blob: ba2a9f7d8c267f2d033b7ae692d4caf4c725c3ee [file] [log] [blame]
Filip Kujawadc7d47c2023-04-08 16:16:51 -07001#include "yolov5.h"
2
Adam Snaider13d48d92023-08-03 12:20:15 -07003#pragma clang diagnostic ignored "-Wunused-parameter"
4
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07005#include <tensorflow/lite/c/common.h>
Filip Kujawa26a23662023-04-08 16:19:13 -07006#include <tensorflow/lite/interpreter.h>
7#include <tensorflow/lite/kernels/register.h>
8#include <tensorflow/lite/model.h>
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07009#include <tflite/public/edgetpu.h>
Filip Kujawa26a23662023-04-08 16:19:13 -070010#include <tflite/public/edgetpu_c.h>
11
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070012#include <chrono>
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070013#include <string>
Filip Kujawadc7d47c2023-04-08 16:16:51 -070014
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070015#include "absl/types/span.h"
Filip Kujawadc7d47c2023-04-08 16:16:51 -070016#include "gflags/gflags.h"
17#include "glog/logging.h"
Philipp Schrader790cb542023-07-05 21:06:52 -070018#include <opencv2/dnn.hpp>
Filip Kujawadc7d47c2023-04-08 16:16:51 -070019
20DEFINE_double(conf_threshold, 0.9,
21 "Threshold value for confidence scores. Detections with a "
22 "confidence score below this value will be ignored.");
23
24DEFINE_double(
25 nms_threshold, 0.5,
26 "Threshold value for non-maximum suppression. Detections with an "
27 "intersection-over-union value below this value will be removed.");
28
29DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
30
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070031DEFINE_bool(visualize_detections, false, "Display inference output");
32
Filip Kujawadc7d47c2023-04-08 16:16:51 -070033namespace y2023 {
34namespace vision {
35
Filip Kujawa26a23662023-04-08 16:19:13 -070036class YOLOV5Impl : public YOLOV5 {
37 public:
38 // Takes a model path as string and and loads a pre-trained
39 // YOLOv5 model from the specified path.
40 void LoadModel(const std::string path);
41
42 // Takes an image and returns a Detection.
43 std::vector<Detection> ProcessImage(cv::Mat image);
44
45 private:
46 // Convert an OpenCV Mat object to a tensor input
47 // that can be fed to the TensorFlow Lite model.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070048 void ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor);
Filip Kujawa26a23662023-04-08 16:19:13 -070049
50 // Resizes, converts color space, and converts
51 // image data type before inference.
52 void Preprocess(cv::Mat image);
53
54 // Converts a TensorFlow Lite tensor to a 2D vector.
55 std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
56 const int rows,
57 const int columns);
58
59 // Performs non-maximum suppression to remove overlapping bounding boxes.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070060 std::vector<Detection> NonMaximumSupression(
61 const std::vector<std::vector<float>> &orig_preds, const int rows,
62 const int columns, std::vector<Detection> *detections,
63 std::vector<int> *indices);
Filip Kujawa26a23662023-04-08 16:19:13 -070064 // Models
65 std::unique_ptr<tflite::FlatBufferModel> model_;
66 std::unique_ptr<tflite::Interpreter> interpreter_;
67 tflite::StderrReporter error_reporter_;
68
69 // Parameters of interpreter's input
70 int input_;
71 int in_height_;
72 int in_width_;
73 int in_channels_;
74 int in_type_;
75
76 // Parameters of original image
77 int img_height_;
78 int img_width_;
79
80 // Input of the interpreter
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070081 absl::Span<uint8_t> input_8_;
Filip Kujawa26a23662023-04-08 16:19:13 -070082
83 // Subtract this offset from class labels to get the actual label.
84 static constexpr int kClassIdOffset = 5;
85};
86
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070087std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); }
Filip Kujawa26a23662023-04-08 16:19:13 -070088
89void YOLOV5Impl::LoadModel(const std::string path) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070090 VLOG(1) << "Load model: Start";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070091
92 tflite::ops::builtin::BuiltinOpResolver resolver;
93
94 model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str());
Filip Kujawadc7d47c2023-04-08 16:16:51 -070095 CHECK(model_);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070096 CHECK(model_->initialized());
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070097 VLOG(1) << "Load model: Build model from file success";
98
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070099 CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
100 kTfLiteOk);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700101 VLOG(1) << "Load model: Interpreter builder success";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700102
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700103 size_t num_devices;
104 std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
105 edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700106
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700107 CHECK_EQ(num_devices, 1ul);
108 const auto &device = devices.get()[0];
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700109 VLOG(1) << "Load model: Got Devices";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700110
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700111 auto *delegate =
112 edgetpu_create_delegate(device.type, device.path, nullptr, 0);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700113
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700114 interpreter_->ModifyGraphWithDelegate(delegate);
115
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700116 VLOG(1) << "Load model: Modify graph with delegate complete";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700117
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700118 TfLiteStatus status = interpreter_->AllocateTensors();
119 CHECK_EQ(status, kTfLiteOk);
120 CHECK(interpreter_);
121
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700122 VLOG(1) << "Load model: Allocate tensors success";
123
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700124 input_ = interpreter_->inputs()[0];
125 TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
126 in_height_ = dims->data[1];
127 in_width_ = dims->data[2];
128 in_channels_ = dims->data[3];
129 in_type_ = interpreter_->tensor(input_)->type;
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700130
131 int tensor_size = 1;
132 for (int i = 0; i < dims->size; i++) {
133 tensor_size *= dims->data[i];
134 }
135 input_8_ =
136 absl::Span(interpreter_->typed_tensor<uint8_t>(input_), tensor_size);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700137
138 interpreter_->SetNumThreads(FLAGS_nthreads);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700139
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700140 VLOG(1) << "Load model: Done";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700141}
142
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700143void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700144 CHECK(src.type() == CV_8UC3);
145 int n = 0, nc = src.channels(), ne = src.elemSize();
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700146 VLOG(2) << "ConvertCVMatToTensor: Rows " << src.rows;
147 VLOG(2) << "ConvertCVMatToTensor: Cols " << src.cols;
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700148 for (int y = 0; y < src.rows; ++y) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700149 auto *row_ptr = src.ptr<uint8_t>(y);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700150 for (int x = 0; x < src.cols; ++x) {
151 for (int c = 0; c < nc; ++c) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700152 tensor[n++] = *(row_ptr + x * ne + c);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700153 }
154 }
155 }
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700156}
157
Filip Kujawa26a23662023-04-08 16:19:13 -0700158std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700159 TfLiteTensor *src_tensor, const int rows, const int columns) {
160 auto scale = src_tensor->params.scale;
161 auto zero_point = src_tensor->params.zero_point;
162 std::vector<std::vector<float>> result_vec;
163 for (int32_t i = 0; i < rows; i++) {
164 std::vector<float> row_values;
165 for (int32_t j = 0; j < columns; j++) {
166 float val_float =
167 ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
168 zero_point) *
169 scale;
170 row_values.push_back(val_float);
171 }
172 result_vec.push_back(row_values);
173 }
174 return result_vec;
175}
176
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700177std::vector<Detection> YOLOV5Impl::NonMaximumSupression(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700178 const std::vector<std::vector<float>> &orig_preds, const int rows,
179 const int columns, std::vector<Detection> *detections,
180 std::vector<int> *indices)
181
182{
183 std::vector<float> scores;
184 double confidence;
185 cv::Point class_id;
186
187 for (int i = 0; i < rows; i++) {
188 if (orig_preds[i][4] > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700189 float x = orig_preds[i][0];
190 float y = orig_preds[i][1];
191 float w = orig_preds[i][2];
192 float h = orig_preds[i][3];
193 int left = static_cast<int>((x - 0.5 * w) * img_width_);
194 int top = static_cast<int>((y - 0.5 * h) * img_height_);
195 int width = static_cast<int>(w * img_width_);
196 int height = static_cast<int>(h * img_height_);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700197
198 for (int j = 5; j < columns; j++) {
199 scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
200 }
201
202 cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700203 scores.clear();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700204 if (confidence > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700205 Detection detection{cv::Rect(left, top, width, height), confidence,
206 class_id.x};
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700207 detections->push_back(detection);
208 }
209 }
210 }
211
212 std::vector<cv::Rect> boxes;
213 std::vector<float> confidences;
214
215 for (const Detection &d : *detections) {
216 boxes.push_back(d.box);
217 confidences.push_back(d.confidence);
218 }
219
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700220 cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
221 FLAGS_nms_threshold, *indices);
222
223 std::vector<Detection> filtered_detections;
224 for (size_t i = 0; i < indices->size(); i++) {
225 filtered_detections.push_back((*detections)[(*indices)[i]]);
226 }
227
228 VLOG(1) << "NonMaximumSupression: " << detections->size() - indices->size()
229 << " detections filtered out";
230
231 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700232}
233
Filip Kujawa26a23662023-04-08 16:19:13 -0700234std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700235 VLOG(1) << "\n";
236
237 auto start = std::chrono::high_resolution_clock::now();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700238 img_height_ = frame.rows;
239 img_width_ = frame.cols;
240
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700241 cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
242 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
243 frame.convertTo(frame, CV_8U);
244
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700245 ConvertCVMatToTensor(frame, input_8_);
246
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700247 TfLiteStatus status = interpreter_->Invoke();
248 CHECK_EQ(status, kTfLiteOk);
249
250 int output_tensor_index = interpreter_->outputs()[0];
251 TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
252 int num_rows = out_dims->data[1];
253 int num_columns = out_dims->data[2];
254
255 TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700256
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700257 std::vector<std::vector<float>> orig_preds =
258 TensorToVector2D(src_tensor, num_rows, num_columns);
259
260 std::vector<int> indices;
261 std::vector<Detection> detections;
262
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700263 std::vector<Detection> filtered_detections;
264 filtered_detections = NonMaximumSupression(orig_preds, num_rows, num_columns,
265 &detections, &indices);
266 VLOG(1) << "---";
267 for (size_t i = 0; i < filtered_detections.size(); i++) {
268 VLOG(1) << "Detection #" << i << " | Class ID #"
269 << filtered_detections[i].class_id << " @ "
270 << filtered_detections[i].confidence << " confidence";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700271 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700272
273 VLOG(1) << "---";
274
275 auto stop = std::chrono::high_resolution_clock::now();
276
277 VLOG(1) << "Inference time: "
278 << std::chrono::duration_cast<std::chrono::milliseconds>(stop - start)
279 .count();
280
281 if (FLAGS_visualize_detections) {
282 cv::resize(frame, frame, cv::Size(img_width_, img_height_), 0, 0, true);
283 for (size_t i = 0; i < filtered_detections.size(); i++) {
284 VLOG(1) << "Bounding Box | X: " << filtered_detections[i].box.x
285 << " Y: " << filtered_detections[i].box.y
286 << " W: " << filtered_detections[i].box.width
287 << " H: " << filtered_detections[i].box.height;
288 cv::rectangle(frame, filtered_detections[i].box, cv::Scalar(255, 0, 0),
289 2);
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700290
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700291 cv::putText(
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700292 frame,
293 "#" + std::to_string(filtered_detections[i].class_id) + " at " +
294 std::to_string(filtered_detections[i].confidence) + " confidence",
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700295 cv::Point(filtered_detections[i].box.x, filtered_detections[i].box.y),
Filip Kujawa64f7cf92023-04-14 14:35:42 -0700296 cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700297 }
298 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
299 cv::imshow("yolo", frame);
300 cv::waitKey(10);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700301 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700302
303 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700304};
305
306} // namespace vision
307} // namespace y2023