blob: e01b4c62ae314163b6fba69fd51c95adda5906e2 [file] [log] [blame]
Austin Schuha36c8902019-12-30 18:07:15 -08001#include "aos/events/logging/logfile_utils.h"
2
3#include <fcntl.h>
Austin Schuha36c8902019-12-30 18:07:15 -08004#include <sys/stat.h>
5#include <sys/types.h>
6#include <sys/uio.h>
7
Brian Silvermanf51499a2020-09-21 12:49:08 -07008#include <algorithm>
9#include <climits>
Austin Schuha36c8902019-12-30 18:07:15 -080010
Austin Schuhe4fca832020-03-07 16:58:53 -080011#include "absl/strings/escaping.h"
Austin Schuh05b70472020-01-01 17:11:17 -080012#include "aos/configuration.h"
Austin Schuhfa895892020-01-07 20:07:41 -080013#include "aos/flatbuffer_merge.h"
Austin Schuh6f3babe2020-01-26 20:34:50 -080014#include "aos/util/file.h"
Austin Schuha36c8902019-12-30 18:07:15 -080015#include "flatbuffers/flatbuffers.h"
Austin Schuh05b70472020-01-01 17:11:17 -080016#include "gflags/gflags.h"
17#include "glog/logging.h"
Austin Schuha36c8902019-12-30 18:07:15 -080018
Brian Silvermanf59fe3f2020-09-22 21:04:09 -070019#if defined(__x86_64__)
20#define ENABLE_LZMA 1
21#elif defined(__aarch64__)
22#define ENABLE_LZMA 1
23#else
24#define ENABLE_LZMA 0
25#endif
26
27#if ENABLE_LZMA
28#include "aos/events/logging/lzma_encoder.h"
29#endif
30
Austin Schuh7fbf5a72020-09-21 16:28:13 -070031DEFINE_int32(flush_size, 128000,
Austin Schuha36c8902019-12-30 18:07:15 -080032 "Number of outstanding bytes to allow before flushing to disk.");
Austin Schuhbd06ae42021-03-31 22:48:21 -070033DEFINE_double(
34 flush_period, 5.0,
35 "Max time to let data sit in the queue before flushing in seconds.");
Austin Schuha36c8902019-12-30 18:07:15 -080036
Austin Schuha040c3f2021-02-13 16:09:07 -080037DEFINE_double(
38 max_out_of_order, -1,
39 "If set, this overrides the max out of order duration for a log file.");
40
Brian Silvermanf51499a2020-09-21 12:49:08 -070041namespace aos::logger {
Austin Schuha36c8902019-12-30 18:07:15 -080042
Austin Schuh05b70472020-01-01 17:11:17 -080043namespace chrono = std::chrono;
44
Brian Silvermanf51499a2020-09-21 12:49:08 -070045DetachedBufferWriter::DetachedBufferWriter(
46 std::string_view filename, std::unique_ptr<DetachedBufferEncoder> encoder)
47 : filename_(filename), encoder_(std::move(encoder)) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070048 if (!util::MkdirPIfSpace(filename, 0777)) {
49 ran_out_of_space_ = true;
50 } else {
51 fd_ = open(std::string(filename).c_str(),
52 O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774);
53 if (fd_ == -1 && errno == ENOSPC) {
54 ran_out_of_space_ = true;
55 } else {
56 PCHECK(fd_ != -1) << ": Failed to open " << filename << " for writing";
57 VLOG(1) << "Opened " << filename << " for writing";
58 }
59 }
Austin Schuha36c8902019-12-30 18:07:15 -080060}
61
62DetachedBufferWriter::~DetachedBufferWriter() {
Brian Silverman0465fcf2020-09-24 00:29:18 -070063 Close();
64 if (ran_out_of_space_) {
65 CHECK(acknowledge_ran_out_of_space_)
66 << ": Unacknowledged out of disk space, log file was not completed";
Brian Silvermanf51499a2020-09-21 12:49:08 -070067 }
Austin Schuh2f8fd752020-09-01 22:38:28 -070068}
69
Brian Silvermand90905f2020-09-23 14:42:56 -070070DetachedBufferWriter::DetachedBufferWriter(DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070071 *this = std::move(other);
72}
73
Brian Silverman87ac0402020-09-17 14:47:01 -070074// When other is destroyed "soon" (which it should be because we're getting an
75// rvalue reference to it), it will flush etc all the data we have queued up
76// (because that data will then be its data).
Austin Schuh2f8fd752020-09-01 22:38:28 -070077DetachedBufferWriter &DetachedBufferWriter::operator=(
78 DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070079 std::swap(filename_, other.filename_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070080 std::swap(encoder_, other.encoder_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070081 std::swap(fd_, other.fd_);
Brian Silverman0465fcf2020-09-24 00:29:18 -070082 std::swap(ran_out_of_space_, other.ran_out_of_space_);
83 std::swap(acknowledge_ran_out_of_space_, other.acknowledge_ran_out_of_space_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070084 std::swap(iovec_, other.iovec_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070085 std::swap(max_write_time_, other.max_write_time_);
86 std::swap(max_write_time_bytes_, other.max_write_time_bytes_);
87 std::swap(max_write_time_messages_, other.max_write_time_messages_);
88 std::swap(total_write_time_, other.total_write_time_);
89 std::swap(total_write_count_, other.total_write_count_);
90 std::swap(total_write_messages_, other.total_write_messages_);
91 std::swap(total_write_bytes_, other.total_write_bytes_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070092 return *this;
Austin Schuha36c8902019-12-30 18:07:15 -080093}
94
Brian Silvermanf51499a2020-09-21 12:49:08 -070095void DetachedBufferWriter::QueueSpan(absl::Span<const uint8_t> span) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070096 if (ran_out_of_space_) {
97 // We don't want any later data to be written after space becomes
98 // available, so refuse to write anything more once we've dropped data
99 // because we ran out of space.
100 VLOG(1) << "Ignoring span: " << span.size();
101 return;
102 }
103
Austin Schuhbd06ae42021-03-31 22:48:21 -0700104 aos::monotonic_clock::time_point now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700105 if (encoder_->may_bypass() && span.size() > 4096u) {
106 // Over this threshold, we'll assume it's cheaper to add an extra
107 // syscall to write the data immediately instead of copying it to
108 // enqueue.
Austin Schuha36c8902019-12-30 18:07:15 -0800109
Brian Silvermanf51499a2020-09-21 12:49:08 -0700110 // First, flush everything.
111 while (encoder_->queue_size() > 0u) {
112 Flush();
113 }
Austin Schuhde031b72020-01-10 19:34:41 -0800114
Brian Silvermanf51499a2020-09-21 12:49:08 -0700115 // Then, write it directly.
116 const auto start = aos::monotonic_clock::now();
117 const ssize_t written = write(fd_, span.data(), span.size());
118 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700119 HandleWriteReturn(written, span.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700120 UpdateStatsForWrite(end - start, written, 1);
Austin Schuhbd06ae42021-03-31 22:48:21 -0700121 now = end;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700122 } else {
123 encoder_->Encode(CopySpanAsDetachedBuffer(span));
Austin Schuhbd06ae42021-03-31 22:48:21 -0700124 now = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800125 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700126
Austin Schuhbd06ae42021-03-31 22:48:21 -0700127 FlushAtThreshold(now);
Austin Schuha36c8902019-12-30 18:07:15 -0800128}
129
Brian Silverman0465fcf2020-09-24 00:29:18 -0700130void DetachedBufferWriter::Close() {
131 if (fd_ == -1) {
132 return;
133 }
134 encoder_->Finish();
135 while (encoder_->queue_size() > 0) {
136 Flush();
137 }
138 if (close(fd_) == -1) {
139 if (errno == ENOSPC) {
140 ran_out_of_space_ = true;
141 } else {
142 PLOG(ERROR) << "Closing log file failed";
143 }
144 }
145 fd_ = -1;
146 VLOG(1) << "Closed " << filename_;
147}
148
Austin Schuha36c8902019-12-30 18:07:15 -0800149void DetachedBufferWriter::Flush() {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700150 if (ran_out_of_space_) {
151 // We don't want any later data to be written after space becomes available,
152 // so refuse to write anything more once we've dropped data because we ran
153 // out of space.
Austin Schuha426f1f2021-03-31 22:27:41 -0700154 if (encoder_) {
155 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
156 encoder_->Clear(encoder_->queue().size());
157 } else {
158 VLOG(1) << "No queue to ignore";
159 }
160 return;
161 }
162
163 const auto queue = encoder_->queue();
164 if (queue.empty()) {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700165 return;
166 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700167
Austin Schuha36c8902019-12-30 18:07:15 -0800168 iovec_.clear();
Brian Silvermanf51499a2020-09-21 12:49:08 -0700169 const size_t iovec_size = std::min<size_t>(queue.size(), IOV_MAX);
170 iovec_.resize(iovec_size);
Austin Schuha36c8902019-12-30 18:07:15 -0800171 size_t counted_size = 0;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700172 for (size_t i = 0; i < iovec_size; ++i) {
173 iovec_[i].iov_base = const_cast<uint8_t *>(queue[i].data());
174 iovec_[i].iov_len = queue[i].size();
175 counted_size += iovec_[i].iov_len;
Austin Schuha36c8902019-12-30 18:07:15 -0800176 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700177
178 const auto start = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800179 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700180 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700181 HandleWriteReturn(written, counted_size);
Brian Silvermanf51499a2020-09-21 12:49:08 -0700182
183 encoder_->Clear(iovec_size);
184
185 UpdateStatsForWrite(end - start, written, iovec_size);
186}
187
Brian Silverman0465fcf2020-09-24 00:29:18 -0700188void DetachedBufferWriter::HandleWriteReturn(ssize_t write_return,
189 size_t write_size) {
190 if (write_return == -1 && errno == ENOSPC) {
191 ran_out_of_space_ = true;
192 return;
193 }
194 PCHECK(write_return >= 0) << ": write failed";
195 if (write_return < static_cast<ssize_t>(write_size)) {
196 // Sometimes this happens instead of ENOSPC. On a real filesystem, this
197 // never seems to happen in any other case. If we ever want to log to a
198 // socket, this will happen more often. However, until we get there, we'll
199 // just assume it means we ran out of space.
200 ran_out_of_space_ = true;
201 return;
202 }
203}
204
Brian Silvermanf51499a2020-09-21 12:49:08 -0700205void DetachedBufferWriter::UpdateStatsForWrite(
206 aos::monotonic_clock::duration duration, ssize_t written, int iovec_size) {
207 if (duration > max_write_time_) {
208 max_write_time_ = duration;
209 max_write_time_bytes_ = written;
210 max_write_time_messages_ = iovec_size;
211 }
212 total_write_time_ += duration;
213 ++total_write_count_;
214 total_write_messages_ += iovec_size;
215 total_write_bytes_ += written;
216}
217
Austin Schuhbd06ae42021-03-31 22:48:21 -0700218void DetachedBufferWriter::FlushAtThreshold(
219 aos::monotonic_clock::time_point now) {
Austin Schuha426f1f2021-03-31 22:27:41 -0700220 if (ran_out_of_space_) {
221 // We don't want any later data to be written after space becomes available,
222 // so refuse to write anything more once we've dropped data because we ran
223 // out of space.
224 if (encoder_) {
225 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
226 encoder_->Clear(encoder_->queue().size());
227 } else {
228 VLOG(1) << "No queue to ignore";
229 }
230 return;
231 }
232
Austin Schuhbd06ae42021-03-31 22:48:21 -0700233 // We don't want to flush the first time through. Otherwise we will flush as
234 // the log file header might be compressing, defeating any parallelism and
235 // queueing there.
236 if (last_flush_time_ == aos::monotonic_clock::min_time) {
237 last_flush_time_ = now;
238 }
239
Brian Silvermanf51499a2020-09-21 12:49:08 -0700240 // Flush if we are at the max number of iovs per writev, because there's no
241 // point queueing up any more data in memory. Also flush once we have enough
Austin Schuhbd06ae42021-03-31 22:48:21 -0700242 // data queued up or if it has been long enough.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700243 while (encoder_->queued_bytes() > static_cast<size_t>(FLAGS_flush_size) ||
Austin Schuhbd06ae42021-03-31 22:48:21 -0700244 encoder_->queue_size() >= IOV_MAX ||
245 now > last_flush_time_ +
246 chrono::duration_cast<chrono::nanoseconds>(
247 chrono::duration<double>(FLAGS_flush_period))) {
248 last_flush_time_ = now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700249 Flush();
250 }
Austin Schuha36c8902019-12-30 18:07:15 -0800251}
252
253flatbuffers::Offset<MessageHeader> PackMessage(
254 flatbuffers::FlatBufferBuilder *fbb, const Context &context,
255 int channel_index, LogType log_type) {
256 flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset;
257
258 switch (log_type) {
259 case LogType::kLogMessage:
260 case LogType::kLogMessageAndDeliveryTime:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800261 case LogType::kLogRemoteMessage:
Brian Silvermaneaa41d62020-07-08 19:47:35 -0700262 data_offset = fbb->CreateVector(
263 static_cast<const uint8_t *>(context.data), context.size);
Austin Schuha36c8902019-12-30 18:07:15 -0800264 break;
265
266 case LogType::kLogDeliveryTimeOnly:
267 break;
268 }
269
270 MessageHeader::Builder message_header_builder(*fbb);
271 message_header_builder.add_channel_index(channel_index);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800272
273 switch (log_type) {
274 case LogType::kLogRemoteMessage:
275 message_header_builder.add_queue_index(context.remote_queue_index);
276 message_header_builder.add_monotonic_sent_time(
277 context.monotonic_remote_time.time_since_epoch().count());
278 message_header_builder.add_realtime_sent_time(
279 context.realtime_remote_time.time_since_epoch().count());
280 break;
281
282 case LogType::kLogMessage:
283 case LogType::kLogMessageAndDeliveryTime:
284 case LogType::kLogDeliveryTimeOnly:
285 message_header_builder.add_queue_index(context.queue_index);
286 message_header_builder.add_monotonic_sent_time(
287 context.monotonic_event_time.time_since_epoch().count());
288 message_header_builder.add_realtime_sent_time(
289 context.realtime_event_time.time_since_epoch().count());
290 break;
291 }
Austin Schuha36c8902019-12-30 18:07:15 -0800292
293 switch (log_type) {
294 case LogType::kLogMessage:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800295 case LogType::kLogRemoteMessage:
Austin Schuha36c8902019-12-30 18:07:15 -0800296 message_header_builder.add_data(data_offset);
297 break;
298
299 case LogType::kLogMessageAndDeliveryTime:
300 message_header_builder.add_data(data_offset);
301 [[fallthrough]];
302
303 case LogType::kLogDeliveryTimeOnly:
304 message_header_builder.add_monotonic_remote_time(
305 context.monotonic_remote_time.time_since_epoch().count());
306 message_header_builder.add_realtime_remote_time(
307 context.realtime_remote_time.time_since_epoch().count());
308 message_header_builder.add_remote_queue_index(context.remote_queue_index);
309 break;
310 }
311
312 return message_header_builder.Finish();
313}
314
Brian Silvermanf51499a2020-09-21 12:49:08 -0700315SpanReader::SpanReader(std::string_view filename) : filename_(filename) {
Brian Silvermanf59fe3f2020-09-22 21:04:09 -0700316 static const std::string_view kXz = ".xz";
317 if (filename.substr(filename.size() - kXz.size()) == kXz) {
318#if ENABLE_LZMA
319 decoder_ = std::make_unique<LzmaDecoder>(filename);
320#else
321 LOG(FATAL) << "Reading xz-compressed files not supported on this platform";
322#endif
323 } else {
324 decoder_ = std::make_unique<DummyDecoder>(filename);
325 }
Austin Schuh05b70472020-01-01 17:11:17 -0800326}
327
328absl::Span<const uint8_t> SpanReader::ReadMessage() {
329 // Make sure we have enough for the size.
330 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
331 if (!ReadBlock()) {
332 return absl::Span<const uint8_t>();
333 }
334 }
335
336 // Now make sure we have enough for the message.
337 const size_t data_size =
338 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
339 sizeof(flatbuffers::uoffset_t);
Austin Schuhe4fca832020-03-07 16:58:53 -0800340 if (data_size == sizeof(flatbuffers::uoffset_t)) {
341 LOG(ERROR) << "Size of data is zero. Log file end is corrupted, skipping.";
342 LOG(ERROR) << " Rest of log file is "
343 << absl::BytesToHexString(std::string_view(
344 reinterpret_cast<const char *>(data_.data() +
345 consumed_data_),
346 data_.size() - consumed_data_));
347 return absl::Span<const uint8_t>();
348 }
Austin Schuh05b70472020-01-01 17:11:17 -0800349 while (data_.size() < consumed_data_ + data_size) {
350 if (!ReadBlock()) {
351 return absl::Span<const uint8_t>();
352 }
353 }
354
355 // And return it, consuming the data.
356 const uint8_t *data_ptr = data_.data() + consumed_data_;
357
358 consumed_data_ += data_size;
359
360 return absl::Span<const uint8_t>(data_ptr, data_size);
361}
362
Austin Schuh05b70472020-01-01 17:11:17 -0800363bool SpanReader::ReadBlock() {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700364 // This is the amount of data we grab at a time. Doing larger chunks minimizes
365 // syscalls and helps decompressors batch things more efficiently.
Austin Schuh05b70472020-01-01 17:11:17 -0800366 constexpr size_t kReadSize = 256 * 1024;
367
368 // Strip off any unused data at the front.
369 if (consumed_data_ != 0) {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700370 data_.erase_front(consumed_data_);
Austin Schuh05b70472020-01-01 17:11:17 -0800371 consumed_data_ = 0;
372 }
373
374 const size_t starting_size = data_.size();
375
376 // This should automatically grow the backing store. It won't shrink if we
377 // get a small chunk later. This reduces allocations when we want to append
378 // more data.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700379 data_.resize(starting_size + kReadSize);
Austin Schuh05b70472020-01-01 17:11:17 -0800380
Brian Silvermanf51499a2020-09-21 12:49:08 -0700381 const size_t count =
382 decoder_->Read(data_.begin() + starting_size, data_.end());
383 data_.resize(starting_size + count);
Austin Schuh05b70472020-01-01 17:11:17 -0800384 if (count == 0) {
Austin Schuh05b70472020-01-01 17:11:17 -0800385 return false;
386 }
Austin Schuh05b70472020-01-01 17:11:17 -0800387
388 return true;
389}
390
Austin Schuhadd6eb32020-11-09 21:24:26 -0800391std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800392 std::string_view filename) {
Austin Schuh6f3babe2020-01-26 20:34:50 -0800393 SpanReader span_reader(filename);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800394 absl::Span<const uint8_t> config_data = span_reader.ReadMessage();
395
396 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800397 if (config_data == absl::Span<const uint8_t>()) {
398 return std::nullopt;
399 }
Austin Schuh6f3babe2020-01-26 20:34:50 -0800400
Austin Schuh5212cad2020-09-09 23:12:09 -0700401 // And copy the config so we have it forever, removing the size prefix.
Brian Silverman354697a2020-09-22 21:06:32 -0700402 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800403 data.resize(config_data.size());
404 memcpy(data.data(), config_data.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800405 SizePrefixedFlatbufferVector<LogFileHeader> result(std::move(data));
406 if (!result.Verify()) {
407 return std::nullopt;
408 }
409 return result;
Austin Schuh6f3babe2020-01-26 20:34:50 -0800410}
411
Austin Schuhadd6eb32020-11-09 21:24:26 -0800412std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadNthMessage(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800413 std::string_view filename, size_t n) {
Austin Schuh5212cad2020-09-09 23:12:09 -0700414 SpanReader span_reader(filename);
415 absl::Span<const uint8_t> data_span = span_reader.ReadMessage();
416 for (size_t i = 0; i < n + 1; ++i) {
417 data_span = span_reader.ReadMessage();
418
419 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800420 if (data_span == absl::Span<const uint8_t>()) {
421 return std::nullopt;
422 }
Austin Schuh5212cad2020-09-09 23:12:09 -0700423 }
424
Brian Silverman354697a2020-09-22 21:06:32 -0700425 // And copy the config so we have it forever, removing the size prefix.
426 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800427 data.resize(data_span.size());
428 memcpy(data.data(), data_span.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800429 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(data));
430 if (!result.Verify()) {
431 return std::nullopt;
432 }
433 return result;
Austin Schuh5212cad2020-09-09 23:12:09 -0700434}
435
Austin Schuh05b70472020-01-01 17:11:17 -0800436MessageReader::MessageReader(std::string_view filename)
Austin Schuh97789fc2020-08-01 14:42:45 -0700437 : span_reader_(filename),
Austin Schuhadd6eb32020-11-09 21:24:26 -0800438 raw_log_file_header_(
439 SizePrefixedFlatbufferVector<LogFileHeader>::Empty()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800440 // Make sure we have enough to read the size.
Austin Schuh97789fc2020-08-01 14:42:45 -0700441 absl::Span<const uint8_t> header_data = span_reader_.ReadMessage();
Austin Schuh05b70472020-01-01 17:11:17 -0800442
443 // Make sure something was read.
Austin Schuh97789fc2020-08-01 14:42:45 -0700444 CHECK(header_data != absl::Span<const uint8_t>())
445 << ": Failed to read header from: " << filename;
Austin Schuh05b70472020-01-01 17:11:17 -0800446
Austin Schuh97789fc2020-08-01 14:42:45 -0700447 // And copy the header data so we have it forever.
Brian Silverman354697a2020-09-22 21:06:32 -0700448 ResizeableBuffer header_data_copy;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800449 header_data_copy.resize(header_data.size());
450 memcpy(header_data_copy.data(), header_data.begin(), header_data_copy.size());
Austin Schuh97789fc2020-08-01 14:42:45 -0700451 raw_log_file_header_ =
Austin Schuhadd6eb32020-11-09 21:24:26 -0800452 SizePrefixedFlatbufferVector<LogFileHeader>(std::move(header_data_copy));
Austin Schuh05b70472020-01-01 17:11:17 -0800453
Austin Schuhcde938c2020-02-02 17:30:07 -0800454 max_out_of_order_duration_ =
Austin Schuha040c3f2021-02-13 16:09:07 -0800455 FLAGS_max_out_of_order > 0
456 ? chrono::duration_cast<chrono::nanoseconds>(
457 chrono::duration<double>(FLAGS_max_out_of_order))
458 : chrono::nanoseconds(log_file_header()->max_out_of_order_duration());
Austin Schuhcde938c2020-02-02 17:30:07 -0800459
460 VLOG(1) << "Opened " << filename << " as node "
461 << FlatbufferToJson(log_file_header()->node());
Austin Schuh05b70472020-01-01 17:11:17 -0800462}
463
Austin Schuhadd6eb32020-11-09 21:24:26 -0800464std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
465MessageReader::ReadMessage() {
Austin Schuh05b70472020-01-01 17:11:17 -0800466 absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage();
467 if (msg_data == absl::Span<const uint8_t>()) {
468 return std::nullopt;
469 }
470
Brian Silverman354697a2020-09-22 21:06:32 -0700471 ResizeableBuffer result_buffer;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800472 result_buffer.resize(msg_data.size());
473 memcpy(result_buffer.data(), msg_data.begin(), result_buffer.size());
474 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(result_buffer));
Austin Schuh05b70472020-01-01 17:11:17 -0800475
476 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
477 chrono::nanoseconds(result.message().monotonic_sent_time()));
478
479 newest_timestamp_ = std::max(newest_timestamp_, timestamp);
Austin Schuh8bd96322020-02-13 21:18:22 -0800480 VLOG(2) << "Read from " << filename() << " data " << FlatbufferToJson(result);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800481 return std::move(result);
Austin Schuh05b70472020-01-01 17:11:17 -0800482}
483
Austin Schuhc41603c2020-10-11 16:17:37 -0700484PartsMessageReader::PartsMessageReader(LogParts log_parts)
485 : parts_(std::move(log_parts)), message_reader_(parts_.parts[0]) {}
486
Austin Schuhadd6eb32020-11-09 21:24:26 -0800487std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
Austin Schuhc41603c2020-10-11 16:17:37 -0700488PartsMessageReader::ReadMessage() {
489 while (!done_) {
Austin Schuhadd6eb32020-11-09 21:24:26 -0800490 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> message =
Austin Schuhc41603c2020-10-11 16:17:37 -0700491 message_reader_.ReadMessage();
492 if (message) {
493 newest_timestamp_ = message_reader_.newest_timestamp();
Austin Schuh32f68492020-11-08 21:45:51 -0800494 const monotonic_clock::time_point monotonic_sent_time(
495 chrono::nanoseconds(message->message().monotonic_sent_time()));
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800496 // TODO(austin): Does this work with startup? Might need to use the start
497 // time.
498 // TODO(austin): Does this work with startup when we don't know the remote
499 // start time too? Look at one of those logs to compare.
Austin Schuh315b96b2020-12-11 21:21:12 -0800500 if (monotonic_sent_time >
501 parts_.monotonic_start_time + max_out_of_order_duration()) {
502 after_start_ = true;
503 }
504 if (after_start_) {
Austin Schuhb000de62020-12-03 22:00:40 -0800505 CHECK_GE(monotonic_sent_time,
506 newest_timestamp_ - max_out_of_order_duration())
Austin Schuha040c3f2021-02-13 16:09:07 -0800507 << ": Max out of order of " << max_out_of_order_duration().count()
508 << "ns exceeded. " << parts_ << ", start time is "
Austin Schuh315b96b2020-12-11 21:21:12 -0800509 << parts_.monotonic_start_time << " currently reading "
510 << filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800511 }
Austin Schuhc41603c2020-10-11 16:17:37 -0700512 return message;
513 }
514 NextLog();
515 }
Austin Schuh32f68492020-11-08 21:45:51 -0800516 newest_timestamp_ = monotonic_clock::max_time;
Austin Schuhc41603c2020-10-11 16:17:37 -0700517 return std::nullopt;
518}
519
520void PartsMessageReader::NextLog() {
521 if (next_part_index_ == parts_.parts.size()) {
522 done_ = true;
523 return;
524 }
525 message_reader_ = MessageReader(parts_.parts[next_part_index_]);
526 ++next_part_index_;
527}
528
Austin Schuh1be0ce42020-11-29 22:43:26 -0800529bool Message::operator<(const Message &m2) const {
530 if (this->timestamp < m2.timestamp) {
531 return true;
532 } else if (this->timestamp > m2.timestamp) {
533 return false;
534 }
535
536 if (this->channel_index < m2.channel_index) {
537 return true;
538 } else if (this->channel_index > m2.channel_index) {
539 return false;
540 }
541
542 return this->queue_index < m2.queue_index;
543}
544
545bool Message::operator>=(const Message &m2) const { return !(*this < m2); }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800546bool Message::operator==(const Message &m2) const {
547 return timestamp == m2.timestamp && channel_index == m2.channel_index &&
548 queue_index == m2.queue_index;
549}
Austin Schuh1be0ce42020-11-29 22:43:26 -0800550
551std::ostream &operator<<(std::ostream &os, const Message &m) {
552 os << "{.channel_index=" << m.channel_index
Austin Schuhd2f96102020-12-01 20:27:29 -0800553 << ", .queue_index=" << m.queue_index << ", .timestamp=" << m.timestamp;
554 if (m.data.Verify()) {
555 os << ", .data="
556 << aos::FlatbufferToJson(m.data,
557 {.multi_line = false, .max_vector_size = 1});
558 }
559 os << "}";
560 return os;
561}
562
563std::ostream &operator<<(std::ostream &os, const TimestampedMessage &m) {
564 os << "{.channel_index=" << m.channel_index
565 << ", .queue_index=" << m.queue_index
566 << ", .monotonic_event_time=" << m.monotonic_event_time
567 << ", .realtime_event_time=" << m.realtime_event_time;
568 if (m.remote_queue_index != 0xffffffff) {
569 os << ", .remote_queue_index=" << m.remote_queue_index;
570 }
571 if (m.monotonic_remote_time != monotonic_clock::min_time) {
572 os << ", .monotonic_remote_time=" << m.monotonic_remote_time;
573 }
574 if (m.realtime_remote_time != realtime_clock::min_time) {
575 os << ", .realtime_remote_time=" << m.realtime_remote_time;
576 }
Austin Schuh8bf1e632021-01-02 22:41:04 -0800577 if (m.monotonic_timestamp_time != monotonic_clock::min_time) {
578 os << ", .monotonic_timestamp_time=" << m.monotonic_timestamp_time;
579 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800580 if (m.data.Verify()) {
581 os << ", .data="
582 << aos::FlatbufferToJson(m.data,
583 {.multi_line = false, .max_vector_size = 1});
584 }
585 os << "}";
Austin Schuh1be0ce42020-11-29 22:43:26 -0800586 return os;
587}
588
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800589LogPartsSorter::LogPartsSorter(LogParts log_parts)
590 : parts_message_reader_(log_parts) {}
591
592Message *LogPartsSorter::Front() {
593 // Queue up data until enough data has been queued that the front message is
594 // sorted enough to be safe to pop. This may do nothing, so we should make
595 // sure the nothing path is checked quickly.
596 if (sorted_until() != monotonic_clock::max_time) {
597 while (true) {
Austin Schuhb000de62020-12-03 22:00:40 -0800598 if (!messages_.empty() && messages_.begin()->timestamp < sorted_until() &&
599 sorted_until() >= monotonic_start_time()) {
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800600 break;
601 }
602
603 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> m =
604 parts_message_reader_.ReadMessage();
605 // No data left, sorted forever, work through what is left.
606 if (!m) {
607 sorted_until_ = monotonic_clock::max_time;
608 break;
609 }
610
611 messages_.insert(
612 {.channel_index = m.value().message().channel_index(),
613 .queue_index = m.value().message().queue_index(),
614 .timestamp = monotonic_clock::time_point(std::chrono::nanoseconds(
615 m.value().message().monotonic_sent_time())),
616 .data = std::move(m.value())});
617
618 // Now, update sorted_until_ to match the new message.
619 if (parts_message_reader_.newest_timestamp() >
620 monotonic_clock::min_time +
621 parts_message_reader_.max_out_of_order_duration()) {
622 sorted_until_ = parts_message_reader_.newest_timestamp() -
623 parts_message_reader_.max_out_of_order_duration();
624 } else {
625 sorted_until_ = monotonic_clock::min_time;
626 }
627 }
628 }
629
630 // Now that we have enough data queued, return a pointer to the oldest piece
631 // of data if it exists.
632 if (messages_.empty()) {
Austin Schuhb000de62020-12-03 22:00:40 -0800633 last_message_time_ = monotonic_clock::max_time;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800634 return nullptr;
635 }
636
Austin Schuh315b96b2020-12-11 21:21:12 -0800637 CHECK_GE(messages_.begin()->timestamp, last_message_time_)
638 << DebugString() << " reading " << parts_message_reader_.filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800639 last_message_time_ = messages_.begin()->timestamp;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800640 return &(*messages_.begin());
641}
642
643void LogPartsSorter::PopFront() { messages_.erase(messages_.begin()); }
644
645std::string LogPartsSorter::DebugString() const {
646 std::stringstream ss;
647 ss << "messages: [\n";
Austin Schuh315b96b2020-12-11 21:21:12 -0800648 int count = 0;
649 bool no_dots = true;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800650 for (const Message &m : messages_) {
Austin Schuh315b96b2020-12-11 21:21:12 -0800651 if (count < 15 || count > static_cast<int>(messages_.size()) - 15) {
652 ss << m << "\n";
653 } else if (no_dots) {
654 ss << "...\n";
655 no_dots = false;
656 }
657 ++count;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800658 }
659 ss << "] <- " << parts_message_reader_.filename();
660 return ss.str();
661}
662
Austin Schuhd2f96102020-12-01 20:27:29 -0800663NodeMerger::NodeMerger(std::vector<LogParts> parts) {
664 CHECK_GE(parts.size(), 1u);
Austin Schuh715adc12021-06-29 22:07:39 -0700665 // Enforce that we are sorting things only from a single node from a single
666 // boot.
667 const std::string_view part0_node = parts[0].node;
668 const std::string_view part0_source_boot_uuid = parts[0].source_boot_uuid;
Austin Schuhd2f96102020-12-01 20:27:29 -0800669 for (size_t i = 1; i < parts.size(); ++i) {
670 CHECK_EQ(part0_node, parts[i].node) << ": Can't merge different nodes.";
Austin Schuh715adc12021-06-29 22:07:39 -0700671 CHECK_EQ(part0_source_boot_uuid, parts[i].source_boot_uuid)
672 << ": Can't merge different boots.";
Austin Schuhd2f96102020-12-01 20:27:29 -0800673 }
Austin Schuh715adc12021-06-29 22:07:39 -0700674
675 node_ = configuration::GetNodeIndex(parts[0].config.get(), part0_node);
676
Austin Schuhd2f96102020-12-01 20:27:29 -0800677 for (LogParts &part : parts) {
678 parts_sorters_.emplace_back(std::move(part));
679 }
680
Austin Schuhd2f96102020-12-01 20:27:29 -0800681 monotonic_start_time_ = monotonic_clock::max_time;
682 realtime_start_time_ = realtime_clock::max_time;
683 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
684 if (parts_sorter.monotonic_start_time() < monotonic_start_time_) {
685 monotonic_start_time_ = parts_sorter.monotonic_start_time();
686 realtime_start_time_ = parts_sorter.realtime_start_time();
687 }
688 }
689}
Austin Schuh8f52ed52020-11-30 23:12:39 -0800690
Austin Schuh0ca51f32020-12-25 21:51:45 -0800691std::vector<const LogParts *> NodeMerger::Parts() const {
692 std::vector<const LogParts *> p;
693 p.reserve(parts_sorters_.size());
694 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
695 p.emplace_back(&parts_sorter.parts());
696 }
697 return p;
698}
699
Austin Schuh8f52ed52020-11-30 23:12:39 -0800700Message *NodeMerger::Front() {
701 // Return the current Front if we have one, otherwise go compute one.
702 if (current_ != nullptr) {
Austin Schuhb000de62020-12-03 22:00:40 -0800703 Message *result = current_->Front();
704 CHECK_GE(result->timestamp, last_message_time_);
705 return result;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800706 }
707
708 // Otherwise, do a simple search for the oldest message, deduplicating any
709 // duplicates.
710 Message *oldest = nullptr;
711 sorted_until_ = monotonic_clock::max_time;
Austin Schuhd2f96102020-12-01 20:27:29 -0800712 for (LogPartsSorter &parts_sorter : parts_sorters_) {
713 Message *m = parts_sorter.Front();
Austin Schuh8f52ed52020-11-30 23:12:39 -0800714 if (!m) {
Austin Schuhd2f96102020-12-01 20:27:29 -0800715 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800716 continue;
717 }
718 if (oldest == nullptr || *m < *oldest) {
719 oldest = m;
Austin Schuhd2f96102020-12-01 20:27:29 -0800720 current_ = &parts_sorter;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800721 } else if (*m == *oldest) {
Austin Schuh8bf1e632021-01-02 22:41:04 -0800722 // Found a duplicate. If there is a choice, we want the one which has the
723 // timestamp time.
724 if (!m->data.message().has_monotonic_timestamp_time()) {
725 parts_sorter.PopFront();
726 } else if (!oldest->data.message().has_monotonic_timestamp_time()) {
727 current_->PopFront();
728 current_ = &parts_sorter;
729 oldest = m;
730 } else {
731 CHECK_EQ(m->data.message().monotonic_timestamp_time(),
732 oldest->data.message().monotonic_timestamp_time());
733 parts_sorter.PopFront();
734 }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800735 }
736
737 // PopFront may change this, so compute it down here.
Austin Schuhd2f96102020-12-01 20:27:29 -0800738 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800739 }
740
Austin Schuhb000de62020-12-03 22:00:40 -0800741 if (oldest) {
742 CHECK_GE(oldest->timestamp, last_message_time_);
743 last_message_time_ = oldest->timestamp;
744 } else {
745 last_message_time_ = monotonic_clock::max_time;
746 }
747
Austin Schuh8f52ed52020-11-30 23:12:39 -0800748 // Return the oldest message found. This will be nullptr if nothing was
749 // found, indicating there is nothing left.
750 return oldest;
751}
752
753void NodeMerger::PopFront() {
754 CHECK(current_ != nullptr) << "Popping before calling Front()";
755 current_->PopFront();
756 current_ = nullptr;
757}
758
Austin Schuhd2f96102020-12-01 20:27:29 -0800759TimestampMapper::TimestampMapper(std::vector<LogParts> parts)
760 : node_merger_(std::move(parts)),
Austin Schuh79b30942021-01-24 22:32:21 -0800761 timestamp_callback_([](TimestampedMessage *) {}) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800762 for (const LogParts *part : node_merger_.Parts()) {
763 if (!configuration_) {
764 configuration_ = part->config;
765 } else {
766 CHECK_EQ(configuration_.get(), part->config.get());
767 }
768 }
769 const Configuration *config = configuration_.get();
Austin Schuhd2f96102020-12-01 20:27:29 -0800770 // Only fill out nodes_data_ if there are nodes. Otherwise everything gets
771 // pretty simple.
772 if (configuration::MultiNode(config)) {
773 nodes_data_.resize(config->nodes()->size());
774 const Node *my_node = config->nodes()->Get(node());
775 for (size_t node_index = 0; node_index < nodes_data_.size(); ++node_index) {
776 const Node *node = config->nodes()->Get(node_index);
777 NodeData *node_data = &nodes_data_[node_index];
778 node_data->channels.resize(config->channels()->size());
779 // We should save the channel if it is delivered to the node represented
780 // by the NodeData, but not sent by that node. That combo means it is
781 // forwarded.
782 size_t channel_index = 0;
783 node_data->any_delivered = false;
784 for (const Channel *channel : *config->channels()) {
785 node_data->channels[channel_index].delivered =
786 configuration::ChannelIsReadableOnNode(channel, node) &&
Austin Schuhb3dbb6d2021-01-02 17:29:35 -0800787 configuration::ChannelIsSendableOnNode(channel, my_node) &&
788 (my_node != node);
Austin Schuhd2f96102020-12-01 20:27:29 -0800789 node_data->any_delivered = node_data->any_delivered ||
790 node_data->channels[channel_index].delivered;
791 ++channel_index;
792 }
793 }
794
795 for (const Channel *channel : *config->channels()) {
796 source_node_.emplace_back(configuration::GetNodeIndex(
797 config, channel->source_node()->string_view()));
798 }
799 }
800}
801
802void TimestampMapper::AddPeer(TimestampMapper *timestamp_mapper) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800803 CHECK(configuration::MultiNode(configuration()));
Austin Schuhd2f96102020-12-01 20:27:29 -0800804 CHECK_NE(timestamp_mapper->node(), node());
805 CHECK_LT(timestamp_mapper->node(), nodes_data_.size());
806
807 NodeData *node_data = &nodes_data_[timestamp_mapper->node()];
808 // Only set it if this node delivers to the peer timestamp_mapper. Otherwise
809 // we could needlessly save data.
810 if (node_data->any_delivered) {
Austin Schuh87dd3832021-01-01 23:07:31 -0800811 VLOG(1) << "Registering on node " << node() << " for peer node "
812 << timestamp_mapper->node();
Austin Schuhd2f96102020-12-01 20:27:29 -0800813 CHECK(timestamp_mapper->nodes_data_[node()].peer == nullptr);
814
815 timestamp_mapper->nodes_data_[node()].peer = this;
816 }
817}
818
Austin Schuh79b30942021-01-24 22:32:21 -0800819void TimestampMapper::QueueMessage(Message *m) {
820 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800821 .channel_index = m->channel_index,
822 .queue_index = m->queue_index,
823 .monotonic_event_time = m->timestamp,
824 .realtime_event_time = aos::realtime_clock::time_point(
825 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
826 .remote_queue_index = 0xffffffff,
827 .monotonic_remote_time = monotonic_clock::min_time,
828 .realtime_remote_time = realtime_clock::min_time,
Austin Schuh8bf1e632021-01-02 22:41:04 -0800829 .monotonic_timestamp_time = monotonic_clock::min_time,
Austin Schuh79b30942021-01-24 22:32:21 -0800830 .data = std::move(m->data)});
Austin Schuhd2f96102020-12-01 20:27:29 -0800831}
832
833TimestampedMessage *TimestampMapper::Front() {
834 // No need to fetch anything new. A previous message still exists.
835 switch (first_message_) {
836 case FirstMessage::kNeedsUpdate:
837 break;
838 case FirstMessage::kInMessage:
Austin Schuh79b30942021-01-24 22:32:21 -0800839 return &matched_messages_.front();
Austin Schuhd2f96102020-12-01 20:27:29 -0800840 case FirstMessage::kNullptr:
841 return nullptr;
842 }
843
Austin Schuh79b30942021-01-24 22:32:21 -0800844 if (matched_messages_.empty()) {
845 if (!QueueMatched()) {
846 first_message_ = FirstMessage::kNullptr;
847 return nullptr;
848 }
849 }
850 first_message_ = FirstMessage::kInMessage;
851 return &matched_messages_.front();
852}
853
854bool TimestampMapper::QueueMatched() {
Austin Schuhd2f96102020-12-01 20:27:29 -0800855 if (nodes_data_.empty()) {
856 // Simple path. We are single node, so there are no timestamps to match!
857 CHECK_EQ(messages_.size(), 0u);
858 Message *m = node_merger_.Front();
859 if (!m) {
Austin Schuh79b30942021-01-24 22:32:21 -0800860 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800861 }
Austin Schuh79b30942021-01-24 22:32:21 -0800862 // Enqueue this message into matched_messages_ so we have a place to
863 // associate remote timestamps, and return it.
864 QueueMessage(m);
Austin Schuhd2f96102020-12-01 20:27:29 -0800865
Austin Schuh79b30942021-01-24 22:32:21 -0800866 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
867 last_message_time_ = matched_messages_.back().monotonic_event_time;
868
869 // We are thin wrapper around node_merger. Call it directly.
870 node_merger_.PopFront();
871 timestamp_callback_(&matched_messages_.back());
872 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800873 }
874
875 // We need to only add messages to the list so they get processed for messages
876 // which are delivered. Reuse the flow below which uses messages_ by just
877 // adding the new message to messages_ and continuing.
878 if (messages_.empty()) {
879 if (!Queue()) {
880 // Found nothing to add, we are out of data!
Austin Schuh79b30942021-01-24 22:32:21 -0800881 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800882 }
883
884 // Now that it has been added (and cannibalized), forget about it upstream.
885 node_merger_.PopFront();
886 }
887
888 Message *m = &(messages_.front());
889
890 if (source_node_[m->channel_index] == node()) {
891 // From us, just forward it on, filling the remote data in as invalid.
Austin Schuh79b30942021-01-24 22:32:21 -0800892 QueueMessage(m);
893 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
894 last_message_time_ = matched_messages_.back().monotonic_event_time;
895 messages_.pop_front();
896 timestamp_callback_(&matched_messages_.back());
897 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800898 } else {
899 // Got a timestamp, find the matching remote data, match it, and return it.
900 Message data = MatchingMessageFor(*m);
901
902 // Return the data from the remote. The local message only has timestamp
903 // info which isn't relevant anymore once extracted.
Austin Schuh79b30942021-01-24 22:32:21 -0800904 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800905 .channel_index = m->channel_index,
906 .queue_index = m->queue_index,
907 .monotonic_event_time = m->timestamp,
908 .realtime_event_time = aos::realtime_clock::time_point(
909 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
910 .remote_queue_index = m->data.message().remote_queue_index(),
911 .monotonic_remote_time =
912 monotonic_clock::time_point(std::chrono::nanoseconds(
913 m->data.message().monotonic_remote_time())),
914 .realtime_remote_time = realtime_clock::time_point(
915 std::chrono::nanoseconds(m->data.message().realtime_remote_time())),
Austin Schuh8bf1e632021-01-02 22:41:04 -0800916 .monotonic_timestamp_time =
917 monotonic_clock::time_point(std::chrono::nanoseconds(
918 m->data.message().monotonic_timestamp_time())),
Austin Schuh79b30942021-01-24 22:32:21 -0800919 .data = std::move(data.data)});
920 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
921 last_message_time_ = matched_messages_.back().monotonic_event_time;
922 // Since messages_ holds the data, drop it.
923 messages_.pop_front();
924 timestamp_callback_(&matched_messages_.back());
925 return true;
926 }
927}
928
929void TimestampMapper::QueueUntil(monotonic_clock::time_point queue_time) {
930 while (last_message_time_ <= queue_time) {
931 if (!QueueMatched()) {
932 return;
933 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800934 }
935}
936
Austin Schuhe639ea12021-01-25 13:00:22 -0800937void TimestampMapper::QueueFor(chrono::nanoseconds time_estimation_buffer) {
938 // Make sure we have something queued first. This makes the end time
939 // calculation simpler, and is typically what folks want regardless.
940 if (matched_messages_.empty()) {
941 if (!QueueMatched()) {
942 return;
943 }
944 }
945
946 const aos::monotonic_clock::time_point end_queue_time =
947 std::max(monotonic_start_time(),
948 matched_messages_.front().monotonic_event_time) +
949 time_estimation_buffer;
950
951 // Place sorted messages on the list until we have
952 // --time_estimation_buffer_seconds seconds queued up (but queue at least
953 // until the log starts).
954 while (end_queue_time >= last_message_time_) {
955 if (!QueueMatched()) {
956 return;
957 }
958 }
959}
960
Austin Schuhd2f96102020-12-01 20:27:29 -0800961void TimestampMapper::PopFront() {
962 CHECK(first_message_ != FirstMessage::kNeedsUpdate);
963 first_message_ = FirstMessage::kNeedsUpdate;
964
Austin Schuh79b30942021-01-24 22:32:21 -0800965 matched_messages_.pop_front();
Austin Schuhd2f96102020-12-01 20:27:29 -0800966}
967
968Message TimestampMapper::MatchingMessageFor(const Message &message) {
Austin Schuhd2f96102020-12-01 20:27:29 -0800969 // Figure out what queue index we are looking for.
970 CHECK(message.data.message().has_remote_queue_index());
971 const uint32_t remote_queue_index =
972 message.data.message().remote_queue_index();
973
974 CHECK(message.data.message().has_monotonic_remote_time());
975 CHECK(message.data.message().has_realtime_remote_time());
976
977 const monotonic_clock::time_point monotonic_remote_time(
978 std::chrono::nanoseconds(message.data.message().monotonic_remote_time()));
979 const realtime_clock::time_point realtime_remote_time(
980 std::chrono::nanoseconds(message.data.message().realtime_remote_time()));
981
Austin Schuhfecf1d82020-12-19 16:57:28 -0800982 TimestampMapper *peer = nodes_data_[source_node_[message.channel_index]].peer;
983
984 // We only register the peers which we have data for. So, if we are being
985 // asked to pull a timestamp from a peer which doesn't exist, return an empty
986 // message.
987 if (peer == nullptr) {
988 return Message{
989 .channel_index = message.channel_index,
990 .queue_index = remote_queue_index,
991 .timestamp = monotonic_remote_time,
992 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
993 }
994
995 // The queue which will have the matching data, if available.
996 std::deque<Message> *data_queue =
997 &peer->nodes_data_[node()].channels[message.channel_index].messages;
998
Austin Schuh79b30942021-01-24 22:32:21 -0800999 peer->QueueUnmatchedUntil(monotonic_remote_time);
Austin Schuhd2f96102020-12-01 20:27:29 -08001000
1001 if (data_queue->empty()) {
1002 return Message{
1003 .channel_index = message.channel_index,
1004 .queue_index = remote_queue_index,
1005 .timestamp = monotonic_remote_time,
1006 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1007 }
1008
Austin Schuhd2f96102020-12-01 20:27:29 -08001009 if (remote_queue_index < data_queue->front().queue_index ||
1010 remote_queue_index > data_queue->back().queue_index) {
1011 return Message{
1012 .channel_index = message.channel_index,
1013 .queue_index = remote_queue_index,
1014 .timestamp = monotonic_remote_time,
1015 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1016 }
1017
Austin Schuh993ccb52020-12-12 15:59:32 -08001018 // The algorithm below is constant time with some assumptions. We need there
1019 // to be no missing messages in the data stream. This also assumes a queue
1020 // hasn't wrapped. That is conservative, but should let us get started.
1021 if (data_queue->back().queue_index - data_queue->front().queue_index + 1u ==
1022 data_queue->size()) {
1023 // Pull the data out and confirm that the timestamps match as expected.
1024 Message result = std::move(
1025 (*data_queue)[remote_queue_index - data_queue->front().queue_index]);
1026
1027 CHECK_EQ(result.timestamp, monotonic_remote_time)
1028 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1029 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1030 result.data.message().realtime_sent_time())),
1031 realtime_remote_time)
1032 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1033 // Now drop the data off the front. We have deduplicated timestamps, so we
1034 // are done. And all the data is in order.
1035 data_queue->erase(data_queue->begin(),
1036 data_queue->begin() + (1 + remote_queue_index -
1037 data_queue->front().queue_index));
1038 return result;
1039 } else {
1040 auto it = std::find_if(data_queue->begin(), data_queue->end(),
1041 [remote_queue_index](const Message &m) {
1042 return m.queue_index == remote_queue_index;
1043 });
1044 if (it == data_queue->end()) {
1045 return Message{
1046 .channel_index = message.channel_index,
1047 .queue_index = remote_queue_index,
1048 .timestamp = monotonic_remote_time,
1049 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1050 }
1051
1052 Message result = std::move(*it);
1053
1054 CHECK_EQ(result.timestamp, monotonic_remote_time)
1055 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1056 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1057 result.data.message().realtime_sent_time())),
1058 realtime_remote_time)
1059 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1060
1061 data_queue->erase(it);
1062
1063 return result;
1064 }
Austin Schuhd2f96102020-12-01 20:27:29 -08001065}
1066
Austin Schuh79b30942021-01-24 22:32:21 -08001067void TimestampMapper::QueueUnmatchedUntil(monotonic_clock::time_point t) {
Austin Schuhd2f96102020-12-01 20:27:29 -08001068 if (queued_until_ > t) {
1069 return;
1070 }
1071 while (true) {
1072 if (!messages_.empty() && messages_.back().timestamp > t) {
1073 queued_until_ = std::max(queued_until_, messages_.back().timestamp);
1074 return;
1075 }
1076
1077 if (!Queue()) {
1078 // Found nothing to add, we are out of data!
1079 queued_until_ = monotonic_clock::max_time;
1080 return;
1081 }
1082
1083 // Now that it has been added (and cannibalized), forget about it upstream.
1084 node_merger_.PopFront();
1085 }
1086}
1087
1088bool TimestampMapper::Queue() {
1089 Message *m = node_merger_.Front();
1090 if (m == nullptr) {
1091 return false;
1092 }
1093 for (NodeData &node_data : nodes_data_) {
1094 if (!node_data.any_delivered) continue;
1095 if (node_data.channels[m->channel_index].delivered) {
1096 // TODO(austin): This copies the data... Probably not worth stressing
1097 // about yet.
1098 // TODO(austin): Bound how big this can get. We tend not to send massive
1099 // data, so we can probably ignore this for a bit.
1100 node_data.channels[m->channel_index].messages.emplace_back(*m);
1101 }
1102 }
1103
1104 messages_.emplace_back(std::move(*m));
1105 return true;
1106}
1107
1108std::string TimestampMapper::DebugString() const {
1109 std::stringstream ss;
1110 ss << "node " << node() << " [\n";
1111 for (const Message &message : messages_) {
1112 ss << " " << message << "\n";
1113 }
1114 ss << "] queued_until " << queued_until_;
1115 for (const NodeData &ns : nodes_data_) {
1116 if (ns.peer == nullptr) continue;
1117 ss << "\nnode " << ns.peer->node() << " remote_data [\n";
1118 size_t channel_index = 0;
1119 for (const NodeData::ChannelData &channel_data :
1120 ns.peer->nodes_data_[node()].channels) {
1121 if (channel_data.messages.empty()) {
1122 continue;
1123 }
Austin Schuhb000de62020-12-03 22:00:40 -08001124
Austin Schuhd2f96102020-12-01 20:27:29 -08001125 ss << " channel " << channel_index << " [\n";
1126 for (const Message &m : channel_data.messages) {
1127 ss << " " << m << "\n";
1128 }
1129 ss << " ]\n";
1130 ++channel_index;
1131 }
1132 ss << "] queued_until " << ns.peer->queued_until_;
1133 }
1134 return ss.str();
1135}
1136
Austin Schuhee711052020-08-24 16:06:09 -07001137std::string MaybeNodeName(const Node *node) {
1138 if (node != nullptr) {
1139 return node->name()->str() + " ";
1140 }
1141 return "";
1142}
1143
Brian Silvermanf51499a2020-09-21 12:49:08 -07001144} // namespace aos::logger