Add object detection inferencing code

Add a cc_library for inferencing using tflite and edgetpu.

Signed-off-by: Filip Kujawa <filip.j.kujawa@gmail.com>
Change-Id: Ie4cfa1e960a3d7461a75df074ebf12e4d47727e5
diff --git a/y2023/vision/yolov5.cc b/y2023/vision/yolov5.cc
new file mode 100644
index 0000000..df03d12
--- /dev/null
+++ b/y2023/vision/yolov5.cc
@@ -0,0 +1,158 @@
+#include "yolov5.h"
+
+#include <opencv2/core.hpp>
+
+#include "gflags/gflags.h"
+#include "glog/logging.h"
+
+DEFINE_double(conf_threshold, 0.9,
+              "Threshold value for confidence scores. Detections with a "
+              "confidence score below this value will be ignored.");
+
+DEFINE_double(
+    nms_threshold, 0.5,
+    "Threshold value for non-maximum suppression. Detections with an "
+    "intersection-over-union value below this value will be removed.");
+
+DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
+
+namespace y2023 {
+namespace vision {
+
+void YOLOV5::LoadModel(const std::string path) {
+  model_ = tflite::FlatBufferModel::BuildFromFile(path.c_str());
+  CHECK(model_);
+  size_t num_devices;
+  std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
+      edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
+  const auto &device = devices.get()[0];
+  CHECK_EQ(num_devices, 1ul);
+  tflite::ops::builtin::BuiltinOpResolver resolver;
+  CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
+           kTfLiteOk);
+
+  auto *delegate =
+      edgetpu_create_delegate(device.type, device.path, nullptr, 0);
+  interpreter_->ModifyGraphWithDelegate(delegate);
+
+  TfLiteStatus status = interpreter_->AllocateTensors();
+  CHECK(status == kTfLiteOk);
+
+  input_ = interpreter_->inputs()[0];
+  TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
+  in_height_ = dims->data[1];
+  in_width_ = dims->data[2];
+  in_channels_ = dims->data[3];
+  in_type_ = interpreter_->tensor(input_)->type;
+  input_8_ = interpreter_->typed_tensor<uint8_t>(input_);
+
+  interpreter_->SetNumThreads(FLAGS_nthreads);
+}
+
+void YOLOV5::Preprocess(cv::Mat image) {
+  cv::resize(image, image, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
+  cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
+  image.convertTo(image, CV_8U);
+}
+
+void YOLOV5::ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in) {
+  CHECK(src.type() == CV_8UC3);
+  int n = 0, nc = src.channels(), ne = src.elemSize();
+  for (int y = 0; y < src.rows; ++y)
+    for (int x = 0; x < src.cols; ++x)
+      for (int c = 0; c < nc; ++c)
+        in[n++] = src.data[y * src.step + x * ne + c];
+}
+
+std::vector<std::vector<float>> YOLOV5::TensorToVector2D(
+    TfLiteTensor *src_tensor, const int rows, const int columns) {
+  auto scale = src_tensor->params.scale;
+  auto zero_point = src_tensor->params.zero_point;
+  std::vector<std::vector<float>> result_vec;
+  for (int32_t i = 0; i < rows; i++) {
+    std::vector<float> row_values;
+    for (int32_t j = 0; j < columns; j++) {
+      float val_float =
+          ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
+           zero_point) *
+          scale;
+      row_values.push_back(val_float);
+    }
+    result_vec.push_back(row_values);
+  }
+  return result_vec;
+}
+
+void YOLOV5::NonMaximumSupression(
+    const std::vector<std::vector<float>> &orig_preds, const int rows,
+    const int columns, std::vector<Detection> *detections,
+    std::vector<int> *indices)
+
+{
+  std::vector<float> scores;
+  double confidence;
+  cv::Point class_id;
+
+  for (int i = 0; i < rows; i++) {
+    if (orig_preds[i][4] > FLAGS_conf_threshold) {
+      int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_;
+      int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_;
+      int w = orig_preds[i][2] * img_width_;
+      int h = orig_preds[i][3] * img_height_;
+
+      for (int j = 5; j < columns; j++) {
+        scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
+      }
+
+      cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
+      if (confidence > FLAGS_conf_threshold) {
+        Detection detection{cv::Rect(left, top, w, h), confidence,
+                            class_id.x - kClassIdOffset};
+        detections->push_back(detection);
+      }
+    }
+  }
+
+  std::vector<cv::Rect> boxes;
+  std::vector<float> confidences;
+
+  for (const Detection &d : *detections) {
+    boxes.push_back(d.box);
+    confidences.push_back(d.confidence);
+  }
+
+  cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
+                    FLAGS_nms_threshold, *indices);
+}
+
+std::vector<Detection> YOLOV5::ProcessImage(cv::Mat frame) {
+  img_height_ = frame.rows;
+  img_width_ = frame.cols;
+
+  Preprocess(frame);
+  ConvertCVMatToTensor(frame, input_8_);
+
+  // Inference
+  TfLiteStatus status = interpreter_->Invoke();
+  CHECK_EQ(status, kTfLiteOk);
+
+  int output_tensor_index = interpreter_->outputs()[0];
+  TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
+  int num_rows = out_dims->data[1];
+  int num_columns = out_dims->data[2];
+
+  TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
+  std::vector<std::vector<float>> orig_preds =
+      TensorToVector2D(src_tensor, num_rows, num_columns);
+
+  std::vector<int> indices;
+  std::vector<Detection> detections;
+
+  NonMaximumSupression(orig_preds, num_rows, num_columns, &detections,
+                       &indices);
+
+  return detections;
+};
+
+}  // namespace vision
+}  // namespace y2023