blob: c0ef677b524c5c21136f5d45a236b55e0049cc6b [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#include "motors/core/kinetis.h"
2
Brian Silverman6260c092018-01-14 15:21:36 -08003#include <inttypes.h>
Brian Silvermandabdf902017-10-21 15:34:40 -04004#include <stdio.h>
Brian Silverman6260c092018-01-14 15:21:36 -08005
6#include <atomic>
7#include <cmath>
8
Brian Silvermandabdf902017-10-21 15:34:40 -04009#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
10#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
Brian Silverman6260c092018-01-14 15:21:36 -080011#include "motors/core/time.h"
12#include "motors/motor.h"
13#include "motors/peripheral/adc.h"
14#include "motors/peripheral/can.h"
15#include "motors/pistol_grip/motor_controls.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070016#include "motors/print/print.h"
Brian Silverman6260c092018-01-14 15:21:36 -080017#include "motors/util.h"
Brian Silverman6260c092018-01-14 15:21:36 -080018
19#define MOTOR0_PWM_FTM FTM3
20#define MOTOR0_ENCODER_FTM FTM2
21#define MOTOR1_PWM_FTM FTM0
22#define MOTOR1_ENCODER_FTM FTM1
23
24extern const float kWheelCoggingTorque[4096];
25extern const float kTriggerCoggingTorque[4096];
26
27namespace frc971 {
Brian Silvermana96c1a42018-05-12 12:11:31 -070028namespace motors {
Brian Silverman6260c092018-01-14 15:21:36 -080029namespace {
30
31using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
32using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
33using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
34using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
35
Austin Schuh80b99932019-04-07 14:04:41 -070036// Returns an identifier for the processor we're running on.
37// This isn't guaranteed to be unique, but it should be close enough.
38uint8_t ProcessorIdentifier() {
39 // This XORs together all the bytes of the unique identifier provided by the
40 // hardware.
41 uint8_t r = 0;
42 for (uint8_t uid : {SIM_UIDH, SIM_UIDMH, SIM_UIDML, SIM_UIDL}) {
43 r = r ^ ((uid >> 0) & 0xFF);
44 r = r ^ ((uid >> 8) & 0xFF);
45 r = r ^ ((uid >> 16) & 0xFF);
46 r = r ^ ((uid >> 24) & 0xFF);
47 }
48 return r;
49}
50
51uint8_t ProcessorIndex() {
52 switch (ProcessorIdentifier()) {
53 case static_cast<uint8_t>(0xaa):
54 return 1;
55 default:
56 return 0;
57 }
58}
59
Brian Silverman9ed2cf12018-05-12 13:06:38 -070060struct SmallAdcReadings {
61 uint16_t currents[3];
62};
63
64struct SmallInitReadings {
65 uint16_t motor0_abs;
66 uint16_t motor1_abs;
67 uint16_t wheel_abs;
68};
69
70void AdcInitSmall() {
71 AdcInitCommon();
72
73 // M0_CH0F ADC1_SE17
74 PORTA_PCR17 = PORT_PCR_MUX(0);
75
76 // M0_CH1F ADC1_SE14
77 PORTB_PCR10 = PORT_PCR_MUX(0);
78
79 // M0_CH2F ADC1_SE15
80 PORTB_PCR11 = PORT_PCR_MUX(0);
81
82 // M0_ABS ADC0_SE5b
83 PORTD_PCR1 = PORT_PCR_MUX(0);
84
85 // M1_CH0F ADC0_SE13
86 PORTB_PCR3 = PORT_PCR_MUX(0);
87
88 // M1_CH1F ADC0_SE12
89 PORTB_PCR2 = PORT_PCR_MUX(0);
90
91 // M1_CH2F ADC0_SE14
92 PORTC_PCR0 = PORT_PCR_MUX(0);
93
94 // M1_ABS ADC0_SE17
95 PORTE_PCR24 = PORT_PCR_MUX(0);
96
97 // WHEEL_ABS ADC0_SE18
98 PORTE_PCR25 = PORT_PCR_MUX(0);
99
100 // VIN ADC1_SE5B
101 PORTC_PCR9 = PORT_PCR_MUX(0);
102}
103
104SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
105 SmallAdcReadings r;
106
107 ADC1_SC1A = 17;
108 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
109 }
110 ADC1_SC1A = 14;
111 r.currents[0] = ADC1_RA;
112 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
113 }
114 ADC1_SC1A = 15;
115 r.currents[1] = ADC1_RA;
116 while (!(ADC1_SC1A & ADC_SC1_COCO)) {
117 }
118 r.currents[2] = ADC1_RA;
119
120 return r;
121}
122
123SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
124 SmallAdcReadings r;
125
126 ADC0_SC1A = 13;
127 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
128 }
129 ADC0_SC1A = 12;
130 r.currents[0] = ADC0_RA;
131 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
132 }
133 ADC0_SC1A = 14;
134 r.currents[1] = ADC0_RA;
135 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
136 }
137 r.currents[2] = ADC0_RA;
138
139 return r;
140}
141
142SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
143 SmallInitReadings r;
144
145 ADC0_SC1A = 5;
146 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
147 }
148 ADC0_SC1A = 17;
149 r.motor0_abs = ADC0_RA;
150 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
151 }
152 ADC0_SC1A = 18;
153 r.motor1_abs = ADC0_RA;
154 while (!(ADC0_SC1A & ADC_SC1_COCO)) {
155 }
156 r.wheel_abs = ADC0_RA;
157
158 return r;
159}
160
Brian Silverman6260c092018-01-14 15:21:36 -0800161constexpr float kHapticWheelCurrentLimit = static_cast<float>(
162 ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
163constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
164 ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
165
166::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
Brian Silverman6260c092018-01-14 15:21:36 -0800167
168// Angle last time the current loop ran.
169::std::atomic<float> global_wheel_angle{0.0f};
170::std::atomic<float> global_trigger_angle{0.0f};
171
172// Wheel observer/plant.
173::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
174 nullptr};
175::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
176// Throttle observer/plant.
177::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
178 nullptr};
179::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
180 nullptr};
181
182// Torques for the current loop to apply.
183::std::atomic<float> global_wheel_current{0.0f};
184::std::atomic<float> global_trigger_torque{0.0f};
185
186constexpr int kSwitchingDivisor = 2;
187
188float analog_ratio(uint16_t reading) {
189 static constexpr uint16_t kMin = 260, kMax = 3812;
190 return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
191 kMin) /
192 static_cast<float>(kMax - kMin);
193}
194
195constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
196 return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
197}
198
199float absolute_wheel(float wheel_position) {
200 if (wheel_position < 0.43f) {
201 wheel_position += 1.0f;
202 }
203 wheel_position -= 0.462f + 0.473f;
204 return wheel_position;
205}
206
207extern "C" {
208
209void *__stack_chk_guard = (void *)0x67111971;
210void __stack_chk_fail() {
211 while (true) {
212 GPIOC_PSOR = (1 << 5);
213 printf("Stack corruption detected\n");
214 delay(1000);
215 GPIOC_PCOR = (1 << 5);
216 delay(1000);
217 }
218}
219
Brian Silverman6260c092018-01-14 15:21:36 -0800220extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
221extern uint32_t __data_ram_start__[], __data_ram_end__[];
222extern uint32_t __heap_start__[], __heap_end__[];
223extern uint32_t __stack_end__[];
224
225} // extern "C"
226
227constexpr float kWheelMaxExtension = 1.0f;
228constexpr float kWheelFrictionMax = 0.2f;
229float WheelCenteringCurrent(float scalar, float angle, float velocity) {
230 float friction_goal_current = -angle * 10.0f;
231 if (friction_goal_current > kWheelFrictionMax) {
232 friction_goal_current = kWheelFrictionMax;
233 } else if (friction_goal_current < -kWheelFrictionMax) {
234 friction_goal_current = -kWheelFrictionMax;
235 }
236
237 constexpr float kWheelSpringNonlinearity = 0.45f;
238
239 float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
240 kWheelSpringNonlinearity * angle * angle * angle) *
241 6.0f -
242 velocity * 0.04f;
243 if (goal_current > 5.0f - scalar) {
244 goal_current = 5.0f - scalar;
245 } else if (goal_current < -5.0f + scalar) {
246 goal_current = -5.0f + scalar;
247 }
248
249 return goal_current * scalar + friction_goal_current;
250}
251
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700252float CoggingCurrent1(uint32_t encoder, int32_t absolute_encoder) {
253 constexpr float kP = 0.05f;
254 constexpr float kI = 0.00001f;
255 static int goal = -6700;
256
257 const int error = goal - static_cast<int>(absolute_encoder);
258 static float error_sum = 0.0f;
259 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
260
261 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
262
263 static int i = 0;
264 if (error == 0) {
265 ++i;
266 } else {
267 i = 0;
268 }
269 if (i >= 100) {
270 printf("reading1: %d %d a:%d e:%d\n", goal,
271 static_cast<int>(goal_current * 10000.0f),
272 static_cast<int>(encoder),
273 static_cast<int>(error));
274 static int counting_up = 0;
275 if (absolute_encoder <= -6900) {
276 counting_up = 1;
277 } else if (absolute_encoder >= 6900) {
278 counting_up = 0;
279 }
280 if (counting_up) {
281 ++goal;
282 } else {
283 --goal;
284 }
285 i = 0;
286 }
287
288 error_sum += static_cast<float>(error);
289 if (error_sum > 1.0f / kI) {
290 error_sum = 1.0f / kI;
291 } else if (error_sum < -1.0f / kI) {
292 error_sum = -1.0f / kI;
293 }
294 return goal_current;
295}
296
Brian Silverman6260c092018-01-14 15:21:36 -0800297extern "C" void ftm0_isr() {
298 SmallAdcReadings readings;
299 {
300 DisableInterrupts disable_interrupts;
301 readings = AdcReadSmall1(disable_interrupts);
302 }
303 uint32_t encoder =
304 global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
305 int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
306 ->absolute_encoder(encoder);
307
308 const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
Brian Silverman6260c092018-01-14 15:21:36 -0800309
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700310 (void)CoggingCurrent1;
Austin Schuh54c8c842019-04-07 13:54:23 -0700311 float goal_current = global_wheel_current.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800312 kWheelCoggingTorque[encoder];
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700313 //float goal_current = CoggingCurrent1(encoder, absolute_encoder);
Austin Schuh54c8c842019-04-07 13:54:23 -0700314 //float goal_current = kWheelCoggingTorque[encoder];
315 //float goal_current = 0.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800316
317 global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
318 global_motor1.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700319 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700320 //global_motor1.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Austin Schuh54c8c842019-04-07 13:54:23 -0700321
322 global_wheel_angle.store(angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700323
324 /*
325 SmallInitReadings position_readings;
326 {
327 DisableInterrupts disable_interrupts;
328 position_readings = AdcReadSmallInit(disable_interrupts);
329 }
330
331 static int i = 0;
332 if (i == 1000) {
333 i = 0;
334 float wheel_position =
335 absolute_wheel(analog_ratio(position_readings.wheel_abs));
336 printf(
337 "ecnt %" PRIu32 " arev:%d erev:%d abs:%d awp:%d uncalwheel:%d\n",
338 encoder,
339 static_cast<int>((1.0f - analog_ratio(position_readings.motor1_abs)) *
340 7000.0f),
341 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
342 static_cast<int>(absolute_encoder),
343 static_cast<int>(wheel_position * 1000.0f),
344 static_cast<int>(analog_ratio(position_readings.wheel_abs) * 1000.0f));
345 } else if (i == 200) {
346 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
347 global_motor1.load(::std::memory_order_relaxed)
348 ->output_registers()[0][2],
349 global_motor1.load(::std::memory_order_relaxed)
350 ->output_registers()[1][2],
351 global_motor1.load(::std::memory_order_relaxed)
352 ->output_registers()[2][2]);
353 }
354 ++i;
355 */
Brian Silverman6260c092018-01-14 15:21:36 -0800356}
357
Austin Schuh876b4f02018-03-10 19:16:59 -0800358constexpr float kTriggerMaxExtension = -0.70f;
Brian Silverman6260c092018-01-14 15:21:36 -0800359constexpr float kTriggerCenter = 0.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800360constexpr float kCenteringStiffness = 0.15f;
Brian Silverman6260c092018-01-14 15:21:36 -0800361float TriggerCenteringCurrent(float trigger_angle) {
362 float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
Austin Schuh876b4f02018-03-10 19:16:59 -0800363 float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
364 if (knotch_goal_current < -kCenteringStiffness) {
365 knotch_goal_current = -kCenteringStiffness;
366 } else if (knotch_goal_current > kCenteringStiffness) {
367 knotch_goal_current = kCenteringStiffness;
368 }
369
370 goal_current += knotch_goal_current;
371
Brian Silverman6260c092018-01-14 15:21:36 -0800372 if (goal_current < -1.0f) {
373 goal_current = -1.0f;
374 } else if (goal_current > 1.0f) {
375 goal_current = 1.0f;
376 if (trigger_angle < kTriggerMaxExtension) {
377 goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
Austin Schuh876b4f02018-03-10 19:16:59 -0800378 if (goal_current > 4.0f) {
379 goal_current = 4.0f;
Brian Silverman6260c092018-01-14 15:21:36 -0800380 }
381 }
382 }
383 return goal_current;
384}
385
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700386float CoggingCurrent0(uint32_t encoder, int32_t absolute_encoder) {
387 constexpr float kP = 0.05f;
388 constexpr float kI = 0.00001f;
389 static int goal = 0;
390
391 const int error = goal - static_cast<int>(absolute_encoder);
392 static float error_sum = 0.0f;
393 float goal_current = static_cast<float>(error) * kP + error_sum * kI;
394
395 goal_current = ::std::min(1.0f, ::std::max(-1.0f, goal_current));
396
397 static int i = 0;
398 if (error == 0) {
399 ++i;
400 } else {
401 i = 0;
402 }
403
404 if (i >= 100) {
405 printf("reading0: %d %d a:%d e:%d\n", goal,
406 static_cast<int>(goal_current * 10000.0f),
407 static_cast<int>(encoder),
408 static_cast<int>(error));
409 static int counting_up = 0;
410 if (absolute_encoder <= -1390) {
411 counting_up = 1;
412 } else if (absolute_encoder >= 1390) {
413 counting_up = 0;
414 }
415 if (counting_up) {
416 ++goal;
417 } else {
418 --goal;
419 }
420 }
421
422 error_sum += static_cast<float>(error);
423 if (error_sum > 1.0f / kI) {
424 error_sum = 1.0f / kI;
425 } else if (error_sum < -1.0f / kI) {
426 error_sum = -1.0f / kI;
427 }
428 return goal_current;
429}
430
Brian Silverman6260c092018-01-14 15:21:36 -0800431extern "C" void ftm3_isr() {
432 SmallAdcReadings readings;
433 {
434 DisableInterrupts disable_interrupts;
435 readings = AdcReadSmall0(disable_interrupts);
436 }
Brian Silverman6260c092018-01-14 15:21:36 -0800437
Austin Schuh54c8c842019-04-07 13:54:23 -0700438 const uint32_t encoder =
439 global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
440 const int32_t absolute_encoder =
441 global_motor0.load(::std::memory_order_relaxed)
442 ->absolute_encoder(encoder);
443
444 const float trigger_angle = absolute_encoder / 1370.f;
Brian Silverman6260c092018-01-14 15:21:36 -0800445
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700446 (void)CoggingCurrent0;
Brian Silverman6260c092018-01-14 15:21:36 -0800447 const float goal_current =
Austin Schuh54c8c842019-04-07 13:54:23 -0700448 global_trigger_torque.load(::std::memory_order_relaxed) +
Brian Silverman6260c092018-01-14 15:21:36 -0800449 kTriggerCoggingTorque[encoder];
Austin Schuh54c8c842019-04-07 13:54:23 -0700450 //const float goal_current = kTriggerCoggingTorque[encoder];
451 //const float goal_current = 0.0f;
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700452 //const float goal_current = CoggingCurrent0(encoder, absolute_encoder);
Brian Silverman6260c092018-01-14 15:21:36 -0800453
454 global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
455 global_motor0.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700456 ->CurrentInterrupt(BalanceSimpleReadings(readings.currents), encoder);
Austin Schuhfbbf0f02019-04-07 14:27:16 -0700457 //global_motor0.load(::std::memory_order_relaxed)->CycleFixedPhaseInterupt();
Brian Silverman6260c092018-01-14 15:21:36 -0800458
Brian Silverman6260c092018-01-14 15:21:36 -0800459 global_trigger_angle.store(trigger_angle);
Austin Schuh5b0e6b62019-04-07 14:23:37 -0700460
461 /*
462 SmallInitReadings position_readings;
463 {
464 DisableInterrupts disable_interrupts;
465 position_readings = AdcReadSmallInit(disable_interrupts);
466 }
467
468 static int i = 0;
469 if (i == 1000) {
470 i = 0;
471 printf("ecnt %" PRIu32 " arev:%d erev:%d abs:%d\n", encoder,
472 static_cast<int>((analog_ratio(position_readings.motor0_abs)) *
473 7000.0f),
474 static_cast<int>(encoder * 7.0f / 4096.0f * 1000.0f),
475 static_cast<int>(absolute_encoder));
476 } else if (i == 200) {
477 printf("out %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
478 global_motor0.load(::std::memory_order_relaxed)
479 ->output_registers()[0][2],
480 global_motor0.load(::std::memory_order_relaxed)
481 ->output_registers()[1][2],
482 global_motor0.load(::std::memory_order_relaxed)
483 ->output_registers()[2][2]);
484 }
485 ++i;
486 */
Brian Silverman6260c092018-01-14 15:21:36 -0800487}
488
Brian Silverman6260c092018-01-14 15:21:36 -0800489int ConvertFloat16(float val) {
490 int result = static_cast<int>(val * 32768.0f) + 32768;
491 if (result > 0xffff) {
492 result = 0xffff;
493 } else if (result < 0) {
494 result = 0;
495 }
496 return result;
497}
498int ConvertFloat14(float val) {
499 int result = static_cast<int>(val * 8192.0f) + 8192;
500 if (result > 0x3fff) {
501 result = 0x3fff;
502 } else if (result < 0) {
503 result = 0;
504 }
505 return result;
506}
507
508extern "C" void pit3_isr() {
509 PIT_TFLG3 = 1;
510 const float absolute_trigger_angle =
511 global_trigger_angle.load(::std::memory_order_relaxed);
512 const float absolute_wheel_angle =
513 global_wheel_angle.load(::std::memory_order_relaxed);
514
515 // Force a barrier here so we sample everything guaranteed at the beginning.
516 __asm__("" ::: "memory");
517 const float absolute_wheel_angle_radians =
518 absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
519 const float absolute_trigger_angle_radians =
520 absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
521
522 static uint32_t last_command_time = 0;
523 static float trigger_goal_position = 0.0f;
524 static float trigger_goal_velocity = 0.0f;
525 static float trigger_haptic_current = 0.0f;
526 static bool trigger_centering = true;
527 static bool trigger_haptics = false;
528 {
529 uint8_t data[8];
530 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700531 can_receive(data, &length, 0);
Brian Silverman6260c092018-01-14 15:21:36 -0800532 if (length > 0) {
533 last_command_time = micros();
534 trigger_goal_position =
535 static_cast<float>(
536 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
537 (static_cast<uint32_t>(data[1]) << 8)) -
538 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700539 static_cast<float>(32768.0 * M_PI / 8.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800540 trigger_goal_velocity =
541 static_cast<float>(
542 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
543 (static_cast<uint32_t>(data[3]) << 8)) -
544 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700545 static_cast<float>(32768.0 * 4.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800546
547 trigger_haptic_current =
548 static_cast<float>(
549 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
550 (static_cast<uint32_t>(data[5]) << 8)) -
551 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700552 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800553 if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
554 trigger_haptic_current = kHapticTriggerCurrentLimit;
555 } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
556 trigger_haptic_current = -kHapticTriggerCurrentLimit;
557 }
558 trigger_centering = !!(data[7] & 0x01);
559 trigger_haptics = !!(data[7] & 0x02);
560 }
561 }
562
563 static float wheel_goal_position = 0.0f;
564 static float wheel_goal_velocity = 0.0f;
565 static float wheel_haptic_current = 0.0f;
566 static float wheel_kp = 0.0f;
567 static bool wheel_centering = true;
568 static float wheel_centering_scalar = 0.25f;
569 {
570 uint8_t data[8];
571 int length;
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700572 can_receive(data, &length, 1);
Brian Silverman6260c092018-01-14 15:21:36 -0800573 if (length == 8) {
574 last_command_time = micros();
575 wheel_goal_position =
576 static_cast<float>(
577 static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
578 (static_cast<uint32_t>(data[1]) << 8)) -
579 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700580 static_cast<float>(32768.0 * M_PI);
Brian Silverman6260c092018-01-14 15:21:36 -0800581 wheel_goal_velocity =
582 static_cast<float>(
583 static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
584 (static_cast<uint32_t>(data[3]) << 8)) -
585 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700586 static_cast<float>(32768.0 * 10.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800587
588 wheel_haptic_current =
589 static_cast<float>(
590 static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
591 (static_cast<uint32_t>(data[5]) << 8)) -
592 32768) /
Brian Silverman6c8b88b2018-09-03 18:17:02 -0700593 static_cast<float>(32768.0 * 2.0);
Brian Silverman6260c092018-01-14 15:21:36 -0800594 if (wheel_haptic_current > kHapticWheelCurrentLimit) {
595 wheel_haptic_current = kHapticWheelCurrentLimit;
596 } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
597 wheel_haptic_current = -kHapticWheelCurrentLimit;
598 }
599 wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
600 wheel_centering = !!(data[7] & 0x01);
601 wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
602 }
603 }
604
605 static constexpr uint32_t kTimeout = 100000;
606 if (!time_after(time_add(last_command_time, kTimeout), micros())) {
607 last_command_time = time_subtract(micros(), kTimeout);
608 trigger_goal_position = 0.0f;
609 trigger_goal_velocity = 0.0f;
610 trigger_haptic_current = 0.0f;
611 trigger_centering = true;
612 trigger_haptics = false;
613
614 wheel_goal_position = 0.0f;
615 wheel_goal_velocity = 0.0f;
616 wheel_haptic_current = 0.0f;
617 wheel_centering = true;
618 wheel_centering_scalar = 0.25f;
Brian Silverman17ffa8c2018-03-09 18:27:29 -0800619 // Avoid wrapping back into the valid range.
620 last_command_time = time_subtract(micros(), kTimeout);
Brian Silverman6260c092018-01-14 15:21:36 -0800621 }
622
623 StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
624 global_trigger_plant.load(::std::memory_order_relaxed);
625 StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
626 global_trigger_observer.load(::std::memory_order_relaxed);
627 ::Eigen::Matrix<float, 1, 1> trigger_Y;
628 trigger_Y << absolute_trigger_angle_radians;
629 trigger_observer->Correct(*trigger_plant,
630 ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
631
632 StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
633 global_wheel_plant.load(::std::memory_order_relaxed);
634 StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
635 global_wheel_observer.load(::std::memory_order_relaxed);
636 ::Eigen::Matrix<float, 1, 1> wheel_Y;
637 wheel_Y << absolute_wheel_angle_radians;
638 wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
639 wheel_Y);
640
641 float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
642 if (wheel_kp < 0.5f) {
643 kWheelD = wheel_kp * 0.05f / 0.5f;
644 } else if (wheel_kp < 1.0f) {
645 kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
646 } else if (wheel_kp < 2.0f) {
647 kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
648 } else if (wheel_kp < 3.0f) {
649 kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
650 } else if (wheel_kp < 5.0f) {
651 kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
652 } else if (wheel_kp < 10.0f) {
653 kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
654 }
655
656 float wheel_goal_current = wheel_haptic_current;
657
658 wheel_goal_current +=
659 (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
660 (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
661
662 // Compute the torques to apply to each motor.
663 if (wheel_centering) {
664 wheel_goal_current +=
665 WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
666 wheel_observer->X_hat()(1, 0));
667 }
668
669 if (wheel_goal_current > kHapticWheelCurrentLimit) {
670 wheel_goal_current = kHapticWheelCurrentLimit;
671 } else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
672 wheel_goal_current = -kHapticWheelCurrentLimit;
673 }
674 global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
675
676 constexpr float kTriggerP =
677 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
678 constexpr float kTriggerD =
679 static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
680 float trigger_goal_current = trigger_haptic_current;
681 if (trigger_haptics) {
682 trigger_goal_current +=
683 (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
684 (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
685 }
686
687 if (trigger_centering) {
688 trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
689 }
690
691 if (trigger_goal_current > kHapticTriggerCurrentLimit) {
692 trigger_goal_current = kHapticTriggerCurrentLimit;
693 } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
694 trigger_goal_current = -kHapticTriggerCurrentLimit;
695 }
696 global_trigger_torque.store(trigger_goal_current,
697 ::std::memory_order_relaxed);
698
699 uint8_t buttons = 0;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500700 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800701 buttons |= 0x1;
702 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500703 if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800704 buttons |= 0x2;
705 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500706 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800707 buttons |= 0x4;
708 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500709 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
Brian Silverman6260c092018-01-14 15:21:36 -0800710 buttons |= 0x8;
711 }
712
713 float trigger_angle = absolute_trigger_angle;
714
715 // Adjust the trigger range for reporting back.
716 // TODO(austin): We'll likely need to make this symmetric for the controls to
717 // work out well.
718 if (trigger_angle > kTriggerCenter) {
719 trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
720 } else {
721 trigger_angle = (trigger_angle - kTriggerCenter) /
722 (kTriggerCenter - kTriggerMaxExtension);
723 }
724
725 // TODO(austin): Class + fns. This is a mess.
726 // TODO(austin): Move this to a separate file. It's too big.
727 int can_trigger = ConvertFloat16(absolute_trigger_angle);
728 int can_trigger_velocity =
729 ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
730 int can_trigger_torque =
731 ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
732 int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
733
734 int can_wheel = ConvertFloat16(absolute_wheel_angle);
735 int can_wheel_velocity =
736 ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
737 int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
738 int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
739
740 {
741 const uint8_t trigger_joystick_values[8] = {
742 static_cast<uint8_t>(can_trigger & 0xff),
743 static_cast<uint8_t>((can_trigger >> 8) & 0xff),
744 static_cast<uint8_t>(can_trigger_velocity & 0xff),
745 static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
746 static_cast<uint8_t>(can_trigger_torque & 0xff),
747 static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
748 static_cast<uint8_t>(can_trigger_current & 0xff),
749 static_cast<uint8_t>(((buttons & 0x3) << 6) |
750 (can_trigger_current >> 8))};
751 const uint8_t wheel_joystick_values[8] = {
752 static_cast<uint8_t>(can_wheel & 0xff),
753 static_cast<uint8_t>((can_wheel >> 8) & 0xff),
754 static_cast<uint8_t>(can_wheel_velocity & 0xff),
755 static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
756 static_cast<uint8_t>(can_wheel_torque & 0xff),
757 static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
758 static_cast<uint8_t>(can_wheel_current & 0xff),
759 static_cast<uint8_t>(((buttons & 0xc) << 4) |
760 (can_wheel_current >> 8))};
761
762 can_send(0, trigger_joystick_values, 8, 2);
763 can_send(1, wheel_joystick_values, 8, 3);
764 }
765
766 ::Eigen::Matrix<float, 1, 1> trigger_U;
767 trigger_U << trigger_goal_current;
768 ::Eigen::Matrix<float, 1, 1> wheel_U;
769 wheel_U << wheel_goal_current;
770 trigger_observer->Predict(trigger_plant, trigger_U,
771 ::std::chrono::milliseconds(1));
772 wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
773}
774
775void ConfigurePwmFtm(BigFTM *pwm_ftm) {
776 // Put them all into combine active-high mode, and all the low ones staying
777 // off all the time by default. We'll then use only the low ones.
778 pwm_ftm->C0SC = FTM_CSC_ELSB;
779 pwm_ftm->C0V = 0;
780 pwm_ftm->C1SC = FTM_CSC_ELSB;
781 pwm_ftm->C1V = 0;
782 pwm_ftm->C2SC = FTM_CSC_ELSB;
783 pwm_ftm->C2V = 0;
784 pwm_ftm->C3SC = FTM_CSC_ELSB;
785 pwm_ftm->C3V = 0;
786 pwm_ftm->C4SC = FTM_CSC_ELSB;
787 pwm_ftm->C4V = 0;
788 pwm_ftm->C5SC = FTM_CSC_ELSB;
789 pwm_ftm->C5V = 0;
790 pwm_ftm->C6SC = FTM_CSC_ELSB;
791 pwm_ftm->C6V = 0;
792 pwm_ftm->C7SC = FTM_CSC_ELSB;
793 pwm_ftm->C7V = 0;
794
795 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
796 FTM_COMBINE_COMP3 /* Make them complementary */ |
797 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
798 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
799 FTM_COMBINE_COMP2 /* Make them complementary */ |
800 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
801 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
802 FTM_COMBINE_COMP1 /* Make them complementary */ |
803 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
804 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
805 FTM_COMBINE_COMP0 /* Make them complementary */ |
806 FTM_COMBINE_COMBINE0 /* Combine the channels */;
807}
808
809bool CountValid(uint32_t count) {
810 static constexpr int kMaxMovement = 1;
811 return count <= kMaxMovement || count >= (4096 - kMaxMovement);
812}
813
814bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
815 uint16_t *wheel_offset) {
816 static constexpr int kNumberSamples = 1024;
817 static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
818 uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
819
820 // First clear both encoders.
821 MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
822 for (int i = 0; i < kNumberSamples; ++i) {
823 delay(1);
824
825 if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
826 printf("Motor 0 moved too much\n");
827 return false;
828 }
829 if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
830 printf("Motor 1 moved too much\n");
831 return false;
832 }
833
834 DisableInterrupts disable_interrupts;
835 const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
836 motor0_sum += readings.motor0_abs;
837 motor1_sum += readings.motor1_abs;
838 wheel_sum += readings.wheel_abs;
839 }
840
841 *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
842 *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
843 *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
844
845 return true;
846}
847
848} // namespace
849
850extern "C" int main() {
851 // for background about this startup delay, please see these conversations
852 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
853 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
854 delay(400);
855
856 // Set all interrupts to the second-lowest priority to start with.
857 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
858
859 // Now set priorities for all the ones we care about. They only have meaning
860 // relative to each other, which means centralizing them here makes it a lot
861 // more manageable.
862 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
863 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
864 NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
865 NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
866
867 // Set the LED's pin to output mode.
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500868 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800869 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
870
871 // Set up the CAN pins.
872 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
873 PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
874
Brian Silvermanff7b3872018-03-10 18:08:30 -0800875 // .1ms filter time.
876 PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
877
Brian Silverman6260c092018-01-14 15:21:36 -0800878 // BTN0
879 PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800880 PORTC_DFER |= 1 << 7;
Brian Silverman6260c092018-01-14 15:21:36 -0800881 // BTN1
882 PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800883 PORTE_DFER |= 1 << 26;
Brian Silverman6260c092018-01-14 15:21:36 -0800884 // BTN2
885 PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800886 PORTA_DFER |= 1 << 14;
Brian Silverman6260c092018-01-14 15:21:36 -0800887 // BTN3
888 PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
Brian Silvermanff7b3872018-03-10 18:08:30 -0800889 PORTD_DFER |= 1 << 0;
890 // BTN4
891 PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
892 PORTD_DFER |= 1 << 7;
893 // BTN5 (only new revision)
894 PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
895 PORTA_DFER |= 1 << 15;
Brian Silverman6260c092018-01-14 15:21:36 -0800896
897 PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
898
Brian Silverman45564a82018-09-02 16:35:22 -0700899 DMA.CR = M_DMA_EMLM;
Brian Silverman6260c092018-01-14 15:21:36 -0800900
Brian Silverman4787a6e2018-10-06 16:00:54 -0700901 PrintingParameters printing_parameters;
902 printing_parameters.dedicated_usb = true;
903 const ::std::unique_ptr<PrintingImplementation> printing =
904 CreatePrinting(printing_parameters);
905 printing->Initialize();
Brian Silverman6260c092018-01-14 15:21:36 -0800906
907 AdcInitSmall();
908 MathInit();
909 delay(100);
910 can_init(2, 3);
911
912 GPIOD_PCOR = 1 << 3;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500913 PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800914 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
915 GPIOD_PSOR = 1 << 3;
916
917 GPIOC_PCOR = 1 << 4;
Brian Silverman33eb5fa2018-02-11 18:36:19 -0500918 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800919 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
920 GPIOC_PSOR = 1 << 4;
921
922 LittleMotorControlsImplementation controls0, controls1;
923
924 delay(100);
925
926 // M0_EA = FTM1_QD_PHB
927 PORTB_PCR19 = PORT_PCR_MUX(6);
928 // M0_EB = FTM1_QD_PHA
929 PORTB_PCR18 = PORT_PCR_MUX(6);
930
931 // M1_EA = FTM1_QD_PHA
932 PORTB_PCR0 = PORT_PCR_MUX(6);
933 // M1_EB = FTM1_QD_PHB
934 PORTB_PCR1 = PORT_PCR_MUX(6);
935
936 // M0_CH0 = FTM3_CH4
937 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
938 // M0_CH1 = FTM3_CH2
939 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
940 // M0_CH2 = FTM3_CH6
941 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
942
943 // M1_CH0 = FTM0_CH0
944 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
945 // M1_CH1 = FTM0_CH2
946 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
947 // M1_CH2 = FTM0_CH4
948 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
949
950 Motor motor0(
951 MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
952 {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700953 motor0.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800954 motor0.set_switching_divisor(kSwitchingDivisor);
955 Motor motor1(
956 MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
957 {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
Brian Silverman4787a6e2018-10-06 16:00:54 -0700958 motor1.set_printing_implementation(printing.get());
Brian Silverman6260c092018-01-14 15:21:36 -0800959 motor1.set_switching_divisor(kSwitchingDivisor);
960 ConfigurePwmFtm(MOTOR0_PWM_FTM);
961 ConfigurePwmFtm(MOTOR1_PWM_FTM);
962 motor0.Init();
963 motor1.Init();
964 global_motor0.store(&motor0, ::std::memory_order_relaxed);
965 global_motor1.store(&motor1, ::std::memory_order_relaxed);
966
967 SIM_SCGC6 |= SIM_SCGC6_PIT;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400968 // Workaround for errata e7914.
969 (void)PIT_MCR;
Brian Silverman6260c092018-01-14 15:21:36 -0800970 PIT_MCR = 0;
Brian Silvermanb0de2402018-03-24 03:48:28 -0400971 PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
Brian Silverman6260c092018-01-14 15:21:36 -0800972 PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
973
974 // Have them both wait for the GTB signal.
975 FTM0->CONF = FTM3->CONF =
976 FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
977 // Make FTM3's period half of what it should be so we can get it a half-cycle
978 // out of phase.
979 const uint32_t original_mod = FTM3->MOD;
980 FTM3->MOD = ((original_mod + 1) / 2) - 1;
981 FTM3->SYNC |= FTM_SYNC_SWSYNC;
982
983 // Output triggers to things like the PDBs on initialization.
984 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
985 FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
986 // Don't let any memory accesses sneak past here, because we actually
987 // need everything to be starting up.
988 __asm__("" ::: "memory");
989
990 // Give everything a chance to get going.
991 delay(100);
992
993 printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
994 printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
995 printf("heap start: %p\n", __heap_start__);
996 printf("stack start: %p\n", __stack_end__);
997
Austin Schuh80b99932019-04-07 14:04:41 -0700998 printf("Zeroing motors for %d:%x\n", static_cast<int>(ProcessorIndex()),
999 (unsigned int)ProcessorIdentifier());
Brian Silverman6260c092018-01-14 15:21:36 -08001000 uint16_t motor0_offset, motor1_offset, wheel_offset;
1001 while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
1002 }
1003 printf("Done zeroing\n");
1004
1005 const float motor0_offset_scaled = -analog_ratio(motor0_offset);
1006 const float motor1_offset_scaled = analog_ratio(motor1_offset);
1007 // Good for the initial trigger.
1008 {
1009 constexpr float kZeroOffset0 = 0.27f;
1010 const int motor0_starting_point = static_cast<int>(
1011 (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
1012 printf("Motor 0 starting at %d\n", motor0_starting_point);
1013 motor0.set_encoder_calibration_offset(motor0_starting_point);
1014 motor0.set_encoder_multiplier(-1);
1015
1016 // Calibrate neutral here.
1017 motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20);
1018
1019 uint32_t new_encoder = motor0.wrapped_encoder();
1020 int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
1021 printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
1022 static_cast<int>(absolute_encoder));
1023 }
1024
1025 {
1026 constexpr float kZeroOffset1 = 0.26f;
1027 const int motor1_starting_point = static_cast<int>(
1028 (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
1029 printf("Motor 1 starting at %d\n", motor1_starting_point);
1030 motor1.set_encoder_calibration_offset(motor1_starting_point);
1031 motor1.set_encoder_multiplier(-1);
1032
1033 float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
1034
1035 uint32_t encoder = motor1.wrapped_encoder();
1036
1037 printf("Wheel starting at %d, encoder %" PRId32 "\n",
1038 static_cast<int>(wheel_position * 1000.0f), encoder);
1039
1040 constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
1041 constexpr float kWrappedWheelAtZero = 0.6586310546875f;
1042
1043 const int encoder_wraps =
1044 static_cast<int>(lround(wheel_position * kWheelGearRatio -
1045 (encoder / 4096.f) + kWrappedWheelAtZero));
1046
1047 printf("Wraps: %d\n", encoder_wraps);
1048 motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
1049 static_cast<int>(kWrappedWheelAtZero * 4096));
1050 printf("Wheel encoder now at %d\n",
1051 static_cast<int>(1000.f / 4096.f *
1052 motor1.absolute_encoder(motor1.wrapped_encoder())));
1053 }
1054
1055 // Turn an LED on for Austin.
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001056 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
Brian Silverman6260c092018-01-14 15:21:36 -08001057 GPIOC_PCOR = 1 << 6;
1058 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
1059
1060 // M0_THW
1061 PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1062 // M0_FAULT
1063 PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1064 // M1_THW
1065 PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1066 // M1_FAULT
1067 PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
1068
1069 motor0.Start();
1070 motor1.Start();
1071 {
1072 // We rely on various things happening faster than the timer period, so make
1073 // sure slow USB or whatever interrupts don't prevent that.
1074 DisableInterrupts disable_interrupts;
1075
1076 // First clear the overflow flag.
1077 FTM3->SC &= ~FTM_SC_TOF;
1078
1079 // Now poke the GTB to actually start both timers.
1080 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
1081 FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
1082
1083 // Wait for it to overflow twice. For some reason, just once doesn't work.
1084 while (!(FTM3->SC & FTM_SC_TOF)) {
1085 }
1086 FTM3->SC &= ~FTM_SC_TOF;
1087 while (!(FTM3->SC & FTM_SC_TOF)) {
1088 }
1089
1090 // Now put the MOD value back to what it was.
1091 FTM3->MOD = original_mod;
1092 FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
1093
1094 // And then clear the overflow flags before enabling interrupts so we
1095 // actually wait until the next overflow to start doing interrupts.
1096 FTM0->SC &= ~FTM_SC_TOF;
1097 FTM3->SC &= ~FTM_SC_TOF;
1098 NVIC_ENABLE_IRQ(IRQ_FTM0);
1099 NVIC_ENABLE_IRQ(IRQ_FTM3);
1100 }
1101 global_trigger_plant.store(
1102 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
1103 global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1104 MakeIntegralHapticTriggerObserver()));
1105 global_trigger_observer.load(::std::memory_order_relaxed)
1106 ->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
1107
1108 global_wheel_plant.store(
1109 new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
1110 global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
1111 MakeIntegralHapticWheelObserver()));
1112 global_wheel_observer.load(::std::memory_order_relaxed)
1113 ->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
1114
1115 delay(1000);
1116
1117 NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
1118
1119 // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
1120 while (true) {
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001121 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
1122 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001123 printf("M0_THW\n");
1124 }
1125 GPIOC_PSOR = 1 << 5;
1126 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001127 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
1128 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001129 printf("M0_FAULT\n");
1130 }
1131 GPIOC_PSOR = 1 << 5;
1132 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001133 if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
1134 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001135 printf("M1_THW\n");
1136 }
1137 GPIOC_PSOR = 1 << 5;
1138 }
Brian Silverman33eb5fa2018-02-11 18:36:19 -05001139 if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
1140 if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
Brian Silverman6260c092018-01-14 15:21:36 -08001141 printf("M1_FAULT\n");
1142 }
1143 GPIOC_PSOR = 1 << 5;
1144 }
1145 }
1146
1147 return 0;
1148}
1149
Brian Silvermana96c1a42018-05-12 12:11:31 -07001150} // namespace motors
Brian Silverman6260c092018-01-14 15:21:36 -08001151} // namespace frc971