blob: e55b80d9cfa9d6439d830a8e263a3401b400d34b [file] [log] [blame]
Austin Schuha36c8902019-12-30 18:07:15 -08001#include "aos/events/logging/logfile_utils.h"
2
3#include <fcntl.h>
4#include <limits.h>
5#include <sys/stat.h>
6#include <sys/types.h>
7#include <sys/uio.h>
8
9#include <vector>
10
Austin Schuh05b70472020-01-01 17:11:17 -080011#include "aos/configuration.h"
Austin Schuha36c8902019-12-30 18:07:15 -080012#include "aos/events/logging/logger_generated.h"
Austin Schuhfa895892020-01-07 20:07:41 -080013#include "aos/flatbuffer_merge.h"
Austin Schuha36c8902019-12-30 18:07:15 -080014#include "flatbuffers/flatbuffers.h"
Austin Schuh05b70472020-01-01 17:11:17 -080015#include "gflags/gflags.h"
16#include "glog/logging.h"
Austin Schuha36c8902019-12-30 18:07:15 -080017
18DEFINE_int32(flush_size, 1000000,
19 "Number of outstanding bytes to allow before flushing to disk.");
20
21namespace aos {
22namespace logger {
23
Austin Schuh05b70472020-01-01 17:11:17 -080024namespace chrono = std::chrono;
25
Austin Schuha36c8902019-12-30 18:07:15 -080026DetachedBufferWriter::DetachedBufferWriter(std::string_view filename)
27 : fd_(open(std::string(filename).c_str(),
28 O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774)) {
29 PCHECK(fd_ != -1) << ": Failed to open " << filename;
30}
31
32DetachedBufferWriter::~DetachedBufferWriter() {
33 Flush();
34 PLOG_IF(ERROR, close(fd_) == -1) << " Failed to close logfile";
35}
36
37void DetachedBufferWriter::QueueSizedFlatbuffer(
38 flatbuffers::FlatBufferBuilder *fbb) {
39 QueueSizedFlatbuffer(fbb->Release());
40}
41
42void DetachedBufferWriter::QueueSizedFlatbuffer(
43 flatbuffers::DetachedBuffer &&buffer) {
44 queued_size_ += buffer.size();
45 queue_.emplace_back(std::move(buffer));
46
47 // Flush if we are at the max number of iovs per writev, or have written
48 // enough data. Otherwise writev will fail with an invalid argument.
49 if (queued_size_ > static_cast<size_t>(FLAGS_flush_size) ||
50 queue_.size() == IOV_MAX) {
51 Flush();
52 }
53}
54
55void DetachedBufferWriter::Flush() {
56 if (queue_.size() == 0u) {
57 return;
58 }
59 iovec_.clear();
60 iovec_.reserve(queue_.size());
61 size_t counted_size = 0;
62 for (size_t i = 0; i < queue_.size(); ++i) {
63 struct iovec n;
64 n.iov_base = queue_[i].data();
65 n.iov_len = queue_[i].size();
66 counted_size += n.iov_len;
67 iovec_.emplace_back(std::move(n));
68 }
69 CHECK_EQ(counted_size, queued_size_);
70 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
71
72 PCHECK(written == static_cast<ssize_t>(queued_size_))
73 << ": Wrote " << written << " expected " << queued_size_;
74
75 queued_size_ = 0;
76 queue_.clear();
77 // TODO(austin): Handle partial writes in some way other than crashing...
78}
79
80flatbuffers::Offset<MessageHeader> PackMessage(
81 flatbuffers::FlatBufferBuilder *fbb, const Context &context,
82 int channel_index, LogType log_type) {
83 flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset;
84
85 switch (log_type) {
86 case LogType::kLogMessage:
87 case LogType::kLogMessageAndDeliveryTime:
88 data_offset =
89 fbb->CreateVector(static_cast<uint8_t *>(context.data), context.size);
90 break;
91
92 case LogType::kLogDeliveryTimeOnly:
93 break;
94 }
95
96 MessageHeader::Builder message_header_builder(*fbb);
97 message_header_builder.add_channel_index(channel_index);
98 message_header_builder.add_queue_index(context.queue_index);
99 message_header_builder.add_monotonic_sent_time(
100 context.monotonic_event_time.time_since_epoch().count());
101 message_header_builder.add_realtime_sent_time(
102 context.realtime_event_time.time_since_epoch().count());
103
104 switch (log_type) {
105 case LogType::kLogMessage:
106 message_header_builder.add_data(data_offset);
107 break;
108
109 case LogType::kLogMessageAndDeliveryTime:
110 message_header_builder.add_data(data_offset);
111 [[fallthrough]];
112
113 case LogType::kLogDeliveryTimeOnly:
114 message_header_builder.add_monotonic_remote_time(
115 context.monotonic_remote_time.time_since_epoch().count());
116 message_header_builder.add_realtime_remote_time(
117 context.realtime_remote_time.time_since_epoch().count());
118 message_header_builder.add_remote_queue_index(context.remote_queue_index);
119 break;
120 }
121
122 return message_header_builder.Finish();
123}
124
Austin Schuh05b70472020-01-01 17:11:17 -0800125SpanReader::SpanReader(std::string_view filename)
126 : fd_(open(std::string(filename).c_str(), O_RDONLY | O_CLOEXEC)) {
127 PCHECK(fd_ != -1) << ": Failed to open " << filename;
128}
129
130absl::Span<const uint8_t> SpanReader::ReadMessage() {
131 // Make sure we have enough for the size.
132 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
133 if (!ReadBlock()) {
134 return absl::Span<const uint8_t>();
135 }
136 }
137
138 // Now make sure we have enough for the message.
139 const size_t data_size =
140 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
141 sizeof(flatbuffers::uoffset_t);
142 while (data_.size() < consumed_data_ + data_size) {
143 if (!ReadBlock()) {
144 return absl::Span<const uint8_t>();
145 }
146 }
147
148 // And return it, consuming the data.
149 const uint8_t *data_ptr = data_.data() + consumed_data_;
150
151 consumed_data_ += data_size;
152
153 return absl::Span<const uint8_t>(data_ptr, data_size);
154}
155
156bool SpanReader::MessageAvailable() {
157 // Are we big enough to read the size?
158 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
159 return false;
160 }
161
162 // Then, are we big enough to read the full message?
163 const size_t data_size =
164 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
165 sizeof(flatbuffers::uoffset_t);
166 if (data_.size() < consumed_data_ + data_size) {
167 return false;
168 }
169
170 return true;
171}
172
173bool SpanReader::ReadBlock() {
174 if (end_of_file_) {
175 return false;
176 }
177
178 // Appends 256k. This is enough that the read call is efficient. We don't
179 // want to spend too much time reading small chunks because the syscalls for
180 // that will be expensive.
181 constexpr size_t kReadSize = 256 * 1024;
182
183 // Strip off any unused data at the front.
184 if (consumed_data_ != 0) {
185 data_.erase(data_.begin(), data_.begin() + consumed_data_);
186 consumed_data_ = 0;
187 }
188
189 const size_t starting_size = data_.size();
190
191 // This should automatically grow the backing store. It won't shrink if we
192 // get a small chunk later. This reduces allocations when we want to append
193 // more data.
194 data_.resize(data_.size() + kReadSize);
195
196 ssize_t count = read(fd_, &data_[starting_size], kReadSize);
197 data_.resize(starting_size + std::max(count, static_cast<ssize_t>(0)));
198 if (count == 0) {
199 end_of_file_ = true;
200 return false;
201 }
202 PCHECK(count > 0);
203
204 return true;
205}
206
207MessageReader::MessageReader(std::string_view filename)
208 : span_reader_(filename) {
209 // Make sure we have enough to read the size.
210 absl::Span<const uint8_t> config_data = span_reader_.ReadMessage();
211
212 // Make sure something was read.
213 CHECK(config_data != absl::Span<const uint8_t>());
214
215 // And copy the config so we have it forever.
216 configuration_ = std::vector<uint8_t>(config_data.begin(), config_data.end());
217
218 max_out_of_order_duration_ = std::chrono::nanoseconds(
219 flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data())
220 ->max_out_of_order_duration());
221}
222
223std::optional<FlatbufferVector<MessageHeader>> MessageReader::ReadMessage() {
224 absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage();
225 if (msg_data == absl::Span<const uint8_t>()) {
226 return std::nullopt;
227 }
228
229 FlatbufferVector<MessageHeader> result{std::vector<uint8_t>(
230 msg_data.begin() + sizeof(flatbuffers::uoffset_t), msg_data.end())};
231
232 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
233 chrono::nanoseconds(result.message().monotonic_sent_time()));
234
235 newest_timestamp_ = std::max(newest_timestamp_, timestamp);
236 return result;
237}
238
Austin Schuhfa895892020-01-07 20:07:41 -0800239SortedMessageReader::SortedMessageReader(
240 const std::vector<std::string> &filenames)
241 : filenames_(filenames),
242 log_file_header_(FlatbufferDetachedBuffer<LogFileHeader>::Empty()) {
243 CHECK(NextLogFile()) << ": filenames is empty. Need files to read.";
244
245 log_file_header_ = CopyFlatBuffer(message_reader_->log_file_header());
246
Austin Schuh05b70472020-01-01 17:11:17 -0800247 channels_.resize(configuration()->channels()->size());
248
249 QueueMessages();
250}
251
Austin Schuhfa895892020-01-07 20:07:41 -0800252bool SortedMessageReader::NextLogFile() {
253 if (next_filename_index_ == filenames_.size()) {
254 return false;
255 }
256 message_reader_ =
257 std::make_unique<MessageReader>(filenames_[next_filename_index_]);
258
259 // We can't support the config diverging between two log file headers. See if
260 // they are the same.
261 if (next_filename_index_ != 0) {
262 // Since we copied before, we need to copy again to guarantee that things
263 // didn't get re-ordered.
264 const FlatbufferDetachedBuffer<LogFileHeader> new_log_file_header =
265 CopyFlatBuffer(message_reader_->log_file_header());
266 CHECK_EQ(new_log_file_header.size(), log_file_header_.size());
267 CHECK(memcmp(new_log_file_header.data(), log_file_header_.data(),
268 log_file_header_.size()) == 0)
269 << ": Header is different between log file chunks "
270 << filenames_[next_filename_index_] << " and "
271 << filenames_[next_filename_index_ - 1] << ", this is not supported.";
272 }
273
274 ++next_filename_index_;
275 return true;
276}
277
Austin Schuh05b70472020-01-01 17:11:17 -0800278void SortedMessageReader::EmplaceDataBack(
279 FlatbufferVector<MessageHeader> &&new_data) {
280 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
281 chrono::nanoseconds(new_data.message().monotonic_sent_time()));
282 const size_t channel_index = new_data.message().channel_index();
283 CHECK_LT(channel_index, channels_.size());
284
285 if (channels_[channel_index].data.size() == 0) {
286 channels_[channel_index].oldest_timestamp = timestamp;
287 PushChannelHeap(timestamp, channel_index);
288 }
289 channels_[channel_index].data.emplace_back(std::move(new_data));
290}
291
292namespace {
293
294bool ChannelHeapCompare(
295 const std::pair<monotonic_clock::time_point, int> first,
296 const std::pair<monotonic_clock::time_point, int> second) {
297 if (first.first > second.first) {
298 return true;
299 } else if (first.first == second.first) {
300 return first.second > second.second;
301 } else {
302 return false;
303 }
304}
305
306} // namespace
307
308void SortedMessageReader::PushChannelHeap(monotonic_clock::time_point timestamp,
309 int channel_index) {
310 channel_heap_.push_back(std::make_pair(timestamp, channel_index));
311
312 // The default sort puts the newest message first. Use a custom comparator to
313 // put the oldest message first.
314 std::push_heap(channel_heap_.begin(), channel_heap_.end(),
315 ChannelHeapCompare);
316}
317
318void SortedMessageReader::QueueMessages() {
319 while (true) {
320 // Don't queue if we have enough data already.
321 // When a log file starts, there should be a message from each channel.
322 // Those messages might be very old. Make sure to read a chunk past the
323 // starting time.
324 if (channel_heap_.size() > 0 &&
Austin Schuhfa895892020-01-07 20:07:41 -0800325 message_reader_->newest_timestamp() >
Austin Schuh05b70472020-01-01 17:11:17 -0800326 std::max(oldest_message().first, monotonic_start_time()) +
Austin Schuhfa895892020-01-07 20:07:41 -0800327 message_reader_->max_out_of_order_duration()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800328 break;
329 }
330
331 if (std::optional<FlatbufferVector<MessageHeader>> msg =
Austin Schuhfa895892020-01-07 20:07:41 -0800332 message_reader_->ReadMessage()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800333 EmplaceDataBack(std::move(msg.value()));
334 } else {
Austin Schuhfa895892020-01-07 20:07:41 -0800335 if (!NextLogFile()) {
336 break;
337 }
Austin Schuh05b70472020-01-01 17:11:17 -0800338 }
339 }
340}
341
342std::tuple<monotonic_clock::time_point, int, FlatbufferVector<MessageHeader>>
343SortedMessageReader::PopOldestChannel() {
344 std::pair<monotonic_clock::time_point, int> oldest_channel_data =
345 channel_heap_.front();
346 std::pop_heap(channel_heap_.begin(), channel_heap_.end(),
347 &ChannelHeapCompare);
348 channel_heap_.pop_back();
349
350 struct ChannelData &channel = channels_[oldest_channel_data.second];
351
352 FlatbufferVector<MessageHeader> front = std::move(channel.front());
353
354 channel.data.pop_front();
355
356 // Re-push it and update the oldest timestamp.
357 if (channel.data.size() != 0) {
358 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
359 chrono::nanoseconds(channel.front().message().monotonic_sent_time()));
360 PushChannelHeap(timestamp, oldest_channel_data.second);
361 channel.oldest_timestamp = timestamp;
362 } else {
363 channel.oldest_timestamp = monotonic_clock::min_time;
364 }
365
Austin Schuhfa895892020-01-07 20:07:41 -0800366 if (oldest_channel_data.first > message_reader_->queue_data_time()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800367 QueueMessages();
368 }
369
370 return std::make_tuple(oldest_channel_data.first, oldest_channel_data.second,
371 std::move(front));
372}
373
Austin Schuha36c8902019-12-30 18:07:15 -0800374} // namespace logger
375} // namespace aos