blob: b8b66a2929b5989e668ac913992d99a515185884 [file] [log] [blame]
Austin Schuha36c8902019-12-30 18:07:15 -08001#include "aos/events/logging/logfile_utils.h"
2
3#include <fcntl.h>
Austin Schuha36c8902019-12-30 18:07:15 -08004#include <sys/stat.h>
5#include <sys/types.h>
6#include <sys/uio.h>
7
Brian Silvermanf51499a2020-09-21 12:49:08 -07008#include <algorithm>
9#include <climits>
Austin Schuha36c8902019-12-30 18:07:15 -080010
Austin Schuhe4fca832020-03-07 16:58:53 -080011#include "absl/strings/escaping.h"
Austin Schuh05b70472020-01-01 17:11:17 -080012#include "aos/configuration.h"
Austin Schuhfa895892020-01-07 20:07:41 -080013#include "aos/flatbuffer_merge.h"
Austin Schuh6f3babe2020-01-26 20:34:50 -080014#include "aos/util/file.h"
Austin Schuha36c8902019-12-30 18:07:15 -080015#include "flatbuffers/flatbuffers.h"
Austin Schuh05b70472020-01-01 17:11:17 -080016#include "gflags/gflags.h"
17#include "glog/logging.h"
Austin Schuha36c8902019-12-30 18:07:15 -080018
Brian Silvermanf59fe3f2020-09-22 21:04:09 -070019#if defined(__x86_64__)
20#define ENABLE_LZMA 1
21#elif defined(__aarch64__)
22#define ENABLE_LZMA 1
23#else
24#define ENABLE_LZMA 0
25#endif
26
27#if ENABLE_LZMA
28#include "aos/events/logging/lzma_encoder.h"
29#endif
30
Austin Schuh7fbf5a72020-09-21 16:28:13 -070031DEFINE_int32(flush_size, 128000,
Austin Schuha36c8902019-12-30 18:07:15 -080032 "Number of outstanding bytes to allow before flushing to disk.");
Austin Schuhbd06ae42021-03-31 22:48:21 -070033DEFINE_double(
34 flush_period, 5.0,
35 "Max time to let data sit in the queue before flushing in seconds.");
Austin Schuha36c8902019-12-30 18:07:15 -080036
Austin Schuha040c3f2021-02-13 16:09:07 -080037DEFINE_double(
38 max_out_of_order, -1,
39 "If set, this overrides the max out of order duration for a log file.");
40
Brian Silvermanf51499a2020-09-21 12:49:08 -070041namespace aos::logger {
Austin Schuha36c8902019-12-30 18:07:15 -080042
Austin Schuh05b70472020-01-01 17:11:17 -080043namespace chrono = std::chrono;
44
Brian Silvermanf51499a2020-09-21 12:49:08 -070045DetachedBufferWriter::DetachedBufferWriter(
46 std::string_view filename, std::unique_ptr<DetachedBufferEncoder> encoder)
47 : filename_(filename), encoder_(std::move(encoder)) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070048 if (!util::MkdirPIfSpace(filename, 0777)) {
49 ran_out_of_space_ = true;
50 } else {
51 fd_ = open(std::string(filename).c_str(),
52 O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774);
53 if (fd_ == -1 && errno == ENOSPC) {
54 ran_out_of_space_ = true;
55 } else {
56 PCHECK(fd_ != -1) << ": Failed to open " << filename << " for writing";
57 VLOG(1) << "Opened " << filename << " for writing";
58 }
59 }
Austin Schuha36c8902019-12-30 18:07:15 -080060}
61
62DetachedBufferWriter::~DetachedBufferWriter() {
Brian Silverman0465fcf2020-09-24 00:29:18 -070063 Close();
64 if (ran_out_of_space_) {
65 CHECK(acknowledge_ran_out_of_space_)
66 << ": Unacknowledged out of disk space, log file was not completed";
Brian Silvermanf51499a2020-09-21 12:49:08 -070067 }
Austin Schuh2f8fd752020-09-01 22:38:28 -070068}
69
Brian Silvermand90905f2020-09-23 14:42:56 -070070DetachedBufferWriter::DetachedBufferWriter(DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070071 *this = std::move(other);
72}
73
Brian Silverman87ac0402020-09-17 14:47:01 -070074// When other is destroyed "soon" (which it should be because we're getting an
75// rvalue reference to it), it will flush etc all the data we have queued up
76// (because that data will then be its data).
Austin Schuh2f8fd752020-09-01 22:38:28 -070077DetachedBufferWriter &DetachedBufferWriter::operator=(
78 DetachedBufferWriter &&other) {
Austin Schuh2f8fd752020-09-01 22:38:28 -070079 std::swap(filename_, other.filename_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070080 std::swap(encoder_, other.encoder_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070081 std::swap(fd_, other.fd_);
Brian Silverman0465fcf2020-09-24 00:29:18 -070082 std::swap(ran_out_of_space_, other.ran_out_of_space_);
83 std::swap(acknowledge_ran_out_of_space_, other.acknowledge_ran_out_of_space_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070084 std::swap(iovec_, other.iovec_);
Brian Silvermanf51499a2020-09-21 12:49:08 -070085 std::swap(max_write_time_, other.max_write_time_);
86 std::swap(max_write_time_bytes_, other.max_write_time_bytes_);
87 std::swap(max_write_time_messages_, other.max_write_time_messages_);
88 std::swap(total_write_time_, other.total_write_time_);
89 std::swap(total_write_count_, other.total_write_count_);
90 std::swap(total_write_messages_, other.total_write_messages_);
91 std::swap(total_write_bytes_, other.total_write_bytes_);
Austin Schuh2f8fd752020-09-01 22:38:28 -070092 return *this;
Austin Schuha36c8902019-12-30 18:07:15 -080093}
94
Brian Silvermanf51499a2020-09-21 12:49:08 -070095void DetachedBufferWriter::QueueSpan(absl::Span<const uint8_t> span) {
Brian Silvermana9f2ec92020-10-06 18:00:53 -070096 if (ran_out_of_space_) {
97 // We don't want any later data to be written after space becomes
98 // available, so refuse to write anything more once we've dropped data
99 // because we ran out of space.
100 VLOG(1) << "Ignoring span: " << span.size();
101 return;
102 }
103
Austin Schuhbd06ae42021-03-31 22:48:21 -0700104 aos::monotonic_clock::time_point now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700105 if (encoder_->may_bypass() && span.size() > 4096u) {
106 // Over this threshold, we'll assume it's cheaper to add an extra
107 // syscall to write the data immediately instead of copying it to
108 // enqueue.
Austin Schuha36c8902019-12-30 18:07:15 -0800109
Brian Silvermanf51499a2020-09-21 12:49:08 -0700110 // First, flush everything.
111 while (encoder_->queue_size() > 0u) {
112 Flush();
113 }
Austin Schuhde031b72020-01-10 19:34:41 -0800114
Brian Silvermanf51499a2020-09-21 12:49:08 -0700115 // Then, write it directly.
116 const auto start = aos::monotonic_clock::now();
117 const ssize_t written = write(fd_, span.data(), span.size());
118 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700119 HandleWriteReturn(written, span.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700120 UpdateStatsForWrite(end - start, written, 1);
Austin Schuhbd06ae42021-03-31 22:48:21 -0700121 now = end;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700122 } else {
123 encoder_->Encode(CopySpanAsDetachedBuffer(span));
Austin Schuhbd06ae42021-03-31 22:48:21 -0700124 now = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800125 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700126
Austin Schuhbd06ae42021-03-31 22:48:21 -0700127 FlushAtThreshold(now);
Austin Schuha36c8902019-12-30 18:07:15 -0800128}
129
Brian Silverman0465fcf2020-09-24 00:29:18 -0700130void DetachedBufferWriter::Close() {
131 if (fd_ == -1) {
132 return;
133 }
134 encoder_->Finish();
135 while (encoder_->queue_size() > 0) {
136 Flush();
137 }
138 if (close(fd_) == -1) {
139 if (errno == ENOSPC) {
140 ran_out_of_space_ = true;
141 } else {
142 PLOG(ERROR) << "Closing log file failed";
143 }
144 }
145 fd_ = -1;
146 VLOG(1) << "Closed " << filename_;
147}
148
Austin Schuha36c8902019-12-30 18:07:15 -0800149void DetachedBufferWriter::Flush() {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700150 if (ran_out_of_space_) {
151 // We don't want any later data to be written after space becomes available,
152 // so refuse to write anything more once we've dropped data because we ran
153 // out of space.
Austin Schuha426f1f2021-03-31 22:27:41 -0700154 if (encoder_) {
155 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
156 encoder_->Clear(encoder_->queue().size());
157 } else {
158 VLOG(1) << "No queue to ignore";
159 }
160 return;
161 }
162
163 const auto queue = encoder_->queue();
164 if (queue.empty()) {
Brian Silverman0465fcf2020-09-24 00:29:18 -0700165 return;
166 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700167
Austin Schuha36c8902019-12-30 18:07:15 -0800168 iovec_.clear();
Brian Silvermanf51499a2020-09-21 12:49:08 -0700169 const size_t iovec_size = std::min<size_t>(queue.size(), IOV_MAX);
170 iovec_.resize(iovec_size);
Austin Schuha36c8902019-12-30 18:07:15 -0800171 size_t counted_size = 0;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700172 for (size_t i = 0; i < iovec_size; ++i) {
173 iovec_[i].iov_base = const_cast<uint8_t *>(queue[i].data());
174 iovec_[i].iov_len = queue[i].size();
175 counted_size += iovec_[i].iov_len;
Austin Schuha36c8902019-12-30 18:07:15 -0800176 }
Brian Silvermanf51499a2020-09-21 12:49:08 -0700177
178 const auto start = aos::monotonic_clock::now();
Austin Schuha36c8902019-12-30 18:07:15 -0800179 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
Brian Silvermanf51499a2020-09-21 12:49:08 -0700180 const auto end = aos::monotonic_clock::now();
Brian Silverman0465fcf2020-09-24 00:29:18 -0700181 HandleWriteReturn(written, counted_size);
Brian Silvermanf51499a2020-09-21 12:49:08 -0700182
183 encoder_->Clear(iovec_size);
184
185 UpdateStatsForWrite(end - start, written, iovec_size);
186}
187
Brian Silverman0465fcf2020-09-24 00:29:18 -0700188void DetachedBufferWriter::HandleWriteReturn(ssize_t write_return,
189 size_t write_size) {
190 if (write_return == -1 && errno == ENOSPC) {
191 ran_out_of_space_ = true;
192 return;
193 }
194 PCHECK(write_return >= 0) << ": write failed";
195 if (write_return < static_cast<ssize_t>(write_size)) {
196 // Sometimes this happens instead of ENOSPC. On a real filesystem, this
197 // never seems to happen in any other case. If we ever want to log to a
198 // socket, this will happen more often. However, until we get there, we'll
199 // just assume it means we ran out of space.
200 ran_out_of_space_ = true;
201 return;
202 }
203}
204
Brian Silvermanf51499a2020-09-21 12:49:08 -0700205void DetachedBufferWriter::UpdateStatsForWrite(
206 aos::monotonic_clock::duration duration, ssize_t written, int iovec_size) {
207 if (duration > max_write_time_) {
208 max_write_time_ = duration;
209 max_write_time_bytes_ = written;
210 max_write_time_messages_ = iovec_size;
211 }
212 total_write_time_ += duration;
213 ++total_write_count_;
214 total_write_messages_ += iovec_size;
215 total_write_bytes_ += written;
216}
217
Austin Schuhbd06ae42021-03-31 22:48:21 -0700218void DetachedBufferWriter::FlushAtThreshold(
219 aos::monotonic_clock::time_point now) {
Austin Schuha426f1f2021-03-31 22:27:41 -0700220 if (ran_out_of_space_) {
221 // We don't want any later data to be written after space becomes available,
222 // so refuse to write anything more once we've dropped data because we ran
223 // out of space.
224 if (encoder_) {
225 VLOG(1) << "Ignoring queue: " << encoder_->queue().size();
226 encoder_->Clear(encoder_->queue().size());
227 } else {
228 VLOG(1) << "No queue to ignore";
229 }
230 return;
231 }
232
Austin Schuhbd06ae42021-03-31 22:48:21 -0700233 // We don't want to flush the first time through. Otherwise we will flush as
234 // the log file header might be compressing, defeating any parallelism and
235 // queueing there.
236 if (last_flush_time_ == aos::monotonic_clock::min_time) {
237 last_flush_time_ = now;
238 }
239
Brian Silvermanf51499a2020-09-21 12:49:08 -0700240 // Flush if we are at the max number of iovs per writev, because there's no
241 // point queueing up any more data in memory. Also flush once we have enough
Austin Schuhbd06ae42021-03-31 22:48:21 -0700242 // data queued up or if it has been long enough.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700243 while (encoder_->queued_bytes() > static_cast<size_t>(FLAGS_flush_size) ||
Austin Schuhbd06ae42021-03-31 22:48:21 -0700244 encoder_->queue_size() >= IOV_MAX ||
245 now > last_flush_time_ +
246 chrono::duration_cast<chrono::nanoseconds>(
247 chrono::duration<double>(FLAGS_flush_period))) {
248 last_flush_time_ = now;
Brian Silvermanf51499a2020-09-21 12:49:08 -0700249 Flush();
250 }
Austin Schuha36c8902019-12-30 18:07:15 -0800251}
252
253flatbuffers::Offset<MessageHeader> PackMessage(
254 flatbuffers::FlatBufferBuilder *fbb, const Context &context,
255 int channel_index, LogType log_type) {
256 flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset;
257
258 switch (log_type) {
259 case LogType::kLogMessage:
260 case LogType::kLogMessageAndDeliveryTime:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800261 case LogType::kLogRemoteMessage:
Brian Silvermaneaa41d62020-07-08 19:47:35 -0700262 data_offset = fbb->CreateVector(
263 static_cast<const uint8_t *>(context.data), context.size);
Austin Schuha36c8902019-12-30 18:07:15 -0800264 break;
265
266 case LogType::kLogDeliveryTimeOnly:
267 break;
268 }
269
270 MessageHeader::Builder message_header_builder(*fbb);
271 message_header_builder.add_channel_index(channel_index);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800272
273 switch (log_type) {
274 case LogType::kLogRemoteMessage:
275 message_header_builder.add_queue_index(context.remote_queue_index);
276 message_header_builder.add_monotonic_sent_time(
277 context.monotonic_remote_time.time_since_epoch().count());
278 message_header_builder.add_realtime_sent_time(
279 context.realtime_remote_time.time_since_epoch().count());
280 break;
281
282 case LogType::kLogMessage:
283 case LogType::kLogMessageAndDeliveryTime:
284 case LogType::kLogDeliveryTimeOnly:
285 message_header_builder.add_queue_index(context.queue_index);
286 message_header_builder.add_monotonic_sent_time(
287 context.monotonic_event_time.time_since_epoch().count());
288 message_header_builder.add_realtime_sent_time(
289 context.realtime_event_time.time_since_epoch().count());
290 break;
291 }
Austin Schuha36c8902019-12-30 18:07:15 -0800292
293 switch (log_type) {
294 case LogType::kLogMessage:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800295 case LogType::kLogRemoteMessage:
Austin Schuha36c8902019-12-30 18:07:15 -0800296 message_header_builder.add_data(data_offset);
297 break;
298
299 case LogType::kLogMessageAndDeliveryTime:
300 message_header_builder.add_data(data_offset);
301 [[fallthrough]];
302
303 case LogType::kLogDeliveryTimeOnly:
304 message_header_builder.add_monotonic_remote_time(
305 context.monotonic_remote_time.time_since_epoch().count());
306 message_header_builder.add_realtime_remote_time(
307 context.realtime_remote_time.time_since_epoch().count());
308 message_header_builder.add_remote_queue_index(context.remote_queue_index);
309 break;
310 }
311
312 return message_header_builder.Finish();
313}
314
Brian Silvermanf51499a2020-09-21 12:49:08 -0700315SpanReader::SpanReader(std::string_view filename) : filename_(filename) {
Brian Silvermanf59fe3f2020-09-22 21:04:09 -0700316 static const std::string_view kXz = ".xz";
317 if (filename.substr(filename.size() - kXz.size()) == kXz) {
318#if ENABLE_LZMA
319 decoder_ = std::make_unique<LzmaDecoder>(filename);
320#else
321 LOG(FATAL) << "Reading xz-compressed files not supported on this platform";
322#endif
323 } else {
324 decoder_ = std::make_unique<DummyDecoder>(filename);
325 }
Austin Schuh05b70472020-01-01 17:11:17 -0800326}
327
328absl::Span<const uint8_t> SpanReader::ReadMessage() {
329 // Make sure we have enough for the size.
330 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
331 if (!ReadBlock()) {
332 return absl::Span<const uint8_t>();
333 }
334 }
335
336 // Now make sure we have enough for the message.
337 const size_t data_size =
338 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
339 sizeof(flatbuffers::uoffset_t);
Austin Schuhe4fca832020-03-07 16:58:53 -0800340 if (data_size == sizeof(flatbuffers::uoffset_t)) {
341 LOG(ERROR) << "Size of data is zero. Log file end is corrupted, skipping.";
342 LOG(ERROR) << " Rest of log file is "
343 << absl::BytesToHexString(std::string_view(
344 reinterpret_cast<const char *>(data_.data() +
345 consumed_data_),
346 data_.size() - consumed_data_));
347 return absl::Span<const uint8_t>();
348 }
Austin Schuh05b70472020-01-01 17:11:17 -0800349 while (data_.size() < consumed_data_ + data_size) {
350 if (!ReadBlock()) {
351 return absl::Span<const uint8_t>();
352 }
353 }
354
355 // And return it, consuming the data.
356 const uint8_t *data_ptr = data_.data() + consumed_data_;
357
358 consumed_data_ += data_size;
359
360 return absl::Span<const uint8_t>(data_ptr, data_size);
361}
362
Austin Schuh05b70472020-01-01 17:11:17 -0800363bool SpanReader::ReadBlock() {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700364 // This is the amount of data we grab at a time. Doing larger chunks minimizes
365 // syscalls and helps decompressors batch things more efficiently.
Austin Schuh05b70472020-01-01 17:11:17 -0800366 constexpr size_t kReadSize = 256 * 1024;
367
368 // Strip off any unused data at the front.
369 if (consumed_data_ != 0) {
Brian Silvermanf51499a2020-09-21 12:49:08 -0700370 data_.erase_front(consumed_data_);
Austin Schuh05b70472020-01-01 17:11:17 -0800371 consumed_data_ = 0;
372 }
373
374 const size_t starting_size = data_.size();
375
376 // This should automatically grow the backing store. It won't shrink if we
377 // get a small chunk later. This reduces allocations when we want to append
378 // more data.
Brian Silvermanf51499a2020-09-21 12:49:08 -0700379 data_.resize(starting_size + kReadSize);
Austin Schuh05b70472020-01-01 17:11:17 -0800380
Brian Silvermanf51499a2020-09-21 12:49:08 -0700381 const size_t count =
382 decoder_->Read(data_.begin() + starting_size, data_.end());
383 data_.resize(starting_size + count);
Austin Schuh05b70472020-01-01 17:11:17 -0800384 if (count == 0) {
Austin Schuh05b70472020-01-01 17:11:17 -0800385 return false;
386 }
Austin Schuh05b70472020-01-01 17:11:17 -0800387
388 return true;
389}
390
Austin Schuhadd6eb32020-11-09 21:24:26 -0800391std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800392 std::string_view filename) {
Austin Schuh6f3babe2020-01-26 20:34:50 -0800393 SpanReader span_reader(filename);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800394 absl::Span<const uint8_t> config_data = span_reader.ReadMessage();
395
396 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800397 if (config_data == absl::Span<const uint8_t>()) {
398 return std::nullopt;
399 }
Austin Schuh6f3babe2020-01-26 20:34:50 -0800400
Austin Schuh5212cad2020-09-09 23:12:09 -0700401 // And copy the config so we have it forever, removing the size prefix.
Brian Silverman354697a2020-09-22 21:06:32 -0700402 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800403 data.resize(config_data.size());
404 memcpy(data.data(), config_data.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800405 SizePrefixedFlatbufferVector<LogFileHeader> result(std::move(data));
406 if (!result.Verify()) {
407 return std::nullopt;
408 }
409 return result;
Austin Schuh6f3babe2020-01-26 20:34:50 -0800410}
411
Austin Schuhadd6eb32020-11-09 21:24:26 -0800412std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadNthMessage(
Austin Schuh3bd4c402020-11-06 18:19:06 -0800413 std::string_view filename, size_t n) {
Austin Schuh5212cad2020-09-09 23:12:09 -0700414 SpanReader span_reader(filename);
415 absl::Span<const uint8_t> data_span = span_reader.ReadMessage();
416 for (size_t i = 0; i < n + 1; ++i) {
417 data_span = span_reader.ReadMessage();
418
419 // Make sure something was read.
Austin Schuh3bd4c402020-11-06 18:19:06 -0800420 if (data_span == absl::Span<const uint8_t>()) {
421 return std::nullopt;
422 }
Austin Schuh5212cad2020-09-09 23:12:09 -0700423 }
424
Brian Silverman354697a2020-09-22 21:06:32 -0700425 // And copy the config so we have it forever, removing the size prefix.
426 ResizeableBuffer data;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800427 data.resize(data_span.size());
428 memcpy(data.data(), data_span.begin(), data.size());
Austin Schuhe09beb12020-12-11 20:04:27 -0800429 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(data));
430 if (!result.Verify()) {
431 return std::nullopt;
432 }
433 return result;
Austin Schuh5212cad2020-09-09 23:12:09 -0700434}
435
Austin Schuh05b70472020-01-01 17:11:17 -0800436MessageReader::MessageReader(std::string_view filename)
Austin Schuh97789fc2020-08-01 14:42:45 -0700437 : span_reader_(filename),
Austin Schuhadd6eb32020-11-09 21:24:26 -0800438 raw_log_file_header_(
439 SizePrefixedFlatbufferVector<LogFileHeader>::Empty()) {
Austin Schuh05b70472020-01-01 17:11:17 -0800440 // Make sure we have enough to read the size.
Austin Schuh97789fc2020-08-01 14:42:45 -0700441 absl::Span<const uint8_t> header_data = span_reader_.ReadMessage();
Austin Schuh05b70472020-01-01 17:11:17 -0800442
443 // Make sure something was read.
Austin Schuh97789fc2020-08-01 14:42:45 -0700444 CHECK(header_data != absl::Span<const uint8_t>())
445 << ": Failed to read header from: " << filename;
Austin Schuh05b70472020-01-01 17:11:17 -0800446
Austin Schuh97789fc2020-08-01 14:42:45 -0700447 // And copy the header data so we have it forever.
Brian Silverman354697a2020-09-22 21:06:32 -0700448 ResizeableBuffer header_data_copy;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800449 header_data_copy.resize(header_data.size());
450 memcpy(header_data_copy.data(), header_data.begin(), header_data_copy.size());
Austin Schuh97789fc2020-08-01 14:42:45 -0700451 raw_log_file_header_ =
Austin Schuhadd6eb32020-11-09 21:24:26 -0800452 SizePrefixedFlatbufferVector<LogFileHeader>(std::move(header_data_copy));
Austin Schuh05b70472020-01-01 17:11:17 -0800453
Austin Schuhcde938c2020-02-02 17:30:07 -0800454 max_out_of_order_duration_ =
Austin Schuha040c3f2021-02-13 16:09:07 -0800455 FLAGS_max_out_of_order > 0
456 ? chrono::duration_cast<chrono::nanoseconds>(
457 chrono::duration<double>(FLAGS_max_out_of_order))
458 : chrono::nanoseconds(log_file_header()->max_out_of_order_duration());
Austin Schuhcde938c2020-02-02 17:30:07 -0800459
460 VLOG(1) << "Opened " << filename << " as node "
461 << FlatbufferToJson(log_file_header()->node());
Austin Schuh05b70472020-01-01 17:11:17 -0800462}
463
Austin Schuhadd6eb32020-11-09 21:24:26 -0800464std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
465MessageReader::ReadMessage() {
Austin Schuh05b70472020-01-01 17:11:17 -0800466 absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage();
467 if (msg_data == absl::Span<const uint8_t>()) {
468 return std::nullopt;
469 }
470
Brian Silverman354697a2020-09-22 21:06:32 -0700471 ResizeableBuffer result_buffer;
Austin Schuhadd6eb32020-11-09 21:24:26 -0800472 result_buffer.resize(msg_data.size());
473 memcpy(result_buffer.data(), msg_data.begin(), result_buffer.size());
474 SizePrefixedFlatbufferVector<MessageHeader> result(std::move(result_buffer));
Austin Schuh05b70472020-01-01 17:11:17 -0800475
476 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
477 chrono::nanoseconds(result.message().monotonic_sent_time()));
478
479 newest_timestamp_ = std::max(newest_timestamp_, timestamp);
Austin Schuh8bd96322020-02-13 21:18:22 -0800480 VLOG(2) << "Read from " << filename() << " data " << FlatbufferToJson(result);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800481 return std::move(result);
Austin Schuh05b70472020-01-01 17:11:17 -0800482}
483
Austin Schuhc41603c2020-10-11 16:17:37 -0700484PartsMessageReader::PartsMessageReader(LogParts log_parts)
485 : parts_(std::move(log_parts)), message_reader_(parts_.parts[0]) {}
486
Austin Schuhadd6eb32020-11-09 21:24:26 -0800487std::optional<SizePrefixedFlatbufferVector<MessageHeader>>
Austin Schuhc41603c2020-10-11 16:17:37 -0700488PartsMessageReader::ReadMessage() {
489 while (!done_) {
Austin Schuhadd6eb32020-11-09 21:24:26 -0800490 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> message =
Austin Schuhc41603c2020-10-11 16:17:37 -0700491 message_reader_.ReadMessage();
492 if (message) {
493 newest_timestamp_ = message_reader_.newest_timestamp();
Austin Schuh32f68492020-11-08 21:45:51 -0800494 const monotonic_clock::time_point monotonic_sent_time(
495 chrono::nanoseconds(message->message().monotonic_sent_time()));
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800496 // TODO(austin): Does this work with startup? Might need to use the start
497 // time.
498 // TODO(austin): Does this work with startup when we don't know the remote
499 // start time too? Look at one of those logs to compare.
Austin Schuh315b96b2020-12-11 21:21:12 -0800500 if (monotonic_sent_time >
501 parts_.monotonic_start_time + max_out_of_order_duration()) {
502 after_start_ = true;
503 }
504 if (after_start_) {
Austin Schuhb000de62020-12-03 22:00:40 -0800505 CHECK_GE(monotonic_sent_time,
506 newest_timestamp_ - max_out_of_order_duration())
Austin Schuha040c3f2021-02-13 16:09:07 -0800507 << ": Max out of order of " << max_out_of_order_duration().count()
508 << "ns exceeded. " << parts_ << ", start time is "
Austin Schuh315b96b2020-12-11 21:21:12 -0800509 << parts_.monotonic_start_time << " currently reading "
510 << filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800511 }
Austin Schuhc41603c2020-10-11 16:17:37 -0700512 return message;
513 }
514 NextLog();
515 }
Austin Schuh32f68492020-11-08 21:45:51 -0800516 newest_timestamp_ = monotonic_clock::max_time;
Austin Schuhc41603c2020-10-11 16:17:37 -0700517 return std::nullopt;
518}
519
520void PartsMessageReader::NextLog() {
521 if (next_part_index_ == parts_.parts.size()) {
522 done_ = true;
523 return;
524 }
525 message_reader_ = MessageReader(parts_.parts[next_part_index_]);
526 ++next_part_index_;
527}
528
Austin Schuh1be0ce42020-11-29 22:43:26 -0800529bool Message::operator<(const Message &m2) const {
530 if (this->timestamp < m2.timestamp) {
531 return true;
532 } else if (this->timestamp > m2.timestamp) {
533 return false;
534 }
535
536 if (this->channel_index < m2.channel_index) {
537 return true;
538 } else if (this->channel_index > m2.channel_index) {
539 return false;
540 }
541
542 return this->queue_index < m2.queue_index;
543}
544
545bool Message::operator>=(const Message &m2) const { return !(*this < m2); }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800546bool Message::operator==(const Message &m2) const {
547 return timestamp == m2.timestamp && channel_index == m2.channel_index &&
548 queue_index == m2.queue_index;
549}
Austin Schuh1be0ce42020-11-29 22:43:26 -0800550
551std::ostream &operator<<(std::ostream &os, const Message &m) {
552 os << "{.channel_index=" << m.channel_index
Austin Schuhd2f96102020-12-01 20:27:29 -0800553 << ", .queue_index=" << m.queue_index << ", .timestamp=" << m.timestamp;
554 if (m.data.Verify()) {
555 os << ", .data="
556 << aos::FlatbufferToJson(m.data,
557 {.multi_line = false, .max_vector_size = 1});
558 }
559 os << "}";
560 return os;
561}
562
563std::ostream &operator<<(std::ostream &os, const TimestampedMessage &m) {
564 os << "{.channel_index=" << m.channel_index
565 << ", .queue_index=" << m.queue_index
566 << ", .monotonic_event_time=" << m.monotonic_event_time
567 << ", .realtime_event_time=" << m.realtime_event_time;
568 if (m.remote_queue_index != 0xffffffff) {
569 os << ", .remote_queue_index=" << m.remote_queue_index;
570 }
571 if (m.monotonic_remote_time != monotonic_clock::min_time) {
572 os << ", .monotonic_remote_time=" << m.monotonic_remote_time;
573 }
574 if (m.realtime_remote_time != realtime_clock::min_time) {
575 os << ", .realtime_remote_time=" << m.realtime_remote_time;
576 }
Austin Schuh8bf1e632021-01-02 22:41:04 -0800577 if (m.monotonic_timestamp_time != monotonic_clock::min_time) {
578 os << ", .monotonic_timestamp_time=" << m.monotonic_timestamp_time;
579 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800580 if (m.data.Verify()) {
581 os << ", .data="
582 << aos::FlatbufferToJson(m.data,
583 {.multi_line = false, .max_vector_size = 1});
584 }
585 os << "}";
Austin Schuh1be0ce42020-11-29 22:43:26 -0800586 return os;
587}
588
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800589LogPartsSorter::LogPartsSorter(LogParts log_parts)
590 : parts_message_reader_(log_parts) {}
591
592Message *LogPartsSorter::Front() {
593 // Queue up data until enough data has been queued that the front message is
594 // sorted enough to be safe to pop. This may do nothing, so we should make
595 // sure the nothing path is checked quickly.
596 if (sorted_until() != monotonic_clock::max_time) {
597 while (true) {
Austin Schuhb000de62020-12-03 22:00:40 -0800598 if (!messages_.empty() && messages_.begin()->timestamp < sorted_until() &&
599 sorted_until() >= monotonic_start_time()) {
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800600 break;
601 }
602
603 std::optional<SizePrefixedFlatbufferVector<MessageHeader>> m =
604 parts_message_reader_.ReadMessage();
605 // No data left, sorted forever, work through what is left.
606 if (!m) {
607 sorted_until_ = monotonic_clock::max_time;
608 break;
609 }
610
611 messages_.insert(
612 {.channel_index = m.value().message().channel_index(),
613 .queue_index = m.value().message().queue_index(),
614 .timestamp = monotonic_clock::time_point(std::chrono::nanoseconds(
615 m.value().message().monotonic_sent_time())),
616 .data = std::move(m.value())});
617
618 // Now, update sorted_until_ to match the new message.
619 if (parts_message_reader_.newest_timestamp() >
620 monotonic_clock::min_time +
621 parts_message_reader_.max_out_of_order_duration()) {
622 sorted_until_ = parts_message_reader_.newest_timestamp() -
623 parts_message_reader_.max_out_of_order_duration();
624 } else {
625 sorted_until_ = monotonic_clock::min_time;
626 }
627 }
628 }
629
630 // Now that we have enough data queued, return a pointer to the oldest piece
631 // of data if it exists.
632 if (messages_.empty()) {
Austin Schuhb000de62020-12-03 22:00:40 -0800633 last_message_time_ = monotonic_clock::max_time;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800634 return nullptr;
635 }
636
Austin Schuh315b96b2020-12-11 21:21:12 -0800637 CHECK_GE(messages_.begin()->timestamp, last_message_time_)
638 << DebugString() << " reading " << parts_message_reader_.filename();
Austin Schuhb000de62020-12-03 22:00:40 -0800639 last_message_time_ = messages_.begin()->timestamp;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800640 return &(*messages_.begin());
641}
642
643void LogPartsSorter::PopFront() { messages_.erase(messages_.begin()); }
644
645std::string LogPartsSorter::DebugString() const {
646 std::stringstream ss;
647 ss << "messages: [\n";
Austin Schuh315b96b2020-12-11 21:21:12 -0800648 int count = 0;
649 bool no_dots = true;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800650 for (const Message &m : messages_) {
Austin Schuh315b96b2020-12-11 21:21:12 -0800651 if (count < 15 || count > static_cast<int>(messages_.size()) - 15) {
652 ss << m << "\n";
653 } else if (no_dots) {
654 ss << "...\n";
655 no_dots = false;
656 }
657 ++count;
Austin Schuh4b5c22a2020-11-30 22:58:43 -0800658 }
659 ss << "] <- " << parts_message_reader_.filename();
660 return ss.str();
661}
662
Austin Schuhd2f96102020-12-01 20:27:29 -0800663NodeMerger::NodeMerger(std::vector<LogParts> parts) {
664 CHECK_GE(parts.size(), 1u);
665 const std::string part0_node = parts[0].node;
666 for (size_t i = 1; i < parts.size(); ++i) {
667 CHECK_EQ(part0_node, parts[i].node) << ": Can't merge different nodes.";
668 }
669 for (LogParts &part : parts) {
670 parts_sorters_.emplace_back(std::move(part));
671 }
672
Austin Schuh0ca51f32020-12-25 21:51:45 -0800673 node_ = configuration::GetNodeIndex(configuration(), part0_node);
Austin Schuhd2f96102020-12-01 20:27:29 -0800674
675 monotonic_start_time_ = monotonic_clock::max_time;
676 realtime_start_time_ = realtime_clock::max_time;
677 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
678 if (parts_sorter.monotonic_start_time() < monotonic_start_time_) {
679 monotonic_start_time_ = parts_sorter.monotonic_start_time();
680 realtime_start_time_ = parts_sorter.realtime_start_time();
681 }
682 }
683}
Austin Schuh8f52ed52020-11-30 23:12:39 -0800684
Austin Schuh0ca51f32020-12-25 21:51:45 -0800685std::vector<const LogParts *> NodeMerger::Parts() const {
686 std::vector<const LogParts *> p;
687 p.reserve(parts_sorters_.size());
688 for (const LogPartsSorter &parts_sorter : parts_sorters_) {
689 p.emplace_back(&parts_sorter.parts());
690 }
691 return p;
692}
693
Austin Schuh8f52ed52020-11-30 23:12:39 -0800694Message *NodeMerger::Front() {
695 // Return the current Front if we have one, otherwise go compute one.
696 if (current_ != nullptr) {
Austin Schuhb000de62020-12-03 22:00:40 -0800697 Message *result = current_->Front();
698 CHECK_GE(result->timestamp, last_message_time_);
699 return result;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800700 }
701
702 // Otherwise, do a simple search for the oldest message, deduplicating any
703 // duplicates.
704 Message *oldest = nullptr;
705 sorted_until_ = monotonic_clock::max_time;
Austin Schuhd2f96102020-12-01 20:27:29 -0800706 for (LogPartsSorter &parts_sorter : parts_sorters_) {
707 Message *m = parts_sorter.Front();
Austin Schuh8f52ed52020-11-30 23:12:39 -0800708 if (!m) {
Austin Schuhd2f96102020-12-01 20:27:29 -0800709 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800710 continue;
711 }
712 if (oldest == nullptr || *m < *oldest) {
713 oldest = m;
Austin Schuhd2f96102020-12-01 20:27:29 -0800714 current_ = &parts_sorter;
Austin Schuh8f52ed52020-11-30 23:12:39 -0800715 } else if (*m == *oldest) {
Austin Schuh8bf1e632021-01-02 22:41:04 -0800716 // Found a duplicate. If there is a choice, we want the one which has the
717 // timestamp time.
718 if (!m->data.message().has_monotonic_timestamp_time()) {
719 parts_sorter.PopFront();
720 } else if (!oldest->data.message().has_monotonic_timestamp_time()) {
721 current_->PopFront();
722 current_ = &parts_sorter;
723 oldest = m;
724 } else {
725 CHECK_EQ(m->data.message().monotonic_timestamp_time(),
726 oldest->data.message().monotonic_timestamp_time());
727 parts_sorter.PopFront();
728 }
Austin Schuh8f52ed52020-11-30 23:12:39 -0800729 }
730
731 // PopFront may change this, so compute it down here.
Austin Schuhd2f96102020-12-01 20:27:29 -0800732 sorted_until_ = std::min(sorted_until_, parts_sorter.sorted_until());
Austin Schuh8f52ed52020-11-30 23:12:39 -0800733 }
734
Austin Schuhb000de62020-12-03 22:00:40 -0800735 if (oldest) {
736 CHECK_GE(oldest->timestamp, last_message_time_);
737 last_message_time_ = oldest->timestamp;
738 } else {
739 last_message_time_ = monotonic_clock::max_time;
740 }
741
Austin Schuh8f52ed52020-11-30 23:12:39 -0800742 // Return the oldest message found. This will be nullptr if nothing was
743 // found, indicating there is nothing left.
744 return oldest;
745}
746
747void NodeMerger::PopFront() {
748 CHECK(current_ != nullptr) << "Popping before calling Front()";
749 current_->PopFront();
750 current_ = nullptr;
751}
752
Austin Schuhd2f96102020-12-01 20:27:29 -0800753TimestampMapper::TimestampMapper(std::vector<LogParts> parts)
754 : node_merger_(std::move(parts)),
Austin Schuh79b30942021-01-24 22:32:21 -0800755 timestamp_callback_([](TimestampedMessage *) {}) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800756 for (const LogParts *part : node_merger_.Parts()) {
757 if (!configuration_) {
758 configuration_ = part->config;
759 } else {
760 CHECK_EQ(configuration_.get(), part->config.get());
761 }
762 }
763 const Configuration *config = configuration_.get();
Austin Schuhd2f96102020-12-01 20:27:29 -0800764 // Only fill out nodes_data_ if there are nodes. Otherwise everything gets
765 // pretty simple.
766 if (configuration::MultiNode(config)) {
767 nodes_data_.resize(config->nodes()->size());
768 const Node *my_node = config->nodes()->Get(node());
769 for (size_t node_index = 0; node_index < nodes_data_.size(); ++node_index) {
770 const Node *node = config->nodes()->Get(node_index);
771 NodeData *node_data = &nodes_data_[node_index];
772 node_data->channels.resize(config->channels()->size());
773 // We should save the channel if it is delivered to the node represented
774 // by the NodeData, but not sent by that node. That combo means it is
775 // forwarded.
776 size_t channel_index = 0;
777 node_data->any_delivered = false;
778 for (const Channel *channel : *config->channels()) {
779 node_data->channels[channel_index].delivered =
780 configuration::ChannelIsReadableOnNode(channel, node) &&
Austin Schuhb3dbb6d2021-01-02 17:29:35 -0800781 configuration::ChannelIsSendableOnNode(channel, my_node) &&
782 (my_node != node);
Austin Schuhd2f96102020-12-01 20:27:29 -0800783 node_data->any_delivered = node_data->any_delivered ||
784 node_data->channels[channel_index].delivered;
785 ++channel_index;
786 }
787 }
788
789 for (const Channel *channel : *config->channels()) {
790 source_node_.emplace_back(configuration::GetNodeIndex(
791 config, channel->source_node()->string_view()));
792 }
793 }
794}
795
796void TimestampMapper::AddPeer(TimestampMapper *timestamp_mapper) {
Austin Schuh0ca51f32020-12-25 21:51:45 -0800797 CHECK(configuration::MultiNode(configuration()));
Austin Schuhd2f96102020-12-01 20:27:29 -0800798 CHECK_NE(timestamp_mapper->node(), node());
799 CHECK_LT(timestamp_mapper->node(), nodes_data_.size());
800
801 NodeData *node_data = &nodes_data_[timestamp_mapper->node()];
802 // Only set it if this node delivers to the peer timestamp_mapper. Otherwise
803 // we could needlessly save data.
804 if (node_data->any_delivered) {
Austin Schuh87dd3832021-01-01 23:07:31 -0800805 VLOG(1) << "Registering on node " << node() << " for peer node "
806 << timestamp_mapper->node();
Austin Schuhd2f96102020-12-01 20:27:29 -0800807 CHECK(timestamp_mapper->nodes_data_[node()].peer == nullptr);
808
809 timestamp_mapper->nodes_data_[node()].peer = this;
810 }
811}
812
Austin Schuh79b30942021-01-24 22:32:21 -0800813void TimestampMapper::QueueMessage(Message *m) {
814 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800815 .channel_index = m->channel_index,
816 .queue_index = m->queue_index,
817 .monotonic_event_time = m->timestamp,
818 .realtime_event_time = aos::realtime_clock::time_point(
819 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
820 .remote_queue_index = 0xffffffff,
821 .monotonic_remote_time = monotonic_clock::min_time,
822 .realtime_remote_time = realtime_clock::min_time,
Austin Schuh8bf1e632021-01-02 22:41:04 -0800823 .monotonic_timestamp_time = monotonic_clock::min_time,
Austin Schuh79b30942021-01-24 22:32:21 -0800824 .data = std::move(m->data)});
Austin Schuhd2f96102020-12-01 20:27:29 -0800825}
826
827TimestampedMessage *TimestampMapper::Front() {
828 // No need to fetch anything new. A previous message still exists.
829 switch (first_message_) {
830 case FirstMessage::kNeedsUpdate:
831 break;
832 case FirstMessage::kInMessage:
Austin Schuh79b30942021-01-24 22:32:21 -0800833 return &matched_messages_.front();
Austin Schuhd2f96102020-12-01 20:27:29 -0800834 case FirstMessage::kNullptr:
835 return nullptr;
836 }
837
Austin Schuh79b30942021-01-24 22:32:21 -0800838 if (matched_messages_.empty()) {
839 if (!QueueMatched()) {
840 first_message_ = FirstMessage::kNullptr;
841 return nullptr;
842 }
843 }
844 first_message_ = FirstMessage::kInMessage;
845 return &matched_messages_.front();
846}
847
848bool TimestampMapper::QueueMatched() {
Austin Schuhd2f96102020-12-01 20:27:29 -0800849 if (nodes_data_.empty()) {
850 // Simple path. We are single node, so there are no timestamps to match!
851 CHECK_EQ(messages_.size(), 0u);
852 Message *m = node_merger_.Front();
853 if (!m) {
Austin Schuh79b30942021-01-24 22:32:21 -0800854 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800855 }
Austin Schuh79b30942021-01-24 22:32:21 -0800856 // Enqueue this message into matched_messages_ so we have a place to
857 // associate remote timestamps, and return it.
858 QueueMessage(m);
Austin Schuhd2f96102020-12-01 20:27:29 -0800859
Austin Schuh79b30942021-01-24 22:32:21 -0800860 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
861 last_message_time_ = matched_messages_.back().monotonic_event_time;
862
863 // We are thin wrapper around node_merger. Call it directly.
864 node_merger_.PopFront();
865 timestamp_callback_(&matched_messages_.back());
866 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800867 }
868
869 // We need to only add messages to the list so they get processed for messages
870 // which are delivered. Reuse the flow below which uses messages_ by just
871 // adding the new message to messages_ and continuing.
872 if (messages_.empty()) {
873 if (!Queue()) {
874 // Found nothing to add, we are out of data!
Austin Schuh79b30942021-01-24 22:32:21 -0800875 return false;
Austin Schuhd2f96102020-12-01 20:27:29 -0800876 }
877
878 // Now that it has been added (and cannibalized), forget about it upstream.
879 node_merger_.PopFront();
880 }
881
882 Message *m = &(messages_.front());
883
884 if (source_node_[m->channel_index] == node()) {
885 // From us, just forward it on, filling the remote data in as invalid.
Austin Schuh79b30942021-01-24 22:32:21 -0800886 QueueMessage(m);
887 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
888 last_message_time_ = matched_messages_.back().monotonic_event_time;
889 messages_.pop_front();
890 timestamp_callback_(&matched_messages_.back());
891 return true;
Austin Schuhd2f96102020-12-01 20:27:29 -0800892 } else {
893 // Got a timestamp, find the matching remote data, match it, and return it.
894 Message data = MatchingMessageFor(*m);
895
896 // Return the data from the remote. The local message only has timestamp
897 // info which isn't relevant anymore once extracted.
Austin Schuh79b30942021-01-24 22:32:21 -0800898 matched_messages_.emplace_back(TimestampedMessage{
Austin Schuhd2f96102020-12-01 20:27:29 -0800899 .channel_index = m->channel_index,
900 .queue_index = m->queue_index,
901 .monotonic_event_time = m->timestamp,
902 .realtime_event_time = aos::realtime_clock::time_point(
903 std::chrono::nanoseconds(m->data.message().realtime_sent_time())),
904 .remote_queue_index = m->data.message().remote_queue_index(),
905 .monotonic_remote_time =
906 monotonic_clock::time_point(std::chrono::nanoseconds(
907 m->data.message().monotonic_remote_time())),
908 .realtime_remote_time = realtime_clock::time_point(
909 std::chrono::nanoseconds(m->data.message().realtime_remote_time())),
Austin Schuh8bf1e632021-01-02 22:41:04 -0800910 .monotonic_timestamp_time =
911 monotonic_clock::time_point(std::chrono::nanoseconds(
912 m->data.message().monotonic_timestamp_time())),
Austin Schuh79b30942021-01-24 22:32:21 -0800913 .data = std::move(data.data)});
914 CHECK_GE(matched_messages_.back().monotonic_event_time, last_message_time_);
915 last_message_time_ = matched_messages_.back().monotonic_event_time;
916 // Since messages_ holds the data, drop it.
917 messages_.pop_front();
918 timestamp_callback_(&matched_messages_.back());
919 return true;
920 }
921}
922
923void TimestampMapper::QueueUntil(monotonic_clock::time_point queue_time) {
924 while (last_message_time_ <= queue_time) {
925 if (!QueueMatched()) {
926 return;
927 }
Austin Schuhd2f96102020-12-01 20:27:29 -0800928 }
929}
930
Austin Schuhe639ea12021-01-25 13:00:22 -0800931void TimestampMapper::QueueFor(chrono::nanoseconds time_estimation_buffer) {
932 // Make sure we have something queued first. This makes the end time
933 // calculation simpler, and is typically what folks want regardless.
934 if (matched_messages_.empty()) {
935 if (!QueueMatched()) {
936 return;
937 }
938 }
939
940 const aos::monotonic_clock::time_point end_queue_time =
941 std::max(monotonic_start_time(),
942 matched_messages_.front().monotonic_event_time) +
943 time_estimation_buffer;
944
945 // Place sorted messages on the list until we have
946 // --time_estimation_buffer_seconds seconds queued up (but queue at least
947 // until the log starts).
948 while (end_queue_time >= last_message_time_) {
949 if (!QueueMatched()) {
950 return;
951 }
952 }
953}
954
Austin Schuhd2f96102020-12-01 20:27:29 -0800955void TimestampMapper::PopFront() {
956 CHECK(first_message_ != FirstMessage::kNeedsUpdate);
957 first_message_ = FirstMessage::kNeedsUpdate;
958
Austin Schuh79b30942021-01-24 22:32:21 -0800959 matched_messages_.pop_front();
Austin Schuhd2f96102020-12-01 20:27:29 -0800960}
961
962Message TimestampMapper::MatchingMessageFor(const Message &message) {
Austin Schuhd2f96102020-12-01 20:27:29 -0800963 // Figure out what queue index we are looking for.
964 CHECK(message.data.message().has_remote_queue_index());
965 const uint32_t remote_queue_index =
966 message.data.message().remote_queue_index();
967
968 CHECK(message.data.message().has_monotonic_remote_time());
969 CHECK(message.data.message().has_realtime_remote_time());
970
971 const monotonic_clock::time_point monotonic_remote_time(
972 std::chrono::nanoseconds(message.data.message().monotonic_remote_time()));
973 const realtime_clock::time_point realtime_remote_time(
974 std::chrono::nanoseconds(message.data.message().realtime_remote_time()));
975
Austin Schuhfecf1d82020-12-19 16:57:28 -0800976 TimestampMapper *peer = nodes_data_[source_node_[message.channel_index]].peer;
977
978 // We only register the peers which we have data for. So, if we are being
979 // asked to pull a timestamp from a peer which doesn't exist, return an empty
980 // message.
981 if (peer == nullptr) {
982 return Message{
983 .channel_index = message.channel_index,
984 .queue_index = remote_queue_index,
985 .timestamp = monotonic_remote_time,
986 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
987 }
988
989 // The queue which will have the matching data, if available.
990 std::deque<Message> *data_queue =
991 &peer->nodes_data_[node()].channels[message.channel_index].messages;
992
Austin Schuh79b30942021-01-24 22:32:21 -0800993 peer->QueueUnmatchedUntil(monotonic_remote_time);
Austin Schuhd2f96102020-12-01 20:27:29 -0800994
995 if (data_queue->empty()) {
996 return Message{
997 .channel_index = message.channel_index,
998 .queue_index = remote_queue_index,
999 .timestamp = monotonic_remote_time,
1000 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1001 }
1002
Austin Schuhd2f96102020-12-01 20:27:29 -08001003 if (remote_queue_index < data_queue->front().queue_index ||
1004 remote_queue_index > data_queue->back().queue_index) {
1005 return Message{
1006 .channel_index = message.channel_index,
1007 .queue_index = remote_queue_index,
1008 .timestamp = monotonic_remote_time,
1009 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1010 }
1011
Austin Schuh993ccb52020-12-12 15:59:32 -08001012 // The algorithm below is constant time with some assumptions. We need there
1013 // to be no missing messages in the data stream. This also assumes a queue
1014 // hasn't wrapped. That is conservative, but should let us get started.
1015 if (data_queue->back().queue_index - data_queue->front().queue_index + 1u ==
1016 data_queue->size()) {
1017 // Pull the data out and confirm that the timestamps match as expected.
1018 Message result = std::move(
1019 (*data_queue)[remote_queue_index - data_queue->front().queue_index]);
1020
1021 CHECK_EQ(result.timestamp, monotonic_remote_time)
1022 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1023 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1024 result.data.message().realtime_sent_time())),
1025 realtime_remote_time)
1026 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1027 // Now drop the data off the front. We have deduplicated timestamps, so we
1028 // are done. And all the data is in order.
1029 data_queue->erase(data_queue->begin(),
1030 data_queue->begin() + (1 + remote_queue_index -
1031 data_queue->front().queue_index));
1032 return result;
1033 } else {
1034 auto it = std::find_if(data_queue->begin(), data_queue->end(),
1035 [remote_queue_index](const Message &m) {
1036 return m.queue_index == remote_queue_index;
1037 });
1038 if (it == data_queue->end()) {
1039 return Message{
1040 .channel_index = message.channel_index,
1041 .queue_index = remote_queue_index,
1042 .timestamp = monotonic_remote_time,
1043 .data = SizePrefixedFlatbufferVector<MessageHeader>::Empty()};
1044 }
1045
1046 Message result = std::move(*it);
1047
1048 CHECK_EQ(result.timestamp, monotonic_remote_time)
1049 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1050 CHECK_EQ(realtime_clock::time_point(std::chrono::nanoseconds(
1051 result.data.message().realtime_sent_time())),
1052 realtime_remote_time)
1053 << ": Queue index matches, but timestamp doesn't. Please investigate!";
1054
1055 data_queue->erase(it);
1056
1057 return result;
1058 }
Austin Schuhd2f96102020-12-01 20:27:29 -08001059}
1060
Austin Schuh79b30942021-01-24 22:32:21 -08001061void TimestampMapper::QueueUnmatchedUntil(monotonic_clock::time_point t) {
Austin Schuhd2f96102020-12-01 20:27:29 -08001062 if (queued_until_ > t) {
1063 return;
1064 }
1065 while (true) {
1066 if (!messages_.empty() && messages_.back().timestamp > t) {
1067 queued_until_ = std::max(queued_until_, messages_.back().timestamp);
1068 return;
1069 }
1070
1071 if (!Queue()) {
1072 // Found nothing to add, we are out of data!
1073 queued_until_ = monotonic_clock::max_time;
1074 return;
1075 }
1076
1077 // Now that it has been added (and cannibalized), forget about it upstream.
1078 node_merger_.PopFront();
1079 }
1080}
1081
1082bool TimestampMapper::Queue() {
1083 Message *m = node_merger_.Front();
1084 if (m == nullptr) {
1085 return false;
1086 }
1087 for (NodeData &node_data : nodes_data_) {
1088 if (!node_data.any_delivered) continue;
1089 if (node_data.channels[m->channel_index].delivered) {
1090 // TODO(austin): This copies the data... Probably not worth stressing
1091 // about yet.
1092 // TODO(austin): Bound how big this can get. We tend not to send massive
1093 // data, so we can probably ignore this for a bit.
1094 node_data.channels[m->channel_index].messages.emplace_back(*m);
1095 }
1096 }
1097
1098 messages_.emplace_back(std::move(*m));
1099 return true;
1100}
1101
1102std::string TimestampMapper::DebugString() const {
1103 std::stringstream ss;
1104 ss << "node " << node() << " [\n";
1105 for (const Message &message : messages_) {
1106 ss << " " << message << "\n";
1107 }
1108 ss << "] queued_until " << queued_until_;
1109 for (const NodeData &ns : nodes_data_) {
1110 if (ns.peer == nullptr) continue;
1111 ss << "\nnode " << ns.peer->node() << " remote_data [\n";
1112 size_t channel_index = 0;
1113 for (const NodeData::ChannelData &channel_data :
1114 ns.peer->nodes_data_[node()].channels) {
1115 if (channel_data.messages.empty()) {
1116 continue;
1117 }
Austin Schuhb000de62020-12-03 22:00:40 -08001118
Austin Schuhd2f96102020-12-01 20:27:29 -08001119 ss << " channel " << channel_index << " [\n";
1120 for (const Message &m : channel_data.messages) {
1121 ss << " " << m << "\n";
1122 }
1123 ss << " ]\n";
1124 ++channel_index;
1125 }
1126 ss << "] queued_until " << ns.peer->queued_until_;
1127 }
1128 return ss.str();
1129}
1130
Austin Schuhee711052020-08-24 16:06:09 -07001131std::string MaybeNodeName(const Node *node) {
1132 if (node != nullptr) {
1133 return node->name()->str() + " ";
1134 }
1135 return "";
1136}
1137
Brian Silvermanf51499a2020-09-21 12:49:08 -07001138} // namespace aos::logger