Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 1 | #include "yolov5.h" |
| 2 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 3 | #include <tensorflow/lite/c/common.h> |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 4 | #include <tensorflow/lite/interpreter.h> |
| 5 | #include <tensorflow/lite/kernels/register.h> |
| 6 | #include <tensorflow/lite/model.h> |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 7 | #include <tflite/public/edgetpu.h> |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 8 | #include <tflite/public/edgetpu_c.h> |
| 9 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 10 | #include <opencv2/dnn.hpp> |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 11 | |
| 12 | #include "gflags/gflags.h" |
| 13 | #include "glog/logging.h" |
| 14 | |
| 15 | DEFINE_double(conf_threshold, 0.9, |
| 16 | "Threshold value for confidence scores. Detections with a " |
| 17 | "confidence score below this value will be ignored."); |
| 18 | |
| 19 | DEFINE_double( |
| 20 | nms_threshold, 0.5, |
| 21 | "Threshold value for non-maximum suppression. Detections with an " |
| 22 | "intersection-over-union value below this value will be removed."); |
| 23 | |
| 24 | DEFINE_int32(nthreads, 6, "Number of threads to use during inference."); |
| 25 | |
| 26 | namespace y2023 { |
| 27 | namespace vision { |
| 28 | |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 29 | class YOLOV5Impl : public YOLOV5 { |
| 30 | public: |
| 31 | // Takes a model path as string and and loads a pre-trained |
| 32 | // YOLOv5 model from the specified path. |
| 33 | void LoadModel(const std::string path); |
| 34 | |
| 35 | // Takes an image and returns a Detection. |
| 36 | std::vector<Detection> ProcessImage(cv::Mat image); |
| 37 | |
| 38 | private: |
| 39 | // Convert an OpenCV Mat object to a tensor input |
| 40 | // that can be fed to the TensorFlow Lite model. |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 41 | void ConvertCVMatToTensor(cv::Mat src, uint8_t *in); |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 42 | |
| 43 | // Resizes, converts color space, and converts |
| 44 | // image data type before inference. |
| 45 | void Preprocess(cv::Mat image); |
| 46 | |
| 47 | // Converts a TensorFlow Lite tensor to a 2D vector. |
| 48 | std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor, |
| 49 | const int rows, |
| 50 | const int columns); |
| 51 | |
| 52 | // Performs non-maximum suppression to remove overlapping bounding boxes. |
| 53 | void NonMaximumSupression(const std::vector<std::vector<float>> &orig_preds, |
| 54 | const int rows, const int columns, |
| 55 | std::vector<Detection> *detections, |
| 56 | std::vector<int> *indices); |
| 57 | // Models |
| 58 | std::unique_ptr<tflite::FlatBufferModel> model_; |
| 59 | std::unique_ptr<tflite::Interpreter> interpreter_; |
| 60 | tflite::StderrReporter error_reporter_; |
| 61 | |
| 62 | // Parameters of interpreter's input |
| 63 | int input_; |
| 64 | int in_height_; |
| 65 | int in_width_; |
| 66 | int in_channels_; |
| 67 | int in_type_; |
| 68 | |
| 69 | // Parameters of original image |
| 70 | int img_height_; |
| 71 | int img_width_; |
| 72 | |
| 73 | // Input of the interpreter |
| 74 | uint8_t *input_8_; |
| 75 | |
| 76 | // Subtract this offset from class labels to get the actual label. |
| 77 | static constexpr int kClassIdOffset = 5; |
| 78 | }; |
| 79 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 80 | std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); } |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 81 | |
| 82 | void YOLOV5Impl::LoadModel(const std::string path) { |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 83 | LOG(INFO) << "Load model: start"; |
| 84 | |
| 85 | |
| 86 | tflite::ops::builtin::BuiltinOpResolver resolver; |
| 87 | |
| 88 | model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str()); |
| 89 | |
| 90 | /* |
| 91 | auto model_impl = model_->GetModel(); |
| 92 | model_impl->subgraphs(); |
| 93 | LOG(INFO) << model_impl; |
| 94 | LOG(INFO) << model_impl->subgraphs(); |
| 95 | auto subgraphs = model_impl->subgraphs(); |
| 96 | LOG(INFO) << subgraphs->size(); |
| 97 | LOG(INFO) << subgraphs->Get(0)->inputs()->size(); |
| 98 | LOG(INFO) << subgraphs->Get(0)->inputs()->Get(0); |
| 99 | (void)subgraphs; |
| 100 | */ |
| 101 | |
| 102 | LOG(INFO) << "Load model: Build Model from file"; |
| 103 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 104 | CHECK(model_); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 105 | CHECK(model_->initialized()); |
| 106 | CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_), |
| 107 | kTfLiteOk); |
| 108 | LOG(INFO) << "Load model: Interpreter builder done"; |
| 109 | /* |
| 110 | LOG(INFO) << &interpreter_->primary_subgraph(); |
| 111 | LOG(INFO) << interpreter_->subgraph(0); |
| 112 | LOG(INFO) << interpreter_->subgraphs_size(); |
| 113 | LOG(INFO) << interpreter_->subgraph(0)->inputs().size(); |
| 114 | LOG(INFO) << interpreter_->inputs().size(); |
| 115 | */ |
| 116 | |
| 117 | //interpreter_->SetExternalContext(kTfLiteEdgeTpuContext, edgetpu_context.get()); |
| 118 | // LOG(INFO) << "After set external context"; |
| 119 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 120 | size_t num_devices; |
| 121 | std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices( |
| 122 | edgetpu_list_devices(&num_devices), &edgetpu_free_devices); |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 123 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 124 | //const auto &available_tpus = |
| 125 | // edgetpu::EdgeTpuManager::GetSingleton()->EnumerateEdgeTpu(); |
| 126 | //LOG(INFO) << "Available tpus: " << available_tpus.size(); |
| 127 | |
| 128 | LOG(INFO) << "Load model: Getting devices"; |
| 129 | CHECK_EQ(num_devices, 1ul); |
| 130 | const auto &device = devices.get()[0]; |
| 131 | (void )device; |
| 132 | LOG(INFO) << "Load model: Got Device"; |
| 133 | |
| 134 | auto *delegate = edgetpu_create_delegate(device.type, device.path, nullptr, 0); |
| 135 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 136 | interpreter_->ModifyGraphWithDelegate(delegate); |
| 137 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 138 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 139 | TfLiteStatus status = interpreter_->AllocateTensors(); |
| 140 | CHECK_EQ(status, kTfLiteOk); |
| 141 | CHECK(interpreter_); |
| 142 | |
| 143 | LOG(INFO) << "Load model: Allocate tensors success"; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 144 | input_ = interpreter_->inputs()[0]; |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 145 | LOG(INFO) << "After set inputs"; |
| 146 | LOG(INFO) << input_; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 147 | TfLiteIntArray *dims = interpreter_->tensor(input_)->dims; |
| 148 | in_height_ = dims->data[1]; |
| 149 | in_width_ = dims->data[2]; |
| 150 | in_channels_ = dims->data[3]; |
| 151 | in_type_ = interpreter_->tensor(input_)->type; |
| 152 | input_8_ = interpreter_->typed_tensor<uint8_t>(input_); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 153 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 154 | |
| 155 | interpreter_->SetNumThreads(FLAGS_nthreads); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 156 | |
| 157 | LOG(INFO) << "End of load"; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 158 | } |
| 159 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 160 | void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, uint8_t *in) { |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 161 | CHECK(src.type() == CV_8UC3); |
| 162 | int n = 0, nc = src.channels(), ne = src.elemSize(); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 163 | LOG(INFO) << "ConvertCVMatToTensor - Rows " << src.rows; |
| 164 | LOG(INFO) << "ConvertCVMatToTensor - Cols " << src.cols; |
| 165 | for (int y = 0; y < src.rows; ++y) { |
| 166 | for (int x = 0; x < src.cols; ++x) { |
| 167 | for (int c = 0; c < nc; ++c) { |
| 168 | (void)ne; |
| 169 | (void)n; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 170 | in[n++] = src.data[y * src.step + x * ne + c]; |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 171 | } |
| 172 | } |
| 173 | } |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 174 | } |
| 175 | |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 176 | std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D( |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 177 | TfLiteTensor *src_tensor, const int rows, const int columns) { |
| 178 | auto scale = src_tensor->params.scale; |
| 179 | auto zero_point = src_tensor->params.zero_point; |
| 180 | std::vector<std::vector<float>> result_vec; |
| 181 | for (int32_t i = 0; i < rows; i++) { |
| 182 | std::vector<float> row_values; |
| 183 | for (int32_t j = 0; j < columns; j++) { |
| 184 | float val_float = |
| 185 | ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) - |
| 186 | zero_point) * |
| 187 | scale; |
| 188 | row_values.push_back(val_float); |
| 189 | } |
| 190 | result_vec.push_back(row_values); |
| 191 | } |
| 192 | return result_vec; |
| 193 | } |
| 194 | |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 195 | void YOLOV5Impl::NonMaximumSupression( |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 196 | const std::vector<std::vector<float>> &orig_preds, const int rows, |
| 197 | const int columns, std::vector<Detection> *detections, |
| 198 | std::vector<int> *indices) |
| 199 | |
| 200 | { |
| 201 | std::vector<float> scores; |
| 202 | double confidence; |
| 203 | cv::Point class_id; |
| 204 | |
| 205 | for (int i = 0; i < rows; i++) { |
| 206 | if (orig_preds[i][4] > FLAGS_conf_threshold) { |
| 207 | int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_; |
| 208 | int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_; |
| 209 | int w = orig_preds[i][2] * img_width_; |
| 210 | int h = orig_preds[i][3] * img_height_; |
| 211 | |
| 212 | for (int j = 5; j < columns; j++) { |
| 213 | scores.push_back(orig_preds[i][j] * orig_preds[i][4]); |
| 214 | } |
| 215 | |
| 216 | cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id); |
| 217 | if (confidence > FLAGS_conf_threshold) { |
| 218 | Detection detection{cv::Rect(left, top, w, h), confidence, |
| 219 | class_id.x - kClassIdOffset}; |
| 220 | detections->push_back(detection); |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | std::vector<cv::Rect> boxes; |
| 226 | std::vector<float> confidences; |
| 227 | |
| 228 | for (const Detection &d : *detections) { |
| 229 | boxes.push_back(d.box); |
| 230 | confidences.push_back(d.confidence); |
| 231 | } |
| 232 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 233 | (void)indices; |
| 234 | // TODO(FILIP): Fix linker error. |
| 235 | // cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold, |
| 236 | // FLAGS_nms_threshold, *indices); |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 237 | } |
| 238 | |
Filip Kujawa | 26a2366 | 2023-04-08 16:19:13 -0700 | [diff] [blame] | 239 | std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) { |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 240 | img_height_ = frame.rows; |
| 241 | img_width_ = frame.cols; |
| 242 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 243 | //Preprocess; |
| 244 | cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC); |
| 245 | cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); |
| 246 | frame.convertTo(frame, CV_8U); |
| 247 | |
| 248 | LOG(INFO) << "After preprocess - Before convert to tensor"; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 249 | ConvertCVMatToTensor(frame, input_8_); |
| 250 | |
| 251 | // Inference |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 252 | LOG(INFO) << "Before Invoke"; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 253 | TfLiteStatus status = interpreter_->Invoke(); |
| 254 | CHECK_EQ(status, kTfLiteOk); |
| 255 | |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 256 | LOG(INFO) << "After invoke, status checked"; |
| 257 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 258 | int output_tensor_index = interpreter_->outputs()[0]; |
| 259 | TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims; |
| 260 | int num_rows = out_dims->data[1]; |
| 261 | int num_columns = out_dims->data[2]; |
| 262 | |
| 263 | TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 264 | |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 265 | std::vector<std::vector<float>> orig_preds = |
| 266 | TensorToVector2D(src_tensor, num_rows, num_columns); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 267 | LOG(INFO) << "After tensor to vector 2D"; |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 268 | |
| 269 | std::vector<int> indices; |
| 270 | std::vector<Detection> detections; |
| 271 | |
| 272 | NonMaximumSupression(orig_preds, num_rows, num_columns, &detections, |
| 273 | &indices); |
Filip Kujawa | 8c76e5d | 2023-04-08 16:20:27 -0700 | [diff] [blame^] | 274 | LOG(INFO) << "After NMS"; |
| 275 | for (size_t i = 0; i < interpreter_->outputs().size(); i++) { |
| 276 | LOG(INFO) << "Detection #" << i << " | " << interpreter_->outputs()[i]; |
| 277 | } |
| 278 | if (detections.size() > 0) { |
| 279 | LOG(INFO) << "Detection ID: " << detections[0].class_id; |
| 280 | LOG(INFO) << "Confidence" << detections[0].confidence; |
| 281 | } |
Filip Kujawa | dc7d47c | 2023-04-08 16:16:51 -0700 | [diff] [blame] | 282 | return detections; |
| 283 | }; |
| 284 | |
| 285 | } // namespace vision |
| 286 | } // namespace y2023 |