM);
790 motor0.Init();
791 motor1.Init();
792 global_motor0.store(&motor0, ::std::memory_order_relaxed);
793 global_motor1.store(&motor1, ::std::memory_order_relaxed);
794
795 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400796 // Workaround for errata e7914.
797 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800798 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400799 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800800 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
801
802 // Have them both wait for the GTB signal.
803 FTM0->CONF = FTM3->CONF =
804 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
805 // Make FTM3's period half of what it should be so we can get it a half-cycle
806 // out of phase.
807 const uint32_t original_mod = FTM3->MOD;
808 FTM3->MOD = ((original_mod + 1) / 2) - 1;
809 FTM3->SYNC |= FTM_SYNC_SWSYNC;
810
811 // Output triggers to things like the PDBs on initialization.
812 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
813 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
814 // Don't let any memory accesses sneak past here, because we actually
815 // need everything to be starting up.
816 __asm__("" ::: "memory");
817
818 // Give everything a chance to get going.
819 delay(100);
820
821 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
822 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
823 printf("heap start: %p\n", __heap_start__);
824 printf("stack start: %p\n", __stack_end__);
825
Brian Silverman22e491f2018-09-16 17:03:24 -0700826 printf("Zeroing motors for %x\n", (unsigned int)ProcessorIdentifier());
Brian Silverman6260c092018-01-14 15:21:36 -0800827 uint16_t motor0_offset, motor1_offset, wheel_offset;
828 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
829 }
830 printf("Done zeroing\n");
831
832 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
833 const float motor1_offset_scaled = analog_ratio(motor1_offset);
834 // Good for the initial trigger.
835 {
836 constexpr float kZeroOffset0 = 0.27f;
837 const int motor0_starting_point = static_cast<int>(
838 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
839 printf("Motor 0 starting at %d\n", motor0_starting_point);
840 motor0.set_encoder_calibration_offset(motor0_starting_point);
841 motor0.set_encoder_multiplier(-1);
842
843 // Calibrate neutral here.
844 motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20);
845
846 uint32_t new_encoder = motor0.wrapped_encoder();
847 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
848 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
849 static_cast<int>(absolute_encoder));
850 }
851
852 {
853 constexpr float kZeroOffset1 = 0.26f;
854 const int motor1_starting_point = static_cast<int>(
855 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
856 printf("Motor 1 starting at %d\n", motor1_starting_point);
857 motor1.set_encoder_calibration_offset(motor1_starting_point);
858 motor1.set_encoder_multiplier(-1);
859
860 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
861
862 uint32_t encoder = motor1.wrapped_encoder();
863
864 printf("Wheel starting at %d, encoder %" PRId32 "\n",
865 static_cast<int>(wheel_position * 1000.0f), encoder);
866
867 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
868 constexpr float kWrappedWheelAtZero = 0.6586310546875f;
869
870 const int encoder_wraps =
871 static_cast<int>(lround(wheel_position * kWheelGearRatio -
872 (encoder / 4096.f) + kWrappedWheelAtZero));
873
874 printf("Wraps: %d\n", encoder_wraps);
875 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
876 static_cast<int>(kWrappedWheelAtZero * 4096));
877 printf("Wheel encoder now at %d\n",
878 static_cast<int>(1000.f / 4096.f *
879 motor1.absolute_encoder(motor1.wrapped_encoder())));
880 }
881
882 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500883 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800884 GPIOC_PCOR = 1 << 6;
885 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
886
887 // M0_THW
888 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
889 // M0_FAULT
890 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
891 // M1_THW
892 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
893 // M1_FAULT
894 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
895
896 motor0.Start();
897 motor1.Start();
898 {
899 // We rely on various things happening faster than the timer period, so make
900 // sure slow USB or whatever interrupts don't prevent that.
901 DisableInterrupts disable_interrupts;
902
903 // First clear the overflow flag.
904 FTM3->SC &= ~FTM_SC_TOF;
905
906 // Now poke the GTB to actually start both timers.
907 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
908 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
909
910 // Wait for it to overflow twice. For some reason, just once doesn't work.
911 while (!(FTM3->SC & FTM_SC_TOF)) {
912 }
913 FTM3->SC &= ~FTM_SC_TOF;
914 while (!(FTM3->SC & FTM_SC_TOF)) {
915 }
916
917 // Now put the MOD value back to what it was.
918 FTM3->MOD = original_mod;
919 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
920
921 // And then clear the overflow flags before enabling interrupts so we
922 // actually wait until the next overflow to start doing interrupts.
923 FTM0->SC &= ~FTM_SC_TOF;
924 FTM3->SC &= ~FTM_SC_TOF;
925 NVIC_ENABLE_IRQ(IRQ_FTM0);
926 NVIC_ENABLE_IRQ(IRQ_FTM3);
927 }
928 global_trigger_plant.store(
929 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
930 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
931 MakeIntegralHapticTriggerObserver()));
932 global_trigger_observer.load(::std::memory_order_relaxed)
933 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
934
935 global_wheel_plant.store(
936 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
937 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
938 MakeIntegralHapticWheelObserver()));
939 global_wheel_observer.load(::std::memory_order_relaxed)
940 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
941
942 delay(1000);
943
944 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
945
946 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
947 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500948 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
949 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800950 printf("M0_THW\n");
951 }
952 GPIOC_PSOR = 1 << 5;
953 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500954 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
955 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800956 printf("M0_FAULT\n");
957 }
958 GPIOC_PSOR = 1 << 5;
959 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500960 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
961 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800962 printf("M1_THW\n");
963 }
964 GPIOC_PSOR = 1 << 5;
965 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500966 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
967 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800968 printf("M1_FAULT\n");
969 }
970 GPIOC_PSOR = 1 << 5;
971 }
972 }
973
974 return 0;
975}
976
Brian Silvermana96c1a42018-05-12 12:11:31 -0700977} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -0800978} // namespace frc971