blob: 7f5aa2a1c792d9b17f74611f38a5d54eff4099a0 [file] [log] [blame]
Filip Kujawadc7d47c2023-04-08 16:16:51 -07001#include "yolov5.h"
2
Filip Kujawa26a23662023-04-08 16:19:13 -07003#include <tensorflow/lite/interpreter.h>
4#include <tensorflow/lite/kernels/register.h>
5#include <tensorflow/lite/model.h>
6#include <tflite/public/edgetpu_c.h>
7
Filip Kujawadc7d47c2023-04-08 16:16:51 -07008#include <opencv2/core.hpp>
9
10#include "gflags/gflags.h"
11#include "glog/logging.h"
12
13DEFINE_double(conf_threshold, 0.9,
14 "Threshold value for confidence scores. Detections with a "
15 "confidence score below this value will be ignored.");
16
17DEFINE_double(
18 nms_threshold, 0.5,
19 "Threshold value for non-maximum suppression. Detections with an "
20 "intersection-over-union value below this value will be removed.");
21
22DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
23
24namespace y2023 {
25namespace vision {
26
Filip Kujawa26a23662023-04-08 16:19:13 -070027class YOLOV5Impl : public YOLOV5 {
28 public:
29 // Takes a model path as string and and loads a pre-trained
30 // YOLOv5 model from the specified path.
31 void LoadModel(const std::string path);
32
33 // Takes an image and returns a Detection.
34 std::vector<Detection> ProcessImage(cv::Mat image);
35
36 private:
37 // Convert an OpenCV Mat object to a tensor input
38 // that can be fed to the TensorFlow Lite model.
39 void ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in);
40
41 // Resizes, converts color space, and converts
42 // image data type before inference.
43 void Preprocess(cv::Mat image);
44
45 // Converts a TensorFlow Lite tensor to a 2D vector.
46 std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
47 const int rows,
48 const int columns);
49
50 // Performs non-maximum suppression to remove overlapping bounding boxes.
51 void NonMaximumSupression(const std::vector<std::vector<float>> &orig_preds,
52 const int rows, const int columns,
53 std::vector<Detection> *detections,
54 std::vector<int> *indices);
55 // Models
56 std::unique_ptr<tflite::FlatBufferModel> model_;
57 std::unique_ptr<tflite::Interpreter> interpreter_;
58 tflite::StderrReporter error_reporter_;
59
60 // Parameters of interpreter's input
61 int input_;
62 int in_height_;
63 int in_width_;
64 int in_channels_;
65 int in_type_;
66
67 // Parameters of original image
68 int img_height_;
69 int img_width_;
70
71 // Input of the interpreter
72 uint8_t *input_8_;
73
74 // Subtract this offset from class labels to get the actual label.
75 static constexpr int kClassIdOffset = 5;
76};
77
78std::unique_ptr<YOLOV5> MakeYOLOV5() {
79 YOLOV5Impl *yolo = new YOLOV5Impl();
80 return std::unique_ptr<YOLOV5>(yolo);
81}
82
83void YOLOV5Impl::LoadModel(const std::string path) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -070084 model_ = tflite::FlatBufferModel::BuildFromFile(path.c_str());
85 CHECK(model_);
86 size_t num_devices;
87 std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
88 edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
89 const auto &device = devices.get()[0];
90 CHECK_EQ(num_devices, 1ul);
91 tflite::ops::builtin::BuiltinOpResolver resolver;
92 CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
93 kTfLiteOk);
94
95 auto *delegate =
96 edgetpu_create_delegate(device.type, device.path, nullptr, 0);
97 interpreter_->ModifyGraphWithDelegate(delegate);
98
99 TfLiteStatus status = interpreter_->AllocateTensors();
100 CHECK(status == kTfLiteOk);
101
102 input_ = interpreter_->inputs()[0];
103 TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
104 in_height_ = dims->data[1];
105 in_width_ = dims->data[2];
106 in_channels_ = dims->data[3];
107 in_type_ = interpreter_->tensor(input_)->type;
108 input_8_ = interpreter_->typed_tensor<uint8_t>(input_);
109
110 interpreter_->SetNumThreads(FLAGS_nthreads);
111}
112
Filip Kujawa26a23662023-04-08 16:19:13 -0700113void YOLOV5Impl::Preprocess(cv::Mat image) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700114 cv::resize(image, image, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
115 cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
116 image.convertTo(image, CV_8U);
117}
118
Filip Kujawa26a23662023-04-08 16:19:13 -0700119void YOLOV5Impl::ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700120 CHECK(src.type() == CV_8UC3);
121 int n = 0, nc = src.channels(), ne = src.elemSize();
122 for (int y = 0; y < src.rows; ++y)
123 for (int x = 0; x < src.cols; ++x)
124 for (int c = 0; c < nc; ++c)
125 in[n++] = src.data[y * src.step + x * ne + c];
126}
127
Filip Kujawa26a23662023-04-08 16:19:13 -0700128std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700129 TfLiteTensor *src_tensor, const int rows, const int columns) {
130 auto scale = src_tensor->params.scale;
131 auto zero_point = src_tensor->params.zero_point;
132 std::vector<std::vector<float>> result_vec;
133 for (int32_t i = 0; i < rows; i++) {
134 std::vector<float> row_values;
135 for (int32_t j = 0; j < columns; j++) {
136 float val_float =
137 ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
138 zero_point) *
139 scale;
140 row_values.push_back(val_float);
141 }
142 result_vec.push_back(row_values);
143 }
144 return result_vec;
145}
146
Filip Kujawa26a23662023-04-08 16:19:13 -0700147void YOLOV5Impl::NonMaximumSupression(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700148 const std::vector<std::vector<float>> &orig_preds, const int rows,
149 const int columns, std::vector<Detection> *detections,
150 std::vector<int> *indices)
151
152{
153 std::vector<float> scores;
154 double confidence;
155 cv::Point class_id;
156
157 for (int i = 0; i < rows; i++) {
158 if (orig_preds[i][4] > FLAGS_conf_threshold) {
159 int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_;
160 int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_;
161 int w = orig_preds[i][2] * img_width_;
162 int h = orig_preds[i][3] * img_height_;
163
164 for (int j = 5; j < columns; j++) {
165 scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
166 }
167
168 cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
169 if (confidence > FLAGS_conf_threshold) {
170 Detection detection{cv::Rect(left, top, w, h), confidence,
171 class_id.x - kClassIdOffset};
172 detections->push_back(detection);
173 }
174 }
175 }
176
177 std::vector<cv::Rect> boxes;
178 std::vector<float> confidences;
179
180 for (const Detection &d : *detections) {
181 boxes.push_back(d.box);
182 confidences.push_back(d.confidence);
183 }
184
185 cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
186 FLAGS_nms_threshold, *indices);
187}
188
Filip Kujawa26a23662023-04-08 16:19:13 -0700189std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700190 img_height_ = frame.rows;
191 img_width_ = frame.cols;
192
193 Preprocess(frame);
194 ConvertCVMatToTensor(frame, input_8_);
195
196 // Inference
197 TfLiteStatus status = interpreter_->Invoke();
198 CHECK_EQ(status, kTfLiteOk);
199
200 int output_tensor_index = interpreter_->outputs()[0];
201 TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
202 int num_rows = out_dims->data[1];
203 int num_columns = out_dims->data[2];
204
205 TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
206 std::vector<std::vector<float>> orig_preds =
207 TensorToVector2D(src_tensor, num_rows, num_columns);
208
209 std::vector<int> indices;
210 std::vector<Detection> detections;
211
212 NonMaximumSupression(orig_preds, num_rows, num_columns, &detections,
213 &indices);
214
215 return detections;
216};
217
218} // namespace vision
219} // namespace y2023