blob: 52bba6dd7133d8592ab1e60fab633f85f84256c5 [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
13#include "motors/peripheral/adc.h"
14#include "motors/peripheral/can.h"
15#include "motors/pistol_grip/motor_controls.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070016#include "motors/print/print.h"
Brian Silverman6260c092018-01-14 15:21:36 -080017#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080018
19#define MOTOR0_PWM_FTM FTM3
20#define MOTOR0_ENCODER_FTM FTM2
21#define MOTOR1_PWM_FTM FTM0
22#define MOTOR1_ENCODER_FTM FTM1
23
24extern const float kWheelCoggingTorque[4096];
25extern const float kTriggerCoggingTorque[4096];
26
27namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070028namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080029namespace {
30
31using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
32using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
33using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
34using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
35
Austin Schuh80b99932019-04-07 14:04:41 -070036// Returns an identifier for the processor we're running on.
37// This isn't guaranteed to be unique, but it should be close enough.
38uint8_t ProcessorIdentifier() {
39 // This XORs together all the bytes of the unique identifier provided by the
40 // hardware.
41 uint8_t r = 0;
42 for (uint8_t uid : {SIM_UIDH, SIM_UIDMH, SIM_UIDML, SIM_UIDL}) {
43 r = r ^ ((uid >> 0) & 0xFF);
44 r = r ^ ((uid >> 8) & 0xFF);
45 r = r ^ ((uid >> 16) & 0xFF);
46 r = r ^ ((uid >> 24) & 0xFF);
47 }
48 return r;
49}
50
51uint8_t ProcessorIndex() {
52 switch (ProcessorIdentifier()) {
53 case static_cast<uint8_t>(0xaa):
54 return 1;
55 default:
56 return 0;
57 }
58}
59
Brian Silverman9ed2cf12018-05-12 13:06:38 -070060struct SmallAdcReadings {
61 uint16_t currents[3];
62};
63
64struct SmallInitReadings {
65 uint16_t motor0_abs;
66 uint16_t motor1_abs;
67 uint16_t wheel_abs;
68};
69
70void AdcInitSmall() {
71 AdcInitCommon();
72
73 // M0_CH0F ADC1_SE17
74 PORTA_PCR17 = PORT_PCR_MUX(0);
75
76 // M0_CH1F ADC1_SE14
77 PORTB_PCR10 = PORT_PCR_MUX(0);
78
79 // M0_CH2F ADC1_SE15
80 PORTB_PCR11 = PORT_PCR_MUX(0);
81
82 // M0_ABS ADC0_SE5b
83 PORTD_PCR1 = PORT_PCR_MUX(0);
84
85 // M1_CH0F ADC0_SE13
86 PORTB_PCR3 = PORT_PCR_MUX(0);
87
88 // M1_CH1F ADC0_SE12
89 PORTB_PCR2 = PORT_PCR_MUX(0);
90
91 // M1_CH2F ADC0_SE14
92 PORTC_PCR0 = PORT_PCR_MUX(0);
93
94 // M1_ABS ADC0_SE17
95 PORTE_PCR24 = PORT_PCR_MUX(0);
96
97 // WHEEL_ABS ADC0_SE18
98 PORTE_PCR25 = PORT_PCR_MUX(0);
99
100 // VIN ADC1_SE5B
101 PORTC_PCR9 = PORT_PCR_MUX(0);
102}
103
104SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
105 SmallAdcReadings r;
106
107 ADC1_SC1A = 17;
108 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
109 }
110 ADC1_SC1A = 14;
111 r.currents[0] = ADC1_RA;
112 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
113 }
114 ADC1_SC1A = 15;
115 r.currents[1] = ADC1_RA;
116 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
117 }
118 r.currents[2] = ADC1_RA;
119
120 return r;
121}
122
123SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
124 SmallAdcReadings r;
125
126 ADC0_SC1A = 13;
127 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
128 }
129 ADC0_SC1A = 12;
130 r.currents[0] = ADC0_RA;
131 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
132 }
133 ADC0_SC1A = 14;
134 r.currents[1] = ADC0_RA;
135 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
136 }
137 r.currents[2] = ADC0_RA;
138
139 return r;
140}
141
142SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
143 SmallInitReadings r;
144
145 ADC0_SC1A = 5;
146 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
147 }
148 ADC0_SC1A = 17;
149 r.motor0_abs = ADC0_RA;
150 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
151 }
152 ADC0_SC1A = 18;
153 r.motor1_abs = ADC0_RA;
154 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
155 }
156 r.wheel_abs = ADC0_RA;
157
158 return r;
159}
160
Brian Silverman6260c092018-01-14 15:21:36 -0800161constexpr float kHapticWheelCurrentLimit = static_cast<float>(
162 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
163constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
164 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
165
166::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
Brian Silverman6260c092018-01-14 15:21:36 -0800167
168// Angle last time the current loop ran.
169::std::atomic<float> global_wheel_angle{0.0f};
170::std::atomic<float> global_trigger_angle{0.0f};
171
172// Wheel observer/plant.
173::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
174 nullptr};
175::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
176// Throttle observer/plant.
177::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
178 nullptr};
179::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
180 nullptr};
181
182// Torques for the current loop to apply.
183::std::atomic<float> global_wheel_current{0.0f};
184::std::atomic<float> global_trigger_torque{0.0f};
185
186constexpr int kSwitchingDivisor = 2;
187
188float analog_ratio(uint16_t reading) {
189 static constexpr uint16_t kMin = 260, kMax = 3812;
190 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
191 kMin) /
192 static_cast<float>(kMax - kMin);
193}
194
195constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
196 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
197}
198
199float absolute_wheel(float wheel_position) {
Austin Schuh4a8d4922019-04-07 15:31:30 -0700200 const float kCenterOffset = (ProcessorIndex() == 1) ? -0.683f : -0.935f;
201
202 wheel_position += kCenterOffset;
203
204 if (wheel_position > 0.5f) {
205 wheel_position -= 1.0f;
206 } else if (wheel_position < -0.5f) {
Brian Silverman6260c092018-01-14 15:21:36 -0800207 wheel_position += 1.0f;
208 }
Brian Silverman6260c092018-01-14 15:21:36 -0800209 return wheel_position;
210}
211
212extern "C" {
213
214void *__stack_chk_guard = (void *)0x67111971;
215void __stack_chk_fail() {
216 while (true) {
217 GPIOC_PSOR = (1 << 5);
218 printf("Stack corruption detected\n");
219 delay(1000);
220 GPIOC_PCOR = (1 << 5);
221 delay(1000);
222 }
223}
224
Brian Silverman6260c092018-01-14 15:21:36 -0800225extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
226extern uint32_t __data_ram_start__[], __data_ram_end__[];
227extern uint32_t __heap_start__[], __heap_end__[];
228extern uint32_t __stack_end__[];
229
230} // extern "C"
231
232constexpr float kWheelMaxExtension = 1.0f;
233constexpr float kWheelFrictionMax = 0.2f;
234float WheelCenteringCurrent(float scalar, float angle, float velocity) {
235 float friction_goal_current = -angle * 10.0f;
236 if (friction_goal_current > kWheelFrictionMax) {
237 friction_goal_current = kWheelFrictionMax;
238 } else if (friction_goal_current < -kWheelFrictionMax) {
239 friction_goal_current = -kWheelFrictionMax;
240 }
241
242 constexpr float kWheelSpringNonlinearity = 0.45f;
243
244 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
245 kWheelSpringNonlinearity * angle * angle * angle) *
246 6.0f -
247 velocity * 0.04f;
248 if (goal_current > 5.0f - scalar) {
249 goal_current = 5.0f - scalar;
250 } else if (goal_current < -5.0f + scalar) {
251 goal_current = -5.0f + scalar;
252 }
253
254 return goal_current * scalar + friction_goal_current;
255}
256
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700257float CoggingCurrent1(uint32_t encoder, int32_t absolute_encoder) {
258 constexpr float kP = 0.05f;
259 constexpr float kI = 0.00001f;
260 static int goal = -6700;
261
262 const int error = goal - static_cast<int>(absolute_encoder);
263 static float error_sum = 0.0f;
264 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
265
266 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
267
268 static int i = 0;
269 if (error == 0) {
270 ++i;
271 } else {
272 i = 0;
273 }
274 if (i >= 100) {
275 printf("reading1: %d %d a:%d e:%d\n", goal,
276 static_cast<int>(goal_current * 10000.0f),
277 static_cast<int>(encoder),
278 static_cast<int>(error));
279 static int counting_up = 0;
280 if (absolute_encoder <= -6900) {
281 counting_up = 1;
282 } else if (absolute_encoder >= 6900) {
283 counting_up = 0;
284 }
285 if (counting_up) {
286 ++goal;
287 } else {
288 --goal;
289 }
290 i = 0;
291 }
292
293 error_sum += static_cast<float>(error);
294 if (error_sum > 1.0f / kI) {
295 error_sum = 1.0f / kI;
296 } else if (error_sum < -1.0f / kI) {
297 error_sum = -1.0f / kI;
298 }
299 return goal_current;
300}
301
Brian Silverman6260c092018-01-14 15:21:36 -0800302extern "C" void ftm0_isr() {
303 SmallAdcReadings readings;
304 {
305 DisableInterrupts disable_interrupts;
306 readings = AdcReadSmall1(disable_interrupts);
307 }
308 uint32_t encoder =
309 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
310 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
311 ->absolute_encoder(encoder);
312
313 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
Brian Silverman6260c092018-01-14 15:21:36 -0800314
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700315 (void)CoggingCurrent1;
Austin Schuh54c8c842019-04-07 13:54:23 -0700316 float goal_current = global_wheel_current.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800317 kWheelCoggingTorque[encoder];
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700318 //float goal_current = CoggingCurrent1(encoder, absolute_encoder);
Austin Schuh54c8c842019-04-07 13:54:23 -0700319 //float goal_current = kWheelCoggingTorque[encoder];
320 //float goal_current = 0.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800321
322 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
323 global_motor1.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700324 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700325 //global_motor1.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Austin Schuh54c8c842019-04-07 13:54:23 -0700326
327 global_wheel_angle.store(angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700328
329 /*
330 SmallInitReadings position_readings;
331 {
332 DisableInterrupts disable_interrupts;
333 position_readings = AdcReadSmallInit(disable_interrupts);
334 }
335
336 static int i = 0;
337 if (i == 1000) {
338 i = 0;
339 float wheel_position =
340 absolute_wheel(analog_ratio(position_readings.wheel_abs));
341 printf(
342 "ecnt %" PRIu32 " arev:%d erev:%d abs:%d awp:%d uncalwheel:%d\n",
343 encoder,
344 static_cast<int>((1.0f - analog_ratio(position_readings.motor1_abs)) *
345 7000.0f),
346 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
347 static_cast<int>(absolute_encoder),
348 static_cast<int>(wheel_position * 1000.0f),
349 static_cast<int>(analog_ratio(position_readings.wheel_abs) * 1000.0f));
350 } else if (i == 200) {
351 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
352 global_motor1.load(::std::memory_order_relaxed)
353 ->output_registers()[0][2],
354 global_motor1.load(::std::memory_order_relaxed)
355 ->output_registers()[1][2],
356 global_motor1.load(::std::memory_order_relaxed)
357 ->output_registers()[2][2]);
358 }
359 ++i;
360 */
Brian Silverman6260c092018-01-14 15:21:36 -0800361}
362
Austin Schuh876b4f02018-03-10 19:16:59 -0800363constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800364constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800365constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800366float TriggerCenteringCurrent(float trigger_angle) {
367 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800368 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
369 if (knotch_goal_current < -kCenteringStiffness) {
370 knotch_goal_current = -kCenteringStiffness;
371 } else if (knotch_goal_current > kCenteringStiffness) {
372 knotch_goal_current = kCenteringStiffness;
373 }
374
375 goal_current += knotch_goal_current;
376
Brian Silverman6260c092018-01-14 15:21:36 -0800377 if (goal_current < -1.0f) {
378 goal_current = -1.0f;
379 } else if (goal_current > 1.0f) {
380 goal_current = 1.0f;
381 if (trigger_angle < kTriggerMaxExtension) {
382 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800383 if (goal_current > 4.0f) {
384 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800385 }
386 }
387 }
388 return goal_current;
389}
390
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700391float CoggingCurrent0(uint32_t encoder, int32_t absolute_encoder) {
392 constexpr float kP = 0.05f;
393 constexpr float kI = 0.00001f;
394 static int goal = 0;
395
396 const int error = goal - static_cast<int>(absolute_encoder);
397 static float error_sum = 0.0f;
398 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
399
400 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
401
402 static int i = 0;
403 if (error == 0) {
404 ++i;
405 } else {
406 i = 0;
407 }
408
409 if (i >= 100) {
410 printf("reading0: %d %d a:%d e:%d\n", goal,
411 static_cast<int>(goal_current * 10000.0f),
412 static_cast<int>(encoder),
413 static_cast<int>(error));
414 static int counting_up = 0;
415 if (absolute_encoder <= -1390) {
416 counting_up = 1;
417 } else if (absolute_encoder >= 1390) {
418 counting_up = 0;
419 }
420 if (counting_up) {
421 ++goal;
422 } else {
423 --goal;
424 }
425 }
426
427 error_sum += static_cast<float>(error);
428 if (error_sum > 1.0f / kI) {
429 error_sum = 1.0f / kI;
430 } else if (error_sum < -1.0f / kI) {
431 error_sum = -1.0f / kI;
432 }
433 return goal_current;
434}
435
Brian Silverman6260c092018-01-14 15:21:36 -0800436extern "C" void ftm3_isr() {
437 SmallAdcReadings readings;
438 {
439 DisableInterrupts disable_interrupts;
440 readings = AdcReadSmall0(disable_interrupts);
441 }
Brian Silverman6260c092018-01-14 15:21:36 -0800442
Austin Schuh54c8c842019-04-07 13:54:23 -0700443 const uint32_t encoder =
444 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
445 const int32_t absolute_encoder =
446 global_motor0.load(::std::memory_order_relaxed)
447 ->absolute_encoder(encoder);
448
449 const float trigger_angle = absolute_encoder / 1370.f;
Brian Silverman6260c092018-01-14 15:21:36 -0800450
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700451 (void)CoggingCurrent0;
Brian Silverman6260c092018-01-14 15:21:36 -0800452 const float goal_current =
Austin Schuh54c8c842019-04-07 13:54:23 -0700453 global_trigger_torque.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800454 kTriggerCoggingTorque[encoder];
Austin Schuh54c8c842019-04-07 13:54:23 -0700455 //const float goal_current = kTriggerCoggingTorque[encoder];
456 //const float goal_current = 0.0f;
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700457 //const float goal_current = CoggingCurrent0(encoder, absolute_encoder);
Brian Silverman6260c092018-01-14 15:21:36 -0800458
459 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
460 global_motor0.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700461 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700462 //global_motor0.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Brian Silverman6260c092018-01-14 15:21:36 -0800463
Brian Silverman6260c092018-01-14 15:21:36 -0800464 global_trigger_angle.store(trigger_angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700465
466 /*
467 SmallInitReadings position_readings;
468 {
469 DisableInterrupts disable_interrupts;
470 position_readings = AdcReadSmallInit(disable_interrupts);
471 }
472
473 static int i = 0;
474 if (i == 1000) {
475 i = 0;
476 printf("ecnt %" PRIu32 " arev:%d erev:%d abs:%d\n", encoder,
477 static_cast<int>((analog_ratio(position_readings.motor0_abs)) *
478 7000.0f),
479 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
480 static_cast<int>(absolute_encoder));
481 } else if (i == 200) {
482 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
483 global_motor0.load(::std::memory_order_relaxed)
484 ->output_registers()[0][2],
485 global_motor0.load(::std::memory_order_relaxed)
486 ->output_registers()[1][2],
487 global_motor0.load(::std::memory_order_relaxed)
488 ->output_registers()[2][2]);
489 }
490 ++i;
491 */
Brian Silverman6260c092018-01-14 15:21:36 -0800492}
493
Brian Silverman6260c092018-01-14 15:21:36 -0800494int ConvertFloat16(float val) {
495 int result = static_cast<int>(val * 32768.0f) + 32768;
496 if (result > 0xffff) {
497 result = 0xffff;
498 } else if (result < 0) {
499 result = 0;
500 }
501 return result;
502}
503int ConvertFloat14(float val) {
504 int result = static_cast<int>(val * 8192.0f) + 8192;
505 if (result > 0x3fff) {
506 result = 0x3fff;
507 } else if (result < 0) {
508 result = 0;
509 }
510 return result;
511}
512
513extern "C" void pit3_isr() {
514 PIT_TFLG3 = 1;
515 const float absolute_trigger_angle =
516 global_trigger_angle.load(::std::memory_order_relaxed);
517 const float absolute_wheel_angle =
518 global_wheel_angle.load(::std::memory_order_relaxed);
519
520 // Force a barrier here so we sample everything guaranteed at the beginning.
521 __asm__("" ::: "memory");
522 const float absolute_wheel_angle_radians =
523 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
524 const float absolute_trigger_angle_radians =
525 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
526
527 static uint32_t last_command_time = 0;
528 static float trigger_goal_position = 0.0f;
529 static float trigger_goal_velocity = 0.0f;
530 static float trigger_haptic_current = 0.0f;
531 static bool trigger_centering = true;
532 static bool trigger_haptics = false;
533 {
534 uint8_t data[8];
535 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700536 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800537 if (length > 0) {
538 last_command_time = micros();
539 trigger_goal_position =
540 static_cast<float>(
541 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
542 (static_cast<uint32_t>(data[1]) << 8)) -
543 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700544 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800545 trigger_goal_velocity =
546 static_cast<float>(
547 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
548 (static_cast<uint32_t>(data[3]) << 8)) -
549 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700550 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800551
552 trigger_haptic_current =
553 static_cast<float>(
554 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
555 (static_cast<uint32_t>(data[5]) << 8)) -
556 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700557 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800558 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
559 trigger_haptic_current = kHapticTriggerCurrentLimit;
560 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
561 trigger_haptic_current = -kHapticTriggerCurrentLimit;
562 }
563 trigger_centering = !!(data[7] & 0x01);
564 trigger_haptics = !!(data[7] & 0x02);
565 }
566 }
567
568 static float wheel_goal_position = 0.0f;
569 static float wheel_goal_velocity = 0.0f;
570 static float wheel_haptic_current = 0.0f;
571 static float wheel_kp = 0.0f;
572 static bool wheel_centering = true;
573 static float wheel_centering_scalar = 0.25f;
574 {
575 uint8_t data[8];
576 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700577 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800578 if (length == 8) {
579 last_command_time = micros();
580 wheel_goal_position =
581 static_cast<float>(
582 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
583 (static_cast<uint32_t>(data[1]) << 8)) -
584 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700585 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800586 wheel_goal_velocity =
587 static_cast<float>(
588 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
589 (static_cast<uint32_t>(data[3]) << 8)) -
590 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700591 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800592
593 wheel_haptic_current =
594 static_cast<float>(
595 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
596 (static_cast<uint32_t>(data[5]) << 8)) -
597 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700598 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800599 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
600 wheel_haptic_current = kHapticWheelCurrentLimit;
601 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
602 wheel_haptic_current = -kHapticWheelCurrentLimit;
603 }
604 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
605 wheel_centering = !!(data[7] & 0x01);
606 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
607 }
608 }
609
610 static constexpr uint32_t kTimeout = 100000;
611 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
612 last_command_time = time_subtract(micros(), kTimeout);
613 trigger_goal_position = 0.0f;
614 trigger_goal_velocity = 0.0f;
615 trigger_haptic_current = 0.0f;
616 trigger_centering = true;
617 trigger_haptics = false;
618
619 wheel_goal_position = 0.0f;
620 wheel_goal_velocity = 0.0f;
621 wheel_haptic_current = 0.0f;
622 wheel_centering = true;
623 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800624 // Avoid wrapping back into the valid range.
625 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800626 }
627
628 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
629 global_trigger_plant.load(::std::memory_order_relaxed);
630 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
631 global_trigger_observer.load(::std::memory_order_relaxed);
632 ::Eigen::Matrix<float, 1, 1> trigger_Y;
633 trigger_Y << absolute_trigger_angle_radians;
634 trigger_observer->Correct(*trigger_plant,
635 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
636
637 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
638 global_wheel_plant.load(::std::memory_order_relaxed);
639 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
640 global_wheel_observer.load(::std::memory_order_relaxed);
641 ::Eigen::Matrix<float, 1, 1> wheel_Y;
642 wheel_Y << absolute_wheel_angle_radians;
643 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
644 wheel_Y);
645
646 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
647 if (wheel_kp < 0.5f) {
648 kWheelD = wheel_kp * 0.05f / 0.5f;
649 } else if (wheel_kp < 1.0f) {
650 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
651 } else if (wheel_kp < 2.0f) {
652 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
653 } else if (wheel_kp < 3.0f) {
654 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
655 } else if (wheel_kp < 5.0f) {
656 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
657 } else if (wheel_kp < 10.0f) {
658 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
659 }
660
661 float wheel_goal_current = wheel_haptic_current;
662
663 wheel_goal_current +=
664 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
665 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
666
667 // Compute the torques to apply to each motor.
668 if (wheel_centering) {
669 wheel_goal_current +=
670 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
671 wheel_observer->X_hat()(1, 0));
672 }
673
674 if (wheel_goal_current > kHapticWheelCurrentLimit) {
675 wheel_goal_current = kHapticWheelCurrentLimit;
676 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
677 wheel_goal_current = -kHapticWheelCurrentLimit;
678 }
679 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
680
681 constexpr float kTriggerP =
682 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
683 constexpr float kTriggerD =
684 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
685 float trigger_goal_current = trigger_haptic_current;
686 if (trigger_haptics) {
687 trigger_goal_current +=
688 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
689 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
690 }
691
692 if (trigger_centering) {
693 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
694 }
695
696 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
697 trigger_goal_current = kHapticTriggerCurrentLimit;
698 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
699 trigger_goal_current = -kHapticTriggerCurrentLimit;
700 }
701 global_trigger_torque.store(trigger_goal_current,
702 ::std::memory_order_relaxed);
703
704 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500705 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800706 buttons |= 0x1;
707 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500708 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800709 buttons |= 0x2;
710 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500711 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800712 buttons |= 0x4;
713 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500714 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800715 buttons |= 0x8;
716 }
717
718 float trigger_angle = absolute_trigger_angle;
719
720 // Adjust the trigger range for reporting back.
721 // TODO(austin): We'll likely need to make this symmetric for the controls to
722 // work out well.
723 if (trigger_angle > kTriggerCenter) {
724 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
725 } else {
726 trigger_angle = (trigger_angle - kTriggerCenter) /
727 (kTriggerCenter - kTriggerMaxExtension);
728 }
729
730 // TODO(austin): Class + fns. This is a mess.
731 // TODO(austin): Move this to a separate file. It's too big.
732 int can_trigger = ConvertFloat16(absolute_trigger_angle);
733 int can_trigger_velocity =
734 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
735 int can_trigger_torque =
736 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
737 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
738
739 int can_wheel = ConvertFloat16(absolute_wheel_angle);
740 int can_wheel_velocity =
741 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
742 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
743 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
744
745 {
746 const uint8_t trigger_joystick_values[8] = {
747 static_cast<uint8_t>(can_trigger & 0xff),
748 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
749 static_cast<uint8_t>(can_trigger_velocity & 0xff),
750 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
751 static_cast<uint8_t>(can_trigger_torque & 0xff),
752 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
753 static_cast<uint8_t>(can_trigger_current & 0xff),
754 static_cast<uint8_t>(((buttons & 0x3) << 6) |
755 (can_trigger_current >> 8))};
756 const uint8_t wheel_joystick_values[8] = {
757 static_cast<uint8_t>(can_wheel & 0xff),
758 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
759 static_cast<uint8_t>(can_wheel_velocity & 0xff),
760 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
761 static_cast<uint8_t>(can_wheel_torque & 0xff),
762 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
763 static_cast<uint8_t>(can_wheel_current & 0xff),
764 static_cast<uint8_t>(((buttons & 0xc) << 4) |
765 (can_wheel_current >> 8))};
766
767 can_send(0, trigger_joystick_values, 8, 2);
768 can_send(1, wheel_joystick_values, 8, 3);
769 }
770
771 ::Eigen::Matrix<float, 1, 1> trigger_U;
772 trigger_U << trigger_goal_current;
773 ::Eigen::Matrix<float, 1, 1> wheel_U;
774 wheel_U << wheel_goal_current;
775 trigger_observer->Predict(trigger_plant, trigger_U,
776 ::std::chrono::milliseconds(1));
777 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
778}
779
780void ConfigurePwmFtm(BigFTM *pwm_ftm) {
781 // Put them all into combine active-high mode, and all the low ones staying
782 // off all the time by default. We'll then use only the low ones.
783 pwm_ftm->C0SC = FTM_CSC_ELSB;
784 pwm_ftm->C0V = 0;
785 pwm_ftm->C1SC = FTM_CSC_ELSB;
786 pwm_ftm->C1V = 0;
787 pwm_ftm->C2SC = FTM_CSC_ELSB;
788 pwm_ftm->C2V = 0;
789 pwm_ftm->C3SC = FTM_CSC_ELSB;
790 pwm_ftm->C3V = 0;
791 pwm_ftm->C4SC = FTM_CSC_ELSB;
792 pwm_ftm->C4V = 0;
793 pwm_ftm->C5SC = FTM_CSC_ELSB;
794 pwm_ftm->C5V = 0;
795 pwm_ftm->C6SC = FTM_CSC_ELSB;
796 pwm_ftm->C6V = 0;
797 pwm_ftm->C7SC = FTM_CSC_ELSB;
798 pwm_ftm->C7V = 0;
799
800 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
801 FTM_COMBINE_COMP3 /* Make them complementary */ |
802 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
803 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
804 FTM_COMBINE_COMP2 /* Make them complementary */ |
805 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
806 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
807 FTM_COMBINE_COMP1 /* Make them complementary */ |
808 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
809 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
810 FTM_COMBINE_COMP0 /* Make them complementary */ |
811 FTM_COMBINE_COMBINE0 /* Combine the channels */;
812}
813
814bool CountValid(uint32_t count) {
815 static constexpr int kMaxMovement = 1;
816 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
817}
818
819bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
820 uint16_t *wheel_offset) {
821 static constexpr int kNumberSamples = 1024;
822 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
823 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
824
825 // First clear both encoders.
826 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
827 for (int i = 0; i < kNumberSamples; ++i) {
828 delay(1);
829
830 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
831 printf("Motor 0 moved too much\n");
832 return false;
833 }
834 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
835 printf("Motor 1 moved too much\n");
836 return false;
837 }
838
839 DisableInterrupts disable_interrupts;
840 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
841 motor0_sum += readings.motor0_abs;
842 motor1_sum += readings.motor1_abs;
843 wheel_sum += readings.wheel_abs;
844 }
845
846 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
847 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
848 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
849
850 return true;
851}
852
853} // namespace
854
855extern "C" int main() {
856 // for background about this startup delay, please see these conversations
857 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
858 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
859 delay(400);
860
861 // Set all interrupts to the second-lowest priority to start with.
862 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
863
864 // Now set priorities for all the ones we care about. They only have meaning
865 // relative to each other, which means centralizing them here makes it a lot
866 // more manageable.
867 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
868 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
869 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
870 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
871
872 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500873 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800874 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
875
876 // Set up the CAN pins.
877 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
878 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
879
Brian Silvermanff7b3872018-03-10 18:08:30 -0800880 // .1ms filter time.
881 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
882
Brian Silverman6260c092018-01-14 15:21:36 -0800883 // BTN0
884 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800885 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800886 // BTN1
887 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800888 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800889 // BTN2
890 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800891 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800892 // BTN3
893 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800894 PORTD_DFER |= 1 << 0;
895 // BTN4
896 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
897 PORTD_DFER |= 1 << 7;
898 // BTN5 (only new revision)
899 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
900 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800901
902 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
903
Brian Silverman45564a82018-09-02 16:35:22 -0700904 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800905
Brian Silverman4787a6e2018-10-06 16:00:54 -0700906 PrintingParameters printing_parameters;
907 printing_parameters.dedicated_usb = true;
908 const ::std::unique_ptr<PrintingImplementation> printing =
909 CreatePrinting(printing_parameters);
910 printing->Initialize();
Brian Silverman6260c092018-01-14 15:21:36 -0800911
912 AdcInitSmall();
913 MathInit();
914 delay(100);
915 can_init(2, 3);
916
917 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500918 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800919 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
920 GPIOD_PSOR = 1 << 3;
921
922 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500923 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800924 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
925 GPIOC_PSOR = 1 << 4;
926
927 LittleMotorControlsImplementation controls0, controls1;
928
929 delay(100);
930
931 // M0_EA = FTM1_QD_PHB
932 PORTB_PCR19 = PORT_PCR_MUX(6);
933 // M0_EB = FTM1_QD_PHA
934 PORTB_PCR18 = PORT_PCR_MUX(6);
935
936 // M1_EA = FTM1_QD_PHA
937 PORTB_PCR0 = PORT_PCR_MUX(6);
938 // M1_EB = FTM1_QD_PHB
939 PORTB_PCR1 = PORT_PCR_MUX(6);
940
941 // M0_CH0 = FTM3_CH4
942 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
943 // M0_CH1 = FTM3_CH2
944 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
945 // M0_CH2 = FTM3_CH6
946 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
947
948 // M1_CH0 = FTM0_CH0
949 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
950 // M1_CH1 = FTM0_CH2
951 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
952 // M1_CH2 = FTM0_CH4
953 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
954
955 Motor motor0(
956 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
957 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700958 motor0.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800959 motor0.set_switching_divisor(kSwitchingDivisor);
960 Motor motor1(
961 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
962 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700963 motor1.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800964 motor1.set_switching_divisor(kSwitchingDivisor);
965 ConfigurePwmFtm(MOTOR0_PWM_FTM);
966 ConfigurePwmFtm(MOTOR1_PWM_FTM);
967 motor0.Init();
968 motor1.Init();
969 global_motor0.store(&motor0, ::std::memory_order_relaxed);
970 global_motor1.store(&motor1, ::std::memory_order_relaxed);
971
972 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400973 // Workaround for errata e7914.
974 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800975 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400976 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800977 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
978
979 // Have them both wait for the GTB signal.
980 FTM0->CONF = FTM3->CONF =
981 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
982 // Make FTM3's period half of what it should be so we can get it a half-cycle
983 // out of phase.
984 const uint32_t original_mod = FTM3->MOD;
985 FTM3->MOD = ((original_mod + 1) / 2) - 1;
986 FTM3->SYNC |= FTM_SYNC_SWSYNC;
987
988 // Output triggers to things like the PDBs on initialization.
989 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
990 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
991 // Don't let any memory accesses sneak past here, because we actually
992 // need everything to be starting up.
993 __asm__("" ::: "memory");
994
995 // Give everything a chance to get going.
996 delay(100);
997
998 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
999 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
1000 printf("heap start: %p\n", __heap_start__);
1001 printf("stack start: %p\n", __stack_end__);
1002
Austin Schuh80b99932019-04-07 14:04:41 -07001003 printf("Zeroing motors for %d:%x\n", static_cast<int>(ProcessorIndex()),
1004 (unsigned int)ProcessorIdentifier());
Brian Silverman6260c092018-01-14 15:21:36 -08001005 uint16_t motor0_offset, motor1_offset, wheel_offset;
1006 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
1007 }
1008 printf("Done zeroing\n");
1009
1010 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
1011 const float motor1_offset_scaled = analog_ratio(motor1_offset);
1012 // Good for the initial trigger.
1013 {
Austin Schuh4a8d4922019-04-07 15:31:30 -07001014 // Calibrate winding phase error here.
1015 const float kZeroOffset0 = ProcessorIndex() == 1 ? 0.275f : 0.27f;
Brian Silverman6260c092018-01-14 15:21:36 -08001016 const int motor0_starting_point = static_cast<int>(
1017 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
1018 printf("Motor 0 starting at %d\n", motor0_starting_point);
1019 motor0.set_encoder_calibration_offset(motor0_starting_point);
1020 motor0.set_encoder_multiplier(-1);
1021
Austin Schuh4a8d4922019-04-07 15:31:30 -07001022 // Calibrate output coordinate neutral here.
1023 motor0.set_encoder_offset(
1024 motor0.encoder_offset() +
1025 (ProcessorIndex() == 1 ? (-3096 - 430 - 30 - 6) : (-2065 + 20)));
1026
1027 while (true) {
1028 const uint32_t encoder =
1029 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
1030 const int32_t absolute_encoder =
1031 global_motor0.load(::std::memory_order_relaxed)
1032 ->absolute_encoder(encoder);
1033
1034 if (absolute_encoder > 2047) {
1035 motor0.set_encoder_offset(motor0.encoder_offset() - 4096);
1036 } else if (absolute_encoder < -2047) {
1037 motor0.set_encoder_offset(motor0.encoder_offset() + 4096);
1038 } else {
1039 break;
1040 }
1041 }
Brian Silverman6260c092018-01-14 15:21:36 -08001042
1043 uint32_t new_encoder = motor0.wrapped_encoder();
1044 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
1045 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
1046 static_cast<int>(absolute_encoder));
1047 }
1048
1049 {
Austin Schuh4a8d4922019-04-07 15:31:30 -07001050 const float kZeroOffset1 = ProcessorIndex() == 1 ? 0.420f : 0.26f;
Brian Silverman6260c092018-01-14 15:21:36 -08001051 const int motor1_starting_point = static_cast<int>(
1052 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
1053 printf("Motor 1 starting at %d\n", motor1_starting_point);
1054 motor1.set_encoder_calibration_offset(motor1_starting_point);
1055 motor1.set_encoder_multiplier(-1);
1056
1057 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
1058
1059 uint32_t encoder = motor1.wrapped_encoder();
1060
1061 printf("Wheel starting at %d, encoder %" PRId32 "\n",
1062 static_cast<int>(wheel_position * 1000.0f), encoder);
1063
1064 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
Austin Schuh4a8d4922019-04-07 15:31:30 -07001065 const float kWrappedWheelAtZero =
1066 ProcessorIndex() == 1 ? (0.934630859375f) : 0.6586310546875f;
Brian Silverman6260c092018-01-14 15:21:36 -08001067
1068 const int encoder_wraps =
1069 static_cast<int>(lround(wheel_position * kWheelGearRatio -
1070 (encoder / 4096.f) + kWrappedWheelAtZero));
1071
1072 printf("Wraps: %d\n", encoder_wraps);
1073 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
1074 static_cast<int>(kWrappedWheelAtZero * 4096));
1075 printf("Wheel encoder now at %d\n",
1076 static_cast<int>(1000.f / 4096.f *
1077 motor1.absolute_encoder(motor1.wrapped_encoder())));
1078 }
1079
1080 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001081 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -08001082 GPIOC_PCOR = 1 << 6;
1083 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
1084
1085 // M0_THW
1086 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1087 // M0_FAULT
1088 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1089 // M1_THW
1090 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1091 // M1_FAULT
1092 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1093
1094 motor0.Start();
1095 motor1.Start();
1096 {
1097 // We rely on various things happening faster than the timer period, so make
1098 // sure slow USB or whatever interrupts don't prevent that.
1099 DisableInterrupts disable_interrupts;
1100
1101 // First clear the overflow flag.
1102 FTM3->SC &= ~FTM_SC_TOF;
1103
1104 // Now poke the GTB to actually start both timers.
1105 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
1106 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
1107
1108 // Wait for it to overflow twice. For some reason, just once doesn't work.
1109 while (!(FTM3->SC & FTM_SC_TOF)) {
1110 }
1111 FTM3->SC &= ~FTM_SC_TOF;
1112 while (!(FTM3->SC & FTM_SC_TOF)) {
1113 }
1114
1115 // Now put the MOD value back to what it was.
1116 FTM3->MOD = original_mod;
1117 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
1118
1119 // And then clear the overflow flags before enabling interrupts so we
1120 // actually wait until the next overflow to start doing interrupts.
1121 FTM0->SC &= ~FTM_SC_TOF;
1122 FTM3->SC &= ~FTM_SC_TOF;
1123 NVIC_ENABLE_IRQ(IRQ_FTM0);
1124 NVIC_ENABLE_IRQ(IRQ_FTM3);
1125 }
1126 global_trigger_plant.store(
1127 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
1128 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1129 MakeIntegralHapticTriggerObserver()));
1130 global_trigger_observer.load(::std::memory_order_relaxed)
1131 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
1132
1133 global_wheel_plant.store(
1134 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
1135 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1136 MakeIntegralHapticWheelObserver()));
1137 global_wheel_observer.load(::std::memory_order_relaxed)
1138 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
1139
1140 delay(1000);
1141
1142 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
1143
1144 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
1145 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001146 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
1147 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001148 printf("M0_THW\n");
1149 }
1150 GPIOC_PSOR = 1 << 5;
1151 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001152 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
1153 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001154 printf("M0_FAULT\n");
1155 }
1156 GPIOC_PSOR = 1 << 5;
1157 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001158 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
1159 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001160 printf("M1_THW\n");
1161 }
1162 GPIOC_PSOR = 1 << 5;
1163 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001164 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
1165 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001166 printf("M1_FAULT\n");
1167 }
1168 GPIOC_PSOR = 1 << 5;
1169 }
1170 }
1171
1172 return 0;
1173}
1174
Brian Silvermana96c1a42018-05-12 12:11:31 -07001175} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -08001176} // namespace frc971