blob: e62b1064c7adab897ed4ba63d2748d5f0a5588fd [file] [log] [blame]
Filip Kujawadc7d47c2023-04-08 16:16:51 -07001#include "yolov5.h"
2
Adam Snaider13d48d92023-08-03 12:20:15 -07003#pragma clang diagnostic ignored "-Wunused-parameter"
4
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07005#include <tensorflow/lite/c/common.h>
Filip Kujawa26a23662023-04-08 16:19:13 -07006#include <tensorflow/lite/interpreter.h>
7#include <tensorflow/lite/kernels/register.h>
8#include <tensorflow/lite/model.h>
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07009#include <tflite/public/edgetpu.h>
Filip Kujawa26a23662023-04-08 16:19:13 -070010#include <tflite/public/edgetpu_c.h>
11
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070012#include <chrono>
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070013#include <string>
Filip Kujawadc7d47c2023-04-08 16:16:51 -070014
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070015#include "absl/types/span.h"
Filip Kujawadc7d47c2023-04-08 16:16:51 -070016#include "gflags/gflags.h"
17#include "glog/logging.h"
Philipp Schrader790cb542023-07-05 21:06:52 -070018#include <opencv2/dnn.hpp>
Filip Kujawadc7d47c2023-04-08 16:16:51 -070019
20DEFINE_double(conf_threshold, 0.9,
21 "Threshold value for confidence scores. Detections with a "
22 "confidence score below this value will be ignored.");
23
24DEFINE_double(
25 nms_threshold, 0.5,
26 "Threshold value for non-maximum suppression. Detections with an "
27 "intersection-over-union value below this value will be removed.");
28
29DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
30
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070031DEFINE_bool(visualize_detections, false, "Display inference output");
32
Stephan Pleinesf63bde82024-01-13 15:59:33 -080033namespace y2023::vision {
Filip Kujawadc7d47c2023-04-08 16:16:51 -070034
Filip Kujawa26a23662023-04-08 16:19:13 -070035class YOLOV5Impl : public YOLOV5 {
36 public:
37 // Takes a model path as string and and loads a pre-trained
38 // YOLOv5 model from the specified path.
39 void LoadModel(const std::string path);
40
41 // Takes an image and returns a Detection.
42 std::vector<Detection> ProcessImage(cv::Mat image);
43
44 private:
45 // Convert an OpenCV Mat object to a tensor input
46 // that can be fed to the TensorFlow Lite model.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070047 void ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor);
Filip Kujawa26a23662023-04-08 16:19:13 -070048
49 // Resizes, converts color space, and converts
50 // image data type before inference.
51 void Preprocess(cv::Mat image);
52
53 // Converts a TensorFlow Lite tensor to a 2D vector.
54 std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
55 const int rows,
56 const int columns);
57
58 // Performs non-maximum suppression to remove overlapping bounding boxes.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070059 std::vector<Detection> NonMaximumSupression(
60 const std::vector<std::vector<float>> &orig_preds, const int rows,
61 const int columns, std::vector<Detection> *detections,
62 std::vector<int> *indices);
Filip Kujawa26a23662023-04-08 16:19:13 -070063 // Models
64 std::unique_ptr<tflite::FlatBufferModel> model_;
65 std::unique_ptr<tflite::Interpreter> interpreter_;
66 tflite::StderrReporter error_reporter_;
67
68 // Parameters of interpreter's input
69 int input_;
70 int in_height_;
71 int in_width_;
72 int in_channels_;
73 int in_type_;
74
75 // Parameters of original image
76 int img_height_;
77 int img_width_;
78
79 // Input of the interpreter
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070080 absl::Span<uint8_t> input_8_;
Filip Kujawa26a23662023-04-08 16:19:13 -070081
82 // Subtract this offset from class labels to get the actual label.
83 static constexpr int kClassIdOffset = 5;
84};
85
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070086std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); }
Filip Kujawa26a23662023-04-08 16:19:13 -070087
88void YOLOV5Impl::LoadModel(const std::string path) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070089 VLOG(1) << "Load model: Start";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070090
91 tflite::ops::builtin::BuiltinOpResolver resolver;
92
93 model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str());
Filip Kujawadc7d47c2023-04-08 16:16:51 -070094 CHECK(model_);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070095 CHECK(model_->initialized());
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070096 VLOG(1) << "Load model: Build model from file success";
97
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070098 CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
99 kTfLiteOk);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700100 VLOG(1) << "Load model: Interpreter builder success";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700101
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700102 size_t num_devices;
103 std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
104 edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700105
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700106 CHECK_EQ(num_devices, 1ul);
107 const auto &device = devices.get()[0];
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700108 VLOG(1) << "Load model: Got Devices";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700109
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700110 auto *delegate =
111 edgetpu_create_delegate(device.type, device.path, nullptr, 0);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700112
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700113 interpreter_->ModifyGraphWithDelegate(delegate);
114
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700115 VLOG(1) << "Load model: Modify graph with delegate complete";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700116
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700117 TfLiteStatus status = interpreter_->AllocateTensors();
118 CHECK_EQ(status, kTfLiteOk);
119 CHECK(interpreter_);
120
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700121 VLOG(1) << "Load model: Allocate tensors success";
122
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700123 input_ = interpreter_->inputs()[0];
124 TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
125 in_height_ = dims->data[1];
126 in_width_ = dims->data[2];
127 in_channels_ = dims->data[3];
128 in_type_ = interpreter_->tensor(input_)->type;
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700129
130 int tensor_size = 1;
131 for (int i = 0; i < dims->size; i++) {
132 tensor_size *= dims->data[i];
133 }
134 input_8_ =
135 absl::Span(interpreter_->typed_tensor<uint8_t>(input_), tensor_size);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700136
137 interpreter_->SetNumThreads(FLAGS_nthreads);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700138
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700139 VLOG(1) << "Load model: Done";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700140}
141
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700142void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700143 CHECK(src.type() == CV_8UC3);
144 int n = 0, nc = src.channels(), ne = src.elemSize();
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700145 VLOG(2) << "ConvertCVMatToTensor: Rows " << src.rows;
146 VLOG(2) << "ConvertCVMatToTensor: Cols " << src.cols;
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700147 for (int y = 0; y < src.rows; ++y) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700148 auto *row_ptr = src.ptr<uint8_t>(y);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700149 for (int x = 0; x < src.cols; ++x) {
150 for (int c = 0; c < nc; ++c) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700151 tensor[n++] = *(row_ptr + x * ne + c);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700152 }
153 }
154 }
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700155}
156
Filip Kujawa26a23662023-04-08 16:19:13 -0700157std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700158 TfLiteTensor *src_tensor, const int rows, const int columns) {
159 auto scale = src_tensor->params.scale;
160 auto zero_point = src_tensor->params.zero_point;
161 std::vector<std::vector<float>> result_vec;
162 for (int32_t i = 0; i < rows; i++) {
163 std::vector<float> row_values;
164 for (int32_t j = 0; j < columns; j++) {
165 float val_float =
166 ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
167 zero_point) *
168 scale;
169 row_values.push_back(val_float);
170 }
171 result_vec.push_back(row_values);
172 }
173 return result_vec;
174}
175
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700176std::vector<Detection> YOLOV5Impl::NonMaximumSupression(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700177 const std::vector<std::vector<float>> &orig_preds, const int rows,
178 const int columns, std::vector<Detection> *detections,
179 std::vector<int> *indices)
180
181{
182 std::vector<float> scores;
183 double confidence;
184 cv::Point class_id;
185
186 for (int i = 0; i < rows; i++) {
187 if (orig_preds[i][4] > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700188 float x = orig_preds[i][0];
189 float y = orig_preds[i][1];
190 float w = orig_preds[i][2];
191 float h = orig_preds[i][3];
192 int left = static_cast<int>((x - 0.5 * w) * img_width_);
193 int top = static_cast<int>((y - 0.5 * h) * img_height_);
194 int width = static_cast<int>(w * img_width_);
195 int height = static_cast<int>(h * img_height_);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700196
197 for (int j = 5; j < columns; j++) {
198 scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
199 }
200
201 cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700202 scores.clear();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700203 if (confidence > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700204 Detection detection{cv::Rect(left, top, width, height), confidence,
205 class_id.x};
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700206 detections->push_back(detection);
207 }
208 }
209 }
210
211 std::vector<cv::Rect> boxes;
212 std::vector<float> confidences;
213
214 for (const Detection &d : *detections) {
215 boxes.push_back(d.box);
216 confidences.push_back(d.confidence);
217 }
218
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700219 cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
220 FLAGS_nms_threshold, *indices);
221
222 std::vector<Detection> filtered_detections;
223 for (size_t i = 0; i < indices->size(); i++) {
224 filtered_detections.push_back((*detections)[(*indices)[i]]);
225 }
226
227 VLOG(1) << "NonMaximumSupression: " << detections->size() - indices->size()
228 << " detections filtered out";
229
230 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700231}
232
Filip Kujawa26a23662023-04-08 16:19:13 -0700233std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700234 VLOG(1) << "\n";
235
236 auto start = std::chrono::high_resolution_clock::now();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700237 img_height_ = frame.rows;
238 img_width_ = frame.cols;
239
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700240 cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
241 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
242 frame.convertTo(frame, CV_8U);
243
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700244 ConvertCVMatToTensor(frame, input_8_);
245
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700246 TfLiteStatus status = interpreter_->Invoke();
247 CHECK_EQ(status, kTfLiteOk);
248
249 int output_tensor_index = interpreter_->outputs()[0];
250 TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
251 int num_rows = out_dims->data[1];
252 int num_columns = out_dims->data[2];
253
254 TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700255
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700256 std::vector<std::vector<float>> orig_preds =
257 TensorToVector2D(src_tensor, num_rows, num_columns);
258
259 std::vector<int> indices;
260 std::vector<Detection> detections;
261
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700262 std::vector<Detection> filtered_detections;
263 filtered_detections = NonMaximumSupression(orig_preds, num_rows, num_columns,
264 &detections, &indices);
265 VLOG(1) << "---";
266 for (size_t i = 0; i < filtered_detections.size(); i++) {
267 VLOG(1) << "Detection #" << i << " | Class ID #"
268 << filtered_detections[i].class_id << " @ "
269 << filtered_detections[i].confidence << " confidence";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700270 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700271
272 VLOG(1) << "---";
273
274 auto stop = std::chrono::high_resolution_clock::now();
275
276 VLOG(1) << "Inference time: "
277 << std::chrono::duration_cast<std::chrono::milliseconds>(stop - start)
278 .count();
279
280 if (FLAGS_visualize_detections) {
281 cv::resize(frame, frame, cv::Size(img_width_, img_height_), 0, 0, true);
282 for (size_t i = 0; i < filtered_detections.size(); i++) {
283 VLOG(1) << "Bounding Box | X: " << filtered_detections[i].box.x
284 << " Y: " << filtered_detections[i].box.y
285 << " W: " << filtered_detections[i].box.width
286 << " H: " << filtered_detections[i].box.height;
287 cv::rectangle(frame, filtered_detections[i].box, cv::Scalar(255, 0, 0),
288 2);
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700289
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700290 cv::putText(
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700291 frame,
292 "#" + std::to_string(filtered_detections[i].class_id) + " at " +
293 std::to_string(filtered_detections[i].confidence) + " confidence",
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700294 cv::Point(filtered_detections[i].box.x, filtered_detections[i].box.y),
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700295 cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700296 }
297 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
298 cv::imshow("yolo", frame);
299 cv::waitKey(10);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700300 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700301
302 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700303};
304
Stephan Pleinesf63bde82024-01-13 15:59:33 -0800305} // namespace y2023::vision