blob: f4d45016c33c6d8ffddf9bbadc7c323dbd81bfef [file] [log] [blame]
Austin Schuha36c8902019-12-30 18:07:15 -08001#include "aos/events/logging/logfile_utils.h"
2
3#include <fcntl.h>
Austin Schuha36c8902019-12-30 18:07:15 -08004#include <sys/stat.h>
5#include <sys/types.h>
6#include <sys/uio.h>
7
Brian Silvermanf51499a2020-09-21 12:49:08 -07008#include <algorithm>
9#include <climits>
Austin Schuha36c8902019-12-30 18:07:15 -080010
Austin Schuhe4fca832020-03-07 16:58:53 -080011#include "absl/strings/escaping.h"
Austin Schuh05b70472020-01-01 17:11:17 -080012#include "aos/configuration.h"
Austin Schuhfa895892020-01-07 20:07:41 -080013#include "aos/flatbuffer_merge.h"
Austin Schuh6f3babe2020-01-26 20:34:50 -080014#include "aos/util/file.h"
Austin Schuha36c8902019-12-30 18:07:15 -080015#include "flatbuffers/flatbuffers.h"
Austin Schuh05b70472020-01-01 17:11:17 -080016#include "gflags/gflags.h"
17#include "glog/logging.h"
Austin Schuha36c8902019-12-30 18:07:15 -080018
Brian Silvermanf59fe3f2020-09-22 21:04:09 -070019#if defined(__x86_64__)
20#define ENABLE_LZMA 1
21#elif defined(__aarch64__)
22#define ENABLE_LZMA 1
23#else
24#define ENABLE_LZMA 0
25#endif
26
27#if ENABLE_LZMA
28#include "aos/events/logging/lzma_encoder.h"
29#endif
30
Austin Schuh7fbf5a72020-09-21 16:28:13 -070031DEFINE_int32(flush_size, 128000,
Austin Schuha36c8902019-12-30 18:07:15 -080032 "Number of outstanding bytes to allow before flushing to disk.");
Austin Schuhbd06ae42021-03-31 22:48:21 -070033DEFINE_double(
34 flush_period, 5.0,
35 "Max time to let data sit in the queue before flushing in seconds.");
Austin Schuha36c8902019-12-30 18:07:15 -080036
Austin Schuha040c3f2021-02-13 16:09:07 -080037DEFINE_double(
38 max_out_of_order, -1,
39 "If set, this overrides the max out of order duration for a log file.");
40
Brian Silvermanf51499a2020-09-21 12:49:08 -070041namespace aos::logger {
Austin Schuha36c8902019-12-30 18:07:15 -080042
Austin Schuh05b70472020-01-01 17:11:17 -080043namespace chrono = std::chrono;
44
Brian Silvermanf51499a2020-09-21 12:49:08 -070045DetachedBufferWriter::DetachedBufferWriter(
46 std::string_view filename, std::unique_ptr<DetachedBufferEncoder> encoder)
47 : filename_(filename), encoder_(std::move(encoder)) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070048 if (!util::MkdirPIfSpace(filename, 0777)) {
49 ran_out_of_space_ = true;
50 } else {
51 fd_ = open(std::string(filename).c_str(),
52 O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774);
53 if (fd_ == -1 && errno == ENOSPC) {
54 ran_out_of_space_ = true;
55 } else {
56 PCHECK(fd_ != -1) << ": Failed to open " << filename << " for writing";
57 VLOG(1) << "Opened " << filename << " for writing";
58 }
59 }
Austin Schuha36c8902019-12-30 18:07:15 -080060}
61
62DetachedBufferWriter::~DetachedBufferWriter() {
Brian Silverman0465fcf2020-09-24 00:29:18 -070063 Close();
64 if (ran_out_of_space_) {
65 CHECK(acknowledge_ran_out_of_space_)
66 << ": Unacknowledged out of disk space, log file was not completed";
Brian Silvermanf51499a2020-09-21 12:49:08 -070067 }
Austin Schuh2f8fd752020-09-01 22:38:28 -070068}
69
Brian Silvermand90905f2020-09-23 14:42:56 -070070DetachedBufferWriter::DetachedBufferWriter(DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070071 *this = std::move(other);
72}
73
Brian Silverman87ac0402020-09-17 14:47:01 -070074// When other is destroyed "soon" (which it should be because we're getting an
75// rvalue reference to it), it will flush etc all the data we have queued up
76// (because that data will then be its data).
Austin Schuh2f8fd752020-09-01 22:38:28 -070077DetachedBufferWriter &DetachedBufferWriter::operator=(
78 DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070079 std::swap(filename_, other.filename_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070080 std::swap(encoder_, other.encoder_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070081 std::swap(fd_, other.fd_);
Brian Silverman0465fcf2020-09-24 00:29:18 -070082 std::swap(ran_out_of_space_, other.ran_out_of_space_);
83 std::swap(acknowledge_ran_out_of_space_, other.acknowledge_ran_out_of_space_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070084 std::swap(iovec_, other.iovec_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070085 std::swap(max_write_time_, other.max_write_time_);
86 std::swap(max_write_time_bytes_, other.max_write_time_bytes_);
87 std::swap(max_write_time_messages_, other.max_write_time_messages_);
88 std::swap(total_write_time_, other.total_write_time_);
89 std::swap(total_write_count_, other.total_write_count_);
90 std::swap(total_write_messages_, other.total_write_messages_);
91 std::swap(total_write_bytes_, other.total_write_bytes_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070092 return *this;
Austin Schuha36c8902019-12-30 18:07:15 -080093}
94
Brian Silvermanf51499a2020-09-21 12:49:08 -070095void DetachedBufferWriter::QueueSpan(absl::Span<const uint8_t> span) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070096 if (ran_out_of_space_) {
97 // We don't want any later data to be written after space becomes
98 // available, so refuse to write anything more once we've dropped data
99 // because we ran out of space.
100 VLOG(1) << "Ignoring span: " << span.size();
101 return;
102 }
103
Austin Schuhbd06ae42021-03-31 22:48:21 -0700104 aos::monotonic_clock::time_point now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700105 if (encoder_->may_bypass() && span.size() > 4096u) {
106 // Over this threshold, we'll assume it's cheaper to add an extra
107 // syscall to write the data immediately instead of copying it to
108 // enqueue.
Austin Schuha36c8902019-12-30 18:07:15 -0800109
Brian Silvermanf51499a2020-09-21 12:49:08 -0700110 // First, flush everything.
111 while (encoder_->queue_size() > 0u) {
112 Flush();
113 }
Austin Schuhde031b72020-01-10 19:34:41 -0800114
Brian Silvermanf51499a2020-09-21 12:49:08 -0700115 // Then, write it directly.
116 const auto start = aos::monotonic_clock::now();
117 const ssize_t written = write(fd_, span.data(), span.size());
118 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700119 HandleWriteReturn(written, span.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700120 UpdateStatsForWrite(end - start, written, 1);
Austin Schuhbd06ae42021-03-31 22:48:21 -0700121 now = end;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700122 } else {
123 encoder_->Encode(CopySpanAsDetachedBuffer(span));
Austin Schuhbd06ae42021-03-31 22:48:21 -0700124 now = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800125 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700126
Austin Schuhbd06ae42021-03-31 22:48:21 -0700127 FlushAtThreshold(now);
Austin Schuha36c8902019-12-30 18:07:15 -0800128}
129
Brian Silverman0465fcf2020-09-24 00:29:18 -0700130void DetachedBufferWriter::Close() {
131 if (fd_ == -1) {
132 return;
133 }
134 encoder_->Finish();
135 while (encoder_->queue_size() > 0) {
136 Flush();
137 }
138 if (close(fd_) == -1) {
139 if (errno == ENOSPC) {
140 ran_out_of_space_ = true;
141 } else {
142 PLOG(ERROR) << "Closing log file failed";
143 }
144 }
145 fd_ = -1;
146 VLOG(1) << "Closed " << filename_;
147}
148
Austin Schuha36c8902019-12-30 18:07:15 -0800149void DetachedBufferWriter::Flush() {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700150 if (ran_out_of_space_) {
151 // We don't want any later data to be written after space becomes available,
152 // so refuse to write anything more once we've dropped data because we ran
153 // out of space.
Austin Schuha426f1f2021-03-31 22:27:41 -0700154 if (encoder_) {
155 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
156 encoder_->Clear(encoder_->queue().size());
157 } else {
158 VLOG(1) << "No queue to ignore";
159 }
160 return;
161 }
162
163 const auto queue = encoder_->queue();
164 if (queue.empty()) {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700165 return;
166 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700167
Austin Schuha36c8902019-12-30 18:07:15 -0800168 iovec_.clear();
Brian Silvermanf51499a2020-09-21 12:49:08 -0700169 const size_t iovec_size = std::min<size_t>(queue.size(), IOV_MAX);
170 iovec_.resize(iovec_size);
Austin Schuha36c8902019-12-30 18:07:15 -0800171 size_t counted_size = 0;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700172 for (size_t i = 0; i < iovec_size; ++i) {
173 iovec_[i].iov_base = const_cast<uint8_t *>(queue[i].data());
174 iovec_[i].iov_len = queue[i].size();
175 counted_size += iovec_[i].iov_len;
Austin Schuha36c8902019-12-30 18:07:15 -0800176 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700177
178 const auto start = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800179 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700180 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700181 HandleWriteReturn(written, counted_size);
Brian Silvermanf51499a2020-09-21 12:49:08 -0700182
183 encoder_->Clear(iovec_size);
184
185 UpdateStatsForWrite(end - start, written, iovec_size);
186}
187
Brian Silverman0465fcf2020-09-24 00:29:18 -0700188void DetachedBufferWriter::HandleWriteReturn(ssize_t write_return,
189 size_t write_size) {
190 if (write_return == -1 && errno == ENOSPC) {
191 ran_out_of_space_ = true;
192 return;
193 }
194 PCHECK(write_return >= 0) << ": write failed";
195 if (write_return < static_cast<ssize_t>(write_size)) {
196 // Sometimes this happens instead of ENOSPC. On a real filesystem, this
197 // never seems to happen in any other case. If we ever want to log to a
198 // socket, this will happen more often. However, until we get there, we'll
199 // just assume it means we ran out of space.
200 ran_out_of_space_ = true;
201 return;
202 }
203}
204
Brian Silvermanf51499a2020-09-21 12:49:08 -0700205void DetachedBufferWriter::UpdateStatsForWrite(
206 aos::monotonic_clock::duration duration, ssize_t written, int iovec_size) {
207 if (duration > max_write_time_) {
208 max_write_time_ = duration;
209 max_write_time_bytes_ = written;
210 max_write_time_messages_ = iovec_size;
211 }
212 total_write_time_ += duration;
213 ++total_write_count_;
214 total_write_messages_ += iovec_size;
215 total_write_bytes_ += written;
216}
217
Austin Schuhbd06ae42021-03-31 22:48:21 -0700218void DetachedBufferWriter::FlushAtThreshold(
219 aos::monotonic_clock::time_point now) {
Austin Schuha426f1f2021-03-31 22:27:41 -0700220 if (ran_out_of_space_) {
221 // We don't want any later data to be written after space becomes available,
222 // so refuse to write anything more once we've dropped data because we ran
223 // out of space.
224 if (encoder_) {
225 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
226 encoder_->Clear(encoder_->queue().size());
227 } else {
228 VLOG(1) << "No queue to ignore";
229 }
230 return;
231 }
232
Austin Schuhbd06ae42021-03-31 22:48:21 -0700233 // We don't want to flush the first time through. Otherwise we will flush as
234 // the log file header might be compressing, defeating any parallelism and
235 // queueing there.
236 if (last_flush_time_ == aos::monotonic_clock::min_time) {
237 last_flush_time_ = now;
238 }
239
Brian Silvermanf51499a2020-09-21 12:49:08 -0700240 // Flush if we are at the max number of iovs per writev, because there's no
241 // point queueing up any more data in memory. Also flush once we have enough
Austin Schuhbd06ae42021-03-31 22:48:21 -0700242 // data queued up or if it has been long enough.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700243 while (encoder_->queued_bytes() > static_cast<size_t>(FLAGS_flush_size) ||
Austin Schuhbd06ae42021-03-31 22:48:21 -0700244 encoder_->queue_size() >= IOV_MAX ||
245 now > last_flush_time_ +
246 chrono::duration_cast<chrono::nanoseconds>(
247 chrono::duration<double>(FLAGS_flush_period))) {
248 last_flush_time_ = now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700249 Flush();
250 }
Austin Schuha36c8902019-12-30 18:07:15 -0800251}
252
253flatbuffers::Offset<MessageHeader> PackMessage(
254 flatbuffers::FlatBufferBuilder *fbb, const Context &context,
255 int channel_index, LogType log_type) {
256 flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset;
257
258 switch (log_type) {
259 case LogType::kLogMessage:
260 case LogType::kLogMessageAndDeliveryTime:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800261 case LogType::kLogRemoteMessage:
Brian Silvermaneaa41d62020-07-08 19:47:35 -0700262 data_offset = fbb->CreateVector(
263 static_cast<const uint8_t *>(context.data), context.size);
Austin Schuha36c8902019-12-30 18:07:15 -0800264 break;
265
266 case LogType::kLogDeliveryTimeOnly:
267 break;
268 }
269
270 MessageHeader::Builder message_header_builder(*fbb);
271 message_header_builder.add_channel_index(channel_index);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800272
273 switch (log_type) {
274 case LogType::kLogRemoteMessage:
275 message_header_builder.add_queue_index(context.remote_queue_index);
276 message_header_builder.add_monotonic_sent_time(
277 context.monotonic_remote_time.time_since_epoch().count());
278 message_header_builder.add_realtime_sent_time(
279 context.realtime_remote_time.time_since_epoch().count());
280 break;
281
282 case LogType::kLogMessage:
283 case LogType::kLogMessageAndDeliveryTime:
284 case LogType::kLogDeliveryTimeOnly:
285 message_header_builder.add_queue_index(context.queue_index);
286 message_header_builder.add_monotonic_sent_time(
287 context.monotonic_event_time.time_since_epoch().count());
288 message_header_builder.add_realtime_sent_time(
289 context.realtime_event_time.time_since_epoch().count());
290 break;
291 }
Austin Schuha36c8902019-12-30 18:07:15 -0800292
293 switch (log_type) {
294 case LogType::kLogMessage:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800295 case LogType::kLogRemoteMessage:
Austin Schuha36c8902019-12-30 18:07:15 -0800296 message_header_builder.add_data(data_offset);
297 break;
298
299 case LogType::kLogMessageAndDeliveryTime:
300 message_header_builder.add_data(data_offset);
301 [[fallthrough]];
302
303 case LogType::kLogDeliveryTimeOnly:
304 message_header_builder.add_monotonic_remote_time(
305 context.monotonic_remote_time.time_since_epoch().count());
306 message_header_builder.add_realtime_remote_time(
307 context.realtime_remote_time.time_since_epoch().count());
308 message_header_builder.add_remote_queue_index(context.remote_queue_index);
309 break;
310 }
311
312 return message_header_builder.Finish();
313}
314
Brian Silvermanf51499a2020-09-21 12:49:08 -0700315SpanReader::SpanReader(std::string_view filename) : filename_(filename) {
Brian Silvermanf59fe3f2020-09-22 21:04:09 -0700316 static const std::string_view kXz = ".xz";
317 if (filename.substr(filename.size() - kXz.size()) == kXz) {
318#if ENABLE_LZMA
319 decoder_ = std::make_unique<LzmaDecoder>(filename);
320#else
321 LOG(FATAL) << "Reading xz-compressed files not supported on this platform";
322#endif
323 } else {
324 decoder_ = std::make_unique<DummyDecoder>(filename);
325 }
Austin Schuh05b70472020-01-01 17:11:17 -0800326}
327
328absl::Span<const uint8_t> SpanReader::ReadMessage() {
329 // Make sure we have enough for the size.
330 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
331 if (!ReadBlock()) {
332 return absl::Span<const uint8_t>();
333 }
334 }
335
336 // Now make sure we have enough for the message.
337 const size_t data_size =
338 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
339 sizeof(flatbuffers::uoffset_t);
Austin Schuhe4fca832020-03-07 16:58:53 -0800340 if (data_size == sizeof(flatbuffers::uoffset_t)) {
341 LOG(ERROR) << "Size of data is zero. Log file end is corrupted, skipping.";
342 LOG(ERROR) << " Rest of log file is "
343 << absl::BytesToHexString(std::string_view(
344 reinterpret_cast<const char *>(data_.data() +
345 consumed_data_),
346 data_.size() - consumed_data_));
347 return absl::Span<const uint8_t>();
348 }
Austin Schuh05b70472020-01-01 17:11:17 -0800349 while (data_.size() < consumed_data_ + data_size) {
350 if (!ReadBlock()) {
351 return absl::Span<const uint8_t>();
352 }
353 }
354
355 // And return it, consuming the data.
356 const uint8_t *data_ptr = data_.data() + consumed_data_;
357
358 consumed_data_ += data_size;
359
360 return absl::Span<const uint8_t>(data_ptr, data_size);
361}
362
Austin Schuh05b70472020-01-01 17:11:17 -0800363bool SpanReader::ReadBlock() {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700364 // This is the amount of data we grab at a time. Doing larger chunks minimizes
365 // syscalls and helps decompressors batch things more efficiently.
Austin Schuh05b70472020-01-01 17:11:17 -0800366 constexpr size_t kReadSize = 256 * 1024;
367
368 // Strip off any unused data at the front.
369 if (consumed_data_ != 0) {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700370 data_.erase_front(consumed_data_);
Austin Schuh05b70472020-01-01 17:11:17 -0800371 consumed_data_ = 0;
372 }
373
374 const size_t starting_size = data_.size();
375
376 // This should automatically grow the backing store. It won't shrink if we
377 // get a small chunk later. This reduces allocations when we want to append
378 // more data.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700379 data_.resize(starting_size + kReadSize);
Austin Schuh05b70472020-01-01 17:11:17 -0800380
Brian Silvermanf51499a2020-09-21 12:49:08 -0700381 const size_t count =
382 decoder_->Read(data_.begin() + starting_size, data_.end());
383 data_.resize(starting_size + count);
Austin Schuh05b70472020-01-01 17:11:17 -0800384 if (count == 0) {
Austin Schuh05b70472020-01-01 17:11:17 -0800385 return false;
386 }
Austin Schuh05b70472020-01-01 17:11:17 -0800387
388 return true;
389}
390
Austin Schuhadd6eb32020-11-09 21:24:26 -0800391std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800392 std::string_view filename) {
Austin Schuh6f3babe2020-01-26 20:34:50 -0800393 SpanReader span_reader(filename);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800394 absl::Span<const uint8_t> config_data = span_reader.ReadMessage();
395
396 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800397 if (config_data == absl::Span<const uint8_t>()) {
398 return std::nullopt;
399 }
Austin Schuh6f3babe2020-01-26 20:34:50 -0800400
Austin Schuh5212cad2020-09-09 23:12:09 -0700401 // And copy the config so we have it forever, removing the size prefix.
Brian Silverman354697a2020-09-22 21:06:32 -0700402 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800403 data.resize(config_data.size());
404 memcpy(data.data(), config_data.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800405 SizePrefixedFlatbufferVector<LogFileHeader> result(std::move(data));
406 if (!result.Verify()) {
407 return std::nullopt;
408 }
409 return result;
Austin Schuh6f3babe2020-01-26 20:34:50 -0800410}
411
Austin Schuhadd6eb32020-11-09 21:24:26 -0800412std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadNthMessage(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800413 std::string_view filename, size_t n) {
Austin Schuh5212cad2020-09-09 23:12:09 -0700414 SpanReader span_reader(filename);
415 absl::Span<const uint8_t> data_span = span_reader.ReadMessage();
416 for (size_t i = 0; i < n + 1; ++i) {
417 data_span = span_reader.ReadMessage();
418
419 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800420 if (data_span == absl::Span<const uint8_t>()) {
421 return std::nullopt;
422 }
Austin Schuh5212cad2020-09-09 23:12:09 -0700423 }
424
Brian Silverman354697a2020-09-22 21:06:32 -0700425 // And copy the config so we have it forever, removing the size prefix.
426 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800427 data.resize(data_span.size());
428 memcpy(data.data(), data_span.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800429 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(data));
430 if (!result.Verify()) {
431 return std::nullopt;
432 }
433 return result;
Austin Schuh5212cad2020-09-09 23:12:09 -0700434}
435
Austin Schuh05b70472020-01-01 17:11:17 -0800436MessageReader::MessageReader(std::string_view filename)
Austin Schuh97789fc2020-08-01 14:42:45 -0700437 : span_reader_(filename),
Austin Schuhadd6eb32020-11-09 21:24:26 -0800438 raw_log_file_header_(
439 SizePrefixedFlatbufferVector<LogFileHeader>::Empty()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800440 // Make sure we have enough to read the size.
Austin Schuh97789fc2020-08-01 14:42:45 -0700441 absl::Span<const uint8_t> header_data = span_reader_.ReadMessage();
Austin Schuh05b70472020-01-01 17:11:17 -0800442
443 // Make sure something was read.
Austin Schuh97789fc2020-08-01 14:42:45 -0700444 CHECK(header_data != absl::Span<const uint8_t>())
445 << ": Failed to read header from: " << filename;
Austin Schuh05b70472020-01-01 17:11:17 -0800446
Austin Schuh97789fc2020-08-01 14:42:45 -0700447 // And copy the header data so we have it forever.
Brian Silverman354697a2020-09-22 21:06:32 -0700448 ResizeableBuffer header_data_copy;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800449 header_data_copy.resize(header_data.size());
450 memcpy(header_data_copy.data(), header_data.begin(), header_data_copy.size());
Austin Schuh97789fc2020-08-01 14:42:45 -0700451 raw_log_file_header_ =
Austin Schuhadd6eb32020-11-09 21:24:26 -0800452 SizePrefixedFlatbufferVector<LogFileHeader>(std::move(header_data_copy));
Austin Schuh05b70472020-01-01 17:11:17 -0800453
Austin Schuhcde938c2020-02-02 17:30:07 -0800454 max_out_of_order_duration_ =
Austin Schuha040c3f2021-02-13 16:09:07 -0800455 FLAGS_max_out_of_order > 0
456 ? chrono::duration_cast<chrono::nanoseconds>(
457 chrono::duration<double>(FLAGS_max_out_of_order))
458 : chrono::nanoseconds(log_file_header()->max_out_of_order_duration());
Austin Schuhcde938c2020-02-02 17:30:07 -0800459
460 VLOG(1) << "Opened " << filename << " as node "
461 << FlatbufferToJson(log_file_header()->node());
Austin Schuh05b70472020-01-01 17:11:17 -0800462}
463
Austin Schuhadd6eb32020-11-09 21:24:26 -0800464std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
465MessageReader::ReadMessage() {
Austin Schuh05b70472020-01-01 17:11:17 -0800466 absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage();
467 if (msg_data == absl::Span<const uint8_t>()) {
468 return std::nullopt;
469 }
470
Brian Silverman354697a2020-09-22 21:06:32 -0700471 ResizeableBuffer result_buffer;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800472 result_buffer.resize(msg_data.size());
473 memcpy(result_buffer.data(), msg_data.begin(), result_buffer.size());
474 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(result_buffer));
Austin Schuh05b70472020-01-01 17:11:17 -0800475
476 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
477 chrono::nanoseconds(result.message().monotonic_sent_time()));
478
479 newest_timestamp_ = std::max(newest_timestamp_, timestamp);
Austin Schuh8bd96322020-02-13 21:18:22 -0800480 VLOG(2) << "Read from " << filename() << " data " << FlatbufferToJson(result);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800481 return std::move(result);
Austin Schuh05b70472020-01-01 17:11:17 -0800482}
483
Austin Schuhc41603c2020-10-11 16:17:37 -0700484PartsMessageReader::PartsMessageReader(LogParts log_parts)
485 : parts_(std::move(log_parts)), message_reader_(parts_.parts[0]) {}
486
Austin Schuhadd6eb32020-11-09 21:24:26 -0800487std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
Austin Schuhc41603c2020-10-11 16:17:37 -0700488PartsMessageReader::ReadMessage() {
489 while (!done_) {
Austin Schuhadd6eb32020-11-09 21:24:26 -0800490 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> message =
Austin Schuhc41603c2020-10-11 16:17:37 -0700491 message_reader_.ReadMessage();
492 if (message) {
493 newest_timestamp_ = message_reader_.newest_timestamp();
Austin Schuh32f68492020-11-08 21:45:51 -0800494 const monotonic_clock::time_point monotonic_sent_time(
495 chrono::nanoseconds(message->message().monotonic_sent_time()));
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800496 // TODO(austin): Does this work with startup? Might need to use the start
497 // time.
498 // TODO(austin): Does this work with startup when we don't know the remote
499 // start time too? Look at one of those logs to compare.
Austin Schuh315b96b2020-12-11 21:21:12 -0800500 if (monotonic_sent_time >
501 parts_.monotonic_start_time + max_out_of_order_duration()) {
502 after_start_ = true;
503 }
504 if (after_start_) {
Austin Schuhb000de62020-12-03 22:00:40 -0800505 CHECK_GE(monotonic_sent_time,
506 newest_timestamp_ - max_out_of_order_duration())
Austin Schuha040c3f2021-02-13 16:09:07 -0800507 << ": Max out of order of " << max_out_of_order_duration().count()
508 << "ns exceeded. " << parts_ << ", start time is "
Austin Schuh315b96b2020-12-11 21:21:12 -0800509 << parts_.monotonic_start_time << " currently reading "
510 << filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800511 }
Austin Schuhc41603c2020-10-11 16:17:37 -0700512 return message;
513 }
514 NextLog();
515 }
Austin Schuh32f68492020-11-08 21:45:51 -0800516 newest_timestamp_ = monotonic_clock::max_time;
Austin Schuhc41603c2020-10-11 16:17:37 -0700517 return std::nullopt;
518}
519
520void PartsMessageReader::NextLog() {
521 if (next_part_index_ == parts_.parts.size()) {
522 done_ = true;
523 return;
524 }
525 message_reader_ = MessageReader(parts_.parts[next_part_index_]);
526 ++next_part_index_;
527}
528
Austin Schuh1be0ce42020-11-29 22:43:26 -0800529bool Message::operator<(const Message &m2) const {
Austin Schuhf16ef6a2021-06-30 21:48:17 -0700530 CHECK_EQ(this->boot_count, m2.boot_count);
531
Austin Schuh1be0ce42020-11-29 22:43:26 -0800532 if (this->timestamp < m2.timestamp) {
533 return true;
534 } else if (this->timestamp > m2.timestamp) {
535 return false;
536 }
537
538 if (this->channel_index < m2.channel_index) {
539 return true;
540 } else if (this->channel_index > m2.channel_index) {
541 return false;
542 }
543
544 return this->queue_index < m2.queue_index;
545}
546
547bool Message::operator>=(const Message &m2) const { return !(*this < m2); }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800548bool Message::operator==(const Message &m2) const {
Austin Schuhf16ef6a2021-06-30 21:48:17 -0700549 CHECK_EQ(this->boot_count, m2.boot_count);
550
Austin Schuh8f52ed52020-11-30 23:12:39 -0800551 return timestamp == m2.timestamp && channel_index == m2.channel_index &&
552 queue_index == m2.queue_index;
553}
Austin Schuh1be0ce42020-11-29 22:43:26 -0800554
555std::ostream &operator<<(std::ostream &os, const Message &m) {
556 os << "{.channel_index=" << m.channel_index
Austin Schuhf16ef6a2021-06-30 21:48:17 -0700557 << ", .queue_index=" << m.queue_index << ", .timestamp=" << m.timestamp
558 << ", .boot_count=" << m.boot_count;
Austin Schuhd2f96102020-12-01 20:27:29 -0800559 if (m.data.Verify()) {
560 os << ", .data="
561 << aos::FlatbufferToJson(m.data,
562 {.multi_line = false, .max_vector_size = 1});
563 }
564 os << "}";
565 return os;
566}
567
568std::ostream &operator<<(std::ostream &os, const TimestampedMessage &m) {
569 os << "{.channel_index=" << m.channel_index
570 << ", .queue_index=" << m.queue_index
571 << ", .monotonic_event_time=" << m.monotonic_event_time
572 << ", .realtime_event_time=" << m.realtime_event_time;
573 if (m.remote_queue_index != 0xffffffff) {
574 os << ", .remote_queue_index=" << m.remote_queue_index;
575 }
576 if (m.monotonic_remote_time != monotonic_clock::min_time) {
577 os << ", .monotonic_remote_time=" << m.monotonic_remote_time;
578 }
579 if (m.realtime_remote_time != realtime_clock::min_time) {
580 os << ", .realtime_remote_time=" << m.realtime_remote_time;
581 }
Austin Schuh8bf1e632021-01-02 22:41:04 -0800582 if (m.monotonic_timestamp_time != monotonic_clock::min_time) {
583 os << ", .monotonic_timestamp_time=" << m.monotonic_timestamp_time;
584 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800585 if (m.data.Verify()) {
586 os << ", .data="
587 << aos::FlatbufferToJson(m.data,
588 {.multi_line = false, .max_vector_size = 1});
589 }
590 os << "}";
Austin Schuh1be0ce42020-11-29 22:43:26 -0800591 return os;
592}
593
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800594LogPartsSorter::LogPartsSorter(LogParts log_parts)
595 : parts_message_reader_(log_parts) {}
596
597Message *LogPartsSorter::Front() {
598 // Queue up data until enough data has been queued that the front message is
599 // sorted enough to be safe to pop. This may do nothing, so we should make
600 // sure the nothing path is checked quickly.
601 if (sorted_until() != monotonic_clock::max_time) {
602 while (true) {
Austin Schuhb000de62020-12-03 22:00:40 -0800603 if (!messages_.empty() && messages_.begin()->timestamp < sorted_until() &&
604 sorted_until() >= monotonic_start_time()) {
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800605 break;
606 }
607
608 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> m =
609 parts_message_reader_.ReadMessage();
610 // No data left, sorted forever, work through what is left.
611 if (!m) {
612 sorted_until_ = monotonic_clock::max_time;
613 break;
614 }
615
Austin Schuhf16ef6a2021-06-30 21:48:17 -0700616 messages_.insert(Message{
617 .channel_index = m.value().message().channel_index(),
618 .queue_index = m.value().message().queue_index(),
619 .timestamp = monotonic_clock::time_point(std::chrono::nanoseconds(
620 m.value().message().monotonic_sent_time())),
621 .boot_count = parts().boot_count,
622 .data = std::move(m.value())});
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800623
624 // Now, update sorted_until_ to match the new message.
625 if (parts_message_reader_.newest_timestamp() >
626 monotonic_clock::min_time +
627 parts_message_reader_.max_out_of_order_duration()) {
628 sorted_until_ = parts_message_reader_.newest_timestamp() -
629 parts_message_reader_.max_out_of_order_duration();
630 } else {
631 sorted_until_ = monotonic_clock::min_time;
632 }
633 }
634 }
635
636 // Now that we have enough data queued, return a pointer to the oldest piece
637 // of data if it exists.
638 if (messages_.empty()) {
Austin Schuhb000de62020-12-03 22:00:40 -0800639 last_message_time_ = monotonic_clock::max_time;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800640 return nullptr;
641 }
642
Austin Schuh315b96b2020-12-11 21:21:12 -0800643 CHECK_GE(messages_.begin()->timestamp, last_message_time_)
644 << DebugString() << " reading " << parts_message_reader_.filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800645 last_message_time_ = messages_.begin()->timestamp;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800646 return &(*messages_.begin());
647}
648
649void LogPartsSorter::PopFront() { messages_.erase(messages_.begin()); }
650
651std::string LogPartsSorter::DebugString() const {
652 std::stringstream ss;
653 ss << "messages: [\n";
Austin Schuh315b96b2020-12-11 21:21:12 -0800654 int count = 0;
655 bool no_dots = true;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800656 for (const Message &m : messages_) {
Austin Schuh315b96b2020-12-11 21:21:12 -0800657 if (count < 15 || count > static_cast<int>(messages_.size()) - 15) {
658 ss << m << "\n";
659 } else if (no_dots) {
660 ss << "...\n";
661 no_dots = false;
662 }
663 ++count;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800664 }
665 ss << "] <- " << parts_message_reader_.filename();
666 return ss.str();
667}
668
Austin Schuhd2f96102020-12-01 20:27:29 -0800669NodeMerger::NodeMerger(std::vector<LogParts> parts) {
670 CHECK_GE(parts.size(), 1u);
Austin Schuh715adc12021-06-29 22:07:39 -0700671 // Enforce that we are sorting things only from a single node from a single
672 // boot.
673 const std::string_view part0_node = parts[0].node;
674 const std::string_view part0_source_boot_uuid = parts[0].source_boot_uuid;
Austin Schuhd2f96102020-12-01 20:27:29 -0800675 for (size_t i = 1; i < parts.size(); ++i) {
676 CHECK_EQ(part0_node, parts[i].node) << ": Can't merge different nodes.";
Austin Schuh715adc12021-06-29 22:07:39 -0700677 CHECK_EQ(part0_source_boot_uuid, parts[i].source_boot_uuid)
678 << ": Can't merge different boots.";
Austin Schuhd2f96102020-12-01 20:27:29 -0800679 }
Austin Schuh715adc12021-06-29 22:07:39 -0700680
681 node_ = configuration::GetNodeIndex(parts[0].config.get(), part0_node);
682
Austin Schuhd2f96102020-12-01 20:27:29 -0800683 for (LogParts &part : parts) {
684 parts_sorters_.emplace_back(std::move(part));
685 }
686
Austin Schuhd2f96102020-12-01 20:27:29 -0800687 monotonic_start_time_ = monotonic_clock::max_time;
688 realtime_start_time_ = realtime_clock::max_time;
689 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
690 if (parts_sorter.monotonic_start_time() < monotonic_start_time_) {
691 monotonic_start_time_ = parts_sorter.monotonic_start_time();
692 realtime_start_time_ = parts_sorter.realtime_start_time();
693 }
694 }
695}
Austin Schuh8f52ed52020-11-30 23:12:39 -0800696
Austin Schuh0ca51f32020-12-25 21:51:45 -0800697std::vector<const LogParts *> NodeMerger::Parts() const {
698 std::vector<const LogParts *> p;
699 p.reserve(parts_sorters_.size());
700 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
701 p.emplace_back(&parts_sorter.parts());
702 }
703 return p;
704}
705
Austin Schuh8f52ed52020-11-30 23:12:39 -0800706Message *NodeMerger::Front() {
707 // Return the current Front if we have one, otherwise go compute one.
708 if (current_ != nullptr) {
Austin Schuhb000de62020-12-03 22:00:40 -0800709 Message *result = current_->Front();
710 CHECK_GE(result->timestamp, last_message_time_);
711 return result;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800712 }
713
714 // Otherwise, do a simple search for the oldest message, deduplicating any
715 // duplicates.
716 Message *oldest = nullptr;
717 sorted_until_ = monotonic_clock::max_time;
Austin Schuhd2f96102020-12-01 20:27:29 -0800718 for (LogPartsSorter &parts_sorter : parts_sorters_) {
719 Message *m = parts_sorter.Front();
Austin Schuh8f52ed52020-11-30 23:12:39 -0800720 if (!m) {
Austin Schuhd2f96102020-12-01 20:27:29 -0800721 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800722 continue;
723 }
724 if (oldest == nullptr || *m < *oldest) {
725 oldest = m;
Austin Schuhd2f96102020-12-01 20:27:29 -0800726 current_ = &parts_sorter;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800727 } else if (*m == *oldest) {
Austin Schuh8bf1e632021-01-02 22:41:04 -0800728 // Found a duplicate. If there is a choice, we want the one which has the
729 // timestamp time.
730 if (!m->data.message().has_monotonic_timestamp_time()) {
731 parts_sorter.PopFront();
732 } else if (!oldest->data.message().has_monotonic_timestamp_time()) {
733 current_->PopFront();
734 current_ = &parts_sorter;
735 oldest = m;
736 } else {
737 CHECK_EQ(m->data.message().monotonic_timestamp_time(),
738 oldest->data.message().monotonic_timestamp_time());
739 parts_sorter.PopFront();
740 }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800741 }
742
743 // PopFront may change this, so compute it down here.
Austin Schuhd2f96102020-12-01 20:27:29 -0800744 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800745 }
746
Austin Schuhb000de62020-12-03 22:00:40 -0800747 if (oldest) {
748 CHECK_GE(oldest->timestamp, last_message_time_);
749 last_message_time_ = oldest->timestamp;
750 } else {
751 last_message_time_ = monotonic_clock::max_time;
752 }
753
Austin Schuh8f52ed52020-11-30 23:12:39 -0800754 // Return the oldest message found. This will be nullptr if nothing was
755 // found, indicating there is nothing left.
756 return oldest;
757}
758
759void NodeMerger::PopFront() {
760 CHECK(current_ != nullptr) << "Popping before calling Front()";
761 current_->PopFront();
762 current_ = nullptr;
763}
764
Austin Schuhf16ef6a2021-06-30 21:48:17 -0700765BootMerger::BootMerger(std::vector<LogParts> files) {
766 std::vector<std::vector<LogParts>> boots;
767
768 // Now, we need to split things out by boot.
769 for (size_t i = 0; i < files.size(); ++i) {
770 LOG(INFO) << "Trying file " << i;
771 const size_t boot_count = files[i].boot_count;
772 LOG(INFO) << "Boot count " << boot_count;
773 if (boot_count + 1 > boots.size()) {
774 boots.resize(boot_count + 1);
775 }
776 boots[boot_count].emplace_back(std::move(files[i]));
777 }
778
779 node_mergers_.reserve(boots.size());
780 for (size_t i = 0; i < boots.size(); ++i) {
781 LOG(INFO) << "Boot " << i;
782 for (auto &p : boots[i]) {
783 LOG(INFO) << "Part " << p;
784 }
785 node_mergers_.emplace_back(
786 std::make_unique<NodeMerger>(std::move(boots[i])));
787 }
788}
789
790Message *BootMerger::Front() {
791 Message *result = node_mergers_[index_]->Front();
792
793 if (result != nullptr) {
794 return result;
795 }
796
797 if (index_ + 1u == node_mergers_.size()) {
798 // At the end of the last node merger, just return.
799 return nullptr;
800 } else {
801 ++index_;
802 return Front();
803 }
804}
805
806void BootMerger::PopFront() { node_mergers_[index_]->PopFront(); }
807
Austin Schuhd2f96102020-12-01 20:27:29 -0800808TimestampMapper::TimestampMapper(std::vector<LogParts> parts)
809 : node_merger_(std::move(parts)),
Austin Schuh79b30942021-01-24 22:32:21 -0800810 timestamp_callback_([](TimestampedMessage *) {}) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800811 for (const LogParts *part : node_merger_.Parts()) {
812 if (!configuration_) {
813 configuration_ = part->config;
814 } else {
815 CHECK_EQ(configuration_.get(), part->config.get());
816 }
817 }
818 const Configuration *config = configuration_.get();
Austin Schuhd2f96102020-12-01 20:27:29 -0800819 // Only fill out nodes_data_ if there are nodes. Otherwise everything gets
820 // pretty simple.
821 if (configuration::MultiNode(config)) {
822 nodes_data_.resize(config->nodes()->size());
823 const Node *my_node = config->nodes()->Get(node());
824 for (size_t node_index = 0; node_index < nodes_data_.size(); ++node_index) {
825 const Node *node = config->nodes()->Get(node_index);
826 NodeData *node_data = &nodes_data_[node_index];
827 node_data->channels.resize(config->channels()->size());
828 // We should save the channel if it is delivered to the node represented
829 // by the NodeData, but not sent by that node. That combo means it is
830 // forwarded.
831 size_t channel_index = 0;
832 node_data->any_delivered = false;
833 for (const Channel *channel : *config->channels()) {
834 node_data->channels[channel_index].delivered =
835 configuration::ChannelIsReadableOnNode(channel, node) &&
Austin Schuhb3dbb6d2021-01-02 17:29:35 -0800836 configuration::ChannelIsSendableOnNode(channel, my_node) &&
837 (my_node != node);
Austin Schuhd2f96102020-12-01 20:27:29 -0800838 node_data->any_delivered = node_data->any_delivered ||
839 node_data->channels[channel_index].delivered;
840 ++channel_index;
841 }
842 }
843
844 for (const Channel *channel : *config->channels()) {
845 source_node_.emplace_back(configuration::GetNodeIndex(
846 config, channel->source_node()->string_view()));
847 }
848 }
849}
850
851void TimestampMapper::AddPeer(TimestampMapper *timestamp_mapper) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800852 CHECK(configuration::MultiNode(configuration()));
Austin Schuhd2f96102020-12-01 20:27:29 -0800853 CHECK_NE(timestamp_mapper->node(), node());
854 CHECK_LT(timestamp_mapper->node(), nodes_data_.size());
855
856 NodeData *node_data = &nodes_data_[timestamp_mapper->node()];
857 // Only set it if this node delivers to the peer timestamp_mapper. Otherwise
858 // we could needlessly save data.
859 if (node_data->any_delivered) {
Austin Schuh87dd3832021-01-01 23:07:31 -0800860 VLOG(1) << "Registering on node " << node() << " for peer node "
861 << timestamp_mapper->node();
Austin Schuhd2f96102020-12-01 20:27:29 -0800862 CHECK(timestamp_mapper->nodes_data_[node()].peer == nullptr);
863
864 timestamp_mapper->nodes_data_[node()].peer = this;
865 }
866}
867
Austin Schuh79b30942021-01-24 22:32:21 -0800868void TimestampMapper::QueueMessage(Message *m) {
869 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800870 .channel_index = m->channel_index,
871 .queue_index = m->queue_index,
872 .monotonic_event_time = m->timestamp,
873 .realtime_event_time = aos::realtime_clock::time_point(
874 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
875 .remote_queue_index = 0xffffffff,
876 .monotonic_remote_time = monotonic_clock::min_time,
877 .realtime_remote_time = realtime_clock::min_time,
Austin Schuh8bf1e632021-01-02 22:41:04 -0800878 .monotonic_timestamp_time = monotonic_clock::min_time,
Austin Schuh79b30942021-01-24 22:32:21 -0800879 .data = std::move(m->data)});
Austin Schuhd2f96102020-12-01 20:27:29 -0800880}
881
882TimestampedMessage *TimestampMapper::Front() {
883 // No need to fetch anything new. A previous message still exists.
884 switch (first_message_) {
885 case FirstMessage::kNeedsUpdate:
886 break;
887 case FirstMessage::kInMessage:
Austin Schuh79b30942021-01-24 22:32:21 -0800888 return &matched_messages_.front();
Austin Schuhd2f96102020-12-01 20:27:29 -0800889 case FirstMessage::kNullptr:
890 return nullptr;
891 }
892
Austin Schuh79b30942021-01-24 22:32:21 -0800893 if (matched_messages_.empty()) {
894 if (!QueueMatched()) {
895 first_message_ = FirstMessage::kNullptr;
896 return nullptr;
897 }
898 }
899 first_message_ = FirstMessage::kInMessage;
900 return &matched_messages_.front();
901}
902
903bool TimestampMapper::QueueMatched() {
Austin Schuhd2f96102020-12-01 20:27:29 -0800904 if (nodes_data_.empty()) {
905 // Simple path. We are single node, so there are no timestamps to match!
906 CHECK_EQ(messages_.size(), 0u);
907 Message *m = node_merger_.Front();
908 if (!m) {
Austin Schuh79b30942021-01-24 22:32:21 -0800909 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800910 }
Austin Schuh79b30942021-01-24 22:32:21 -0800911 // Enqueue this message into matched_messages_ so we have a place to
912 // associate remote timestamps, and return it.
913 QueueMessage(m);
Austin Schuhd2f96102020-12-01 20:27:29 -0800914
Austin Schuh79b30942021-01-24 22:32:21 -0800915 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
916 last_message_time_ = matched_messages_.back().monotonic_event_time;
917
918 // We are thin wrapper around node_merger. Call it directly.
919 node_merger_.PopFront();
920 timestamp_callback_(&matched_messages_.back());
921 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800922 }
923
924 // We need to only add messages to the list so they get processed for messages
925 // which are delivered. Reuse the flow below which uses messages_ by just
926 // adding the new message to messages_ and continuing.
927 if (messages_.empty()) {
928 if (!Queue()) {
929 // Found nothing to add, we are out of data!
Austin Schuh79b30942021-01-24 22:32:21 -0800930 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800931 }
932
933 // Now that it has been added (and cannibalized), forget about it upstream.
934 node_merger_.PopFront();
935 }
936
937 Message *m = &(messages_.front());
938
939 if (source_node_[m->channel_index] == node()) {
940 // From us, just forward it on, filling the remote data in as invalid.
Austin Schuh79b30942021-01-24 22:32:21 -0800941 QueueMessage(m);
942 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
943 last_message_time_ = matched_messages_.back().monotonic_event_time;
944 messages_.pop_front();
945 timestamp_callback_(&matched_messages_.back());
946 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800947 } else {
948 // Got a timestamp, find the matching remote data, match it, and return it.
949 Message data = MatchingMessageFor(*m);
950
951 // Return the data from the remote. The local message only has timestamp
952 // info which isn't relevant anymore once extracted.
Austin Schuh79b30942021-01-24 22:32:21 -0800953 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800954 .channel_index = m->channel_index,
955 .queue_index = m->queue_index,
956 .monotonic_event_time = m->timestamp,
957 .realtime_event_time = aos::realtime_clock::time_point(
958 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
959 .remote_queue_index = m->data.message().remote_queue_index(),
960 .monotonic_remote_time =
961 monotonic_clock::time_point(std::chrono::nanoseconds(
962 m->data.message().monotonic_remote_time())),
963 .realtime_remote_time = realtime_clock::time_point(
964 std::chrono::nanoseconds(m->data.message().realtime_remote_time())),
Austin Schuh8bf1e632021-01-02 22:41:04 -0800965 .monotonic_timestamp_time =
966 monotonic_clock::time_point(std::chrono::nanoseconds(
967 m->data.message().monotonic_timestamp_time())),
Austin Schuh79b30942021-01-24 22:32:21 -0800968 .data = std::move(data.data)});
969 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
970 last_message_time_ = matched_messages_.back().monotonic_event_time;
971 // Since messages_ holds the data, drop it.
972 messages_.pop_front();
973 timestamp_callback_(&matched_messages_.back());
974 return true;
975 }
976}
977
978void TimestampMapper::QueueUntil(monotonic_clock::time_point queue_time) {
979 while (last_message_time_ <= queue_time) {
980 if (!QueueMatched()) {
981 return;
982 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800983 }
984}
985
Austin Schuhe639ea12021-01-25 13:00:22 -0800986void TimestampMapper::QueueFor(chrono::nanoseconds time_estimation_buffer) {
987 // Make sure we have something queued first. This makes the end time
988 // calculation simpler, and is typically what folks want regardless.
989 if (matched_messages_.empty()) {
990 if (!QueueMatched()) {
991 return;
992 }
993 }
994
995 const aos::monotonic_clock::time_point end_queue_time =
996 std::max(monotonic_start_time(),
997 matched_messages_.front().monotonic_event_time) +
998 time_estimation_buffer;
999
1000 // Place sorted messages on the list until we have
1001 // --time_estimation_buffer_seconds seconds queued up (but queue at least
1002 // until the log starts).
1003 while (end_queue_time >= last_message_time_) {
1004 if (!QueueMatched()) {
1005 return;
1006 }
1007 }
1008}
1009
Austin Schuhd2f96102020-12-01 20:27:29 -08001010void TimestampMapper::PopFront() {
1011 CHECK(first_message_ != FirstMessage::kNeedsUpdate);
1012 first_message_ = FirstMessage::kNeedsUpdate;
1013
Austin Schuh79b30942021-01-24 22:32:21 -08001014 matched_messages_.pop_front();
Austin Schuhd2f96102020-12-01 20:27:29 -08001015}
1016
1017Message TimestampMapper::MatchingMessageFor(const Message &message) {
Austin Schuhd2f96102020-12-01 20:27:29 -08001018 // Figure out what queue index we are looking for.
1019 CHECK(message.data.message().has_remote_queue_index());
1020 const uint32_t remote_queue_index =
1021 message.data.message().remote_queue_index();
1022
1023 CHECK(message.data.message().has_monotonic_remote_time());
1024 CHECK(message.data.message().has_realtime_remote_time());
1025
1026 const monotonic_clock::time_point monotonic_remote_time(
1027 std::chrono::nanoseconds(message.data.message().monotonic_remote_time()));
1028 const realtime_clock::time_point realtime_remote_time(
1029 std::chrono::nanoseconds(message.data.message().realtime_remote_time()));
1030
Austin Schuhfecf1d82020-12-19 16:57:28 -08001031 TimestampMapper *peer = nodes_data_[source_node_[message.channel_index]].peer;
1032
1033 // We only register the peers which we have data for. So, if we are being
1034 // asked to pull a timestamp from a peer which doesn't exist, return an empty
1035 // message.
1036 if (peer == nullptr) {
1037 return Message{
1038 .channel_index = message.channel_index,
1039 .queue_index = remote_queue_index,
1040 .timestamp = monotonic_remote_time,
Austin Schuhf16ef6a2021-06-30 21:48:17 -07001041 .boot_count = 0,
Austin Schuhfecf1d82020-12-19 16:57:28 -08001042 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1043 }
1044
1045 // The queue which will have the matching data, if available.
1046 std::deque<Message> *data_queue =
1047 &peer->nodes_data_[node()].channels[message.channel_index].messages;
1048
Austin Schuh79b30942021-01-24 22:32:21 -08001049 peer->QueueUnmatchedUntil(monotonic_remote_time);
Austin Schuhd2f96102020-12-01 20:27:29 -08001050
1051 if (data_queue->empty()) {
1052 return Message{
1053 .channel_index = message.channel_index,
1054 .queue_index = remote_queue_index,
1055 .timestamp = monotonic_remote_time,
Austin Schuhf16ef6a2021-06-30 21:48:17 -07001056 .boot_count = 0,
Austin Schuhd2f96102020-12-01 20:27:29 -08001057 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1058 }
1059
Austin Schuhd2f96102020-12-01 20:27:29 -08001060 if (remote_queue_index < data_queue->front().queue_index ||
1061 remote_queue_index > data_queue->back().queue_index) {
1062 return Message{
1063 .channel_index = message.channel_index,
1064 .queue_index = remote_queue_index,
1065 .timestamp = monotonic_remote_time,
Austin Schuhf16ef6a2021-06-30 21:48:17 -07001066 .boot_count = 0,
Austin Schuhd2f96102020-12-01 20:27:29 -08001067 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1068 }
1069
Austin Schuh993ccb52020-12-12 15:59:32 -08001070 // The algorithm below is constant time with some assumptions. We need there
1071 // to be no missing messages in the data stream. This also assumes a queue
1072 // hasn't wrapped. That is conservative, but should let us get started.
1073 if (data_queue->back().queue_index - data_queue->front().queue_index + 1u ==
1074 data_queue->size()) {
1075 // Pull the data out and confirm that the timestamps match as expected.
1076 Message result = std::move(
1077 (*data_queue)[remote_queue_index - data_queue->front().queue_index]);
1078
1079 CHECK_EQ(result.timestamp, monotonic_remote_time)
1080 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1081 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1082 result.data.message().realtime_sent_time())),
1083 realtime_remote_time)
1084 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1085 // Now drop the data off the front. We have deduplicated timestamps, so we
1086 // are done. And all the data is in order.
1087 data_queue->erase(data_queue->begin(),
1088 data_queue->begin() + (1 + remote_queue_index -
1089 data_queue->front().queue_index));
1090 return result;
1091 } else {
1092 auto it = std::find_if(data_queue->begin(), data_queue->end(),
1093 [remote_queue_index](const Message &m) {
1094 return m.queue_index == remote_queue_index;
1095 });
1096 if (it == data_queue->end()) {
1097 return Message{
1098 .channel_index = message.channel_index,
1099 .queue_index = remote_queue_index,
1100 .timestamp = monotonic_remote_time,
Austin Schuhf16ef6a2021-06-30 21:48:17 -07001101 .boot_count = 0,
Austin Schuh993ccb52020-12-12 15:59:32 -08001102 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1103 }
1104
1105 Message result = std::move(*it);
1106
1107 CHECK_EQ(result.timestamp, monotonic_remote_time)
1108 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1109 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1110 result.data.message().realtime_sent_time())),
1111 realtime_remote_time)
1112 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1113
1114 data_queue->erase(it);
1115
1116 return result;
1117 }
Austin Schuhd2f96102020-12-01 20:27:29 -08001118}
1119
Austin Schuh79b30942021-01-24 22:32:21 -08001120void TimestampMapper::QueueUnmatchedUntil(monotonic_clock::time_point t) {
Austin Schuhd2f96102020-12-01 20:27:29 -08001121 if (queued_until_ > t) {
1122 return;
1123 }
1124 while (true) {
1125 if (!messages_.empty() && messages_.back().timestamp > t) {
1126 queued_until_ = std::max(queued_until_, messages_.back().timestamp);
1127 return;
1128 }
1129
1130 if (!Queue()) {
1131 // Found nothing to add, we are out of data!
1132 queued_until_ = monotonic_clock::max_time;
1133 return;
1134 }
1135
1136 // Now that it has been added (and cannibalized), forget about it upstream.
1137 node_merger_.PopFront();
1138 }
1139}
1140
1141bool TimestampMapper::Queue() {
1142 Message *m = node_merger_.Front();
1143 if (m == nullptr) {
1144 return false;
1145 }
1146 for (NodeData &node_data : nodes_data_) {
1147 if (!node_data.any_delivered) continue;
1148 if (node_data.channels[m->channel_index].delivered) {
1149 // TODO(austin): This copies the data... Probably not worth stressing
1150 // about yet.
1151 // TODO(austin): Bound how big this can get. We tend not to send massive
1152 // data, so we can probably ignore this for a bit.
1153 node_data.channels[m->channel_index].messages.emplace_back(*m);
1154 }
1155 }
1156
1157 messages_.emplace_back(std::move(*m));
1158 return true;
1159}
1160
1161std::string TimestampMapper::DebugString() const {
1162 std::stringstream ss;
1163 ss << "node " << node() << " [\n";
1164 for (const Message &message : messages_) {
1165 ss << " " << message << "\n";
1166 }
1167 ss << "] queued_until " << queued_until_;
1168 for (const NodeData &ns : nodes_data_) {
1169 if (ns.peer == nullptr) continue;
1170 ss << "\nnode " << ns.peer->node() << " remote_data [\n";
1171 size_t channel_index = 0;
1172 for (const NodeData::ChannelData &channel_data :
1173 ns.peer->nodes_data_[node()].channels) {
1174 if (channel_data.messages.empty()) {
1175 continue;
1176 }
Austin Schuhb000de62020-12-03 22:00:40 -08001177
Austin Schuhd2f96102020-12-01 20:27:29 -08001178 ss << " channel " << channel_index << " [\n";
1179 for (const Message &m : channel_data.messages) {
1180 ss << " " << m << "\n";
1181 }
1182 ss << " ]\n";
1183 ++channel_index;
1184 }
1185 ss << "] queued_until " << ns.peer->queued_until_;
1186 }
1187 return ss.str();
1188}
1189
Austin Schuhee711052020-08-24 16:06:09 -07001190std::string MaybeNodeName(const Node *node) {
1191 if (node != nullptr) {
1192 return node->name()->str() + " ";
1193 }
1194 return "";
1195}
1196
Brian Silvermanf51499a2020-09-21 12:49:08 -07001197} // namespace aos::logger