blob: 144890a5a7865f4cfc10aabdd019e54621dd4d94 [file] [log] [blame]
Austin Schuha36c8902019-12-30 18:07:15 -08001#include "aos/events/logging/logfile_utils.h"
2
3#include <fcntl.h>
4#include <limits.h>
5#include <sys/stat.h>
6#include <sys/types.h>
7#include <sys/uio.h>
8
9#include <vector>
10
Austin Schuh05b70472020-01-01 17:11:17 -080011#include "aos/configuration.h"
Austin Schuha36c8902019-12-30 18:07:15 -080012#include "aos/events/logging/logger_generated.h"
Austin Schuhfa895892020-01-07 20:07:41 -080013#include "aos/flatbuffer_merge.h"
Austin Schuh6f3babe2020-01-26 20:34:50 -080014#include "aos/util/file.h"
Austin Schuha36c8902019-12-30 18:07:15 -080015#include "flatbuffers/flatbuffers.h"
Austin Schuh05b70472020-01-01 17:11:17 -080016#include "gflags/gflags.h"
17#include "glog/logging.h"
Austin Schuha36c8902019-12-30 18:07:15 -080018
19DEFINE_int32(flush_size, 1000000,
20 "Number of outstanding bytes to allow before flushing to disk.");
21
22namespace aos {
23namespace logger {
24
Austin Schuh05b70472020-01-01 17:11:17 -080025namespace chrono = std::chrono;
26
Austin Schuha36c8902019-12-30 18:07:15 -080027DetachedBufferWriter::DetachedBufferWriter(std::string_view filename)
Austin Schuh6f3babe2020-01-26 20:34:50 -080028 : filename_(filename) {
29 util::MkdirP(filename, 0777);
30 fd_ = open(std::string(filename).c_str(),
31 O_RDWR | O_CLOEXEC | O_CREAT | O_EXCL, 0774);
32 VLOG(1) << "Opened " << filename << " for writing";
33 PCHECK(fd_ != -1) << ": Failed to open " << filename << " for writing";
Austin Schuha36c8902019-12-30 18:07:15 -080034}
35
36DetachedBufferWriter::~DetachedBufferWriter() {
37 Flush();
38 PLOG_IF(ERROR, close(fd_) == -1) << " Failed to close logfile";
39}
40
41void DetachedBufferWriter::QueueSizedFlatbuffer(
42 flatbuffers::FlatBufferBuilder *fbb) {
43 QueueSizedFlatbuffer(fbb->Release());
44}
45
Austin Schuhde031b72020-01-10 19:34:41 -080046void DetachedBufferWriter::WriteSizedFlatbuffer(
47 absl::Span<const uint8_t> span) {
48 // Cheat aggressively... Write out the queued up data, and then write this
49 // data once without buffering. It is hard to make a DetachedBuffer out of
50 // this data, and we don't want to worry about lifetimes.
51 Flush();
52 iovec_.clear();
53 iovec_.reserve(1);
54
55 struct iovec n;
56 n.iov_base = const_cast<uint8_t *>(span.data());
57 n.iov_len = span.size();
58 iovec_.emplace_back(n);
59
60 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
61
62 PCHECK(written == static_cast<ssize_t>(n.iov_len))
63 << ": Wrote " << written << " expected " << n.iov_len;
64}
65
Austin Schuha36c8902019-12-30 18:07:15 -080066void DetachedBufferWriter::QueueSizedFlatbuffer(
67 flatbuffers::DetachedBuffer &&buffer) {
68 queued_size_ += buffer.size();
69 queue_.emplace_back(std::move(buffer));
70
71 // Flush if we are at the max number of iovs per writev, or have written
72 // enough data. Otherwise writev will fail with an invalid argument.
73 if (queued_size_ > static_cast<size_t>(FLAGS_flush_size) ||
74 queue_.size() == IOV_MAX) {
75 Flush();
76 }
77}
78
79void DetachedBufferWriter::Flush() {
80 if (queue_.size() == 0u) {
81 return;
82 }
83 iovec_.clear();
84 iovec_.reserve(queue_.size());
85 size_t counted_size = 0;
86 for (size_t i = 0; i < queue_.size(); ++i) {
87 struct iovec n;
88 n.iov_base = queue_[i].data();
89 n.iov_len = queue_[i].size();
90 counted_size += n.iov_len;
91 iovec_.emplace_back(std::move(n));
92 }
93 CHECK_EQ(counted_size, queued_size_);
94 const ssize_t written = writev(fd_, iovec_.data(), iovec_.size());
95
96 PCHECK(written == static_cast<ssize_t>(queued_size_))
97 << ": Wrote " << written << " expected " << queued_size_;
98
99 queued_size_ = 0;
100 queue_.clear();
101 // TODO(austin): Handle partial writes in some way other than crashing...
102}
103
104flatbuffers::Offset<MessageHeader> PackMessage(
105 flatbuffers::FlatBufferBuilder *fbb, const Context &context,
106 int channel_index, LogType log_type) {
107 flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data_offset;
108
109 switch (log_type) {
110 case LogType::kLogMessage:
111 case LogType::kLogMessageAndDeliveryTime:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800112 case LogType::kLogRemoteMessage:
Austin Schuha36c8902019-12-30 18:07:15 -0800113 data_offset =
114 fbb->CreateVector(static_cast<uint8_t *>(context.data), context.size);
115 break;
116
117 case LogType::kLogDeliveryTimeOnly:
118 break;
119 }
120
121 MessageHeader::Builder message_header_builder(*fbb);
122 message_header_builder.add_channel_index(channel_index);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800123
124 switch (log_type) {
125 case LogType::kLogRemoteMessage:
126 message_header_builder.add_queue_index(context.remote_queue_index);
127 message_header_builder.add_monotonic_sent_time(
128 context.monotonic_remote_time.time_since_epoch().count());
129 message_header_builder.add_realtime_sent_time(
130 context.realtime_remote_time.time_since_epoch().count());
131 break;
132
133 case LogType::kLogMessage:
134 case LogType::kLogMessageAndDeliveryTime:
135 case LogType::kLogDeliveryTimeOnly:
136 message_header_builder.add_queue_index(context.queue_index);
137 message_header_builder.add_monotonic_sent_time(
138 context.monotonic_event_time.time_since_epoch().count());
139 message_header_builder.add_realtime_sent_time(
140 context.realtime_event_time.time_since_epoch().count());
141 break;
142 }
Austin Schuha36c8902019-12-30 18:07:15 -0800143
144 switch (log_type) {
145 case LogType::kLogMessage:
Austin Schuh6f3babe2020-01-26 20:34:50 -0800146 case LogType::kLogRemoteMessage:
Austin Schuha36c8902019-12-30 18:07:15 -0800147 message_header_builder.add_data(data_offset);
148 break;
149
150 case LogType::kLogMessageAndDeliveryTime:
151 message_header_builder.add_data(data_offset);
152 [[fallthrough]];
153
154 case LogType::kLogDeliveryTimeOnly:
155 message_header_builder.add_monotonic_remote_time(
156 context.monotonic_remote_time.time_since_epoch().count());
157 message_header_builder.add_realtime_remote_time(
158 context.realtime_remote_time.time_since_epoch().count());
159 message_header_builder.add_remote_queue_index(context.remote_queue_index);
160 break;
161 }
162
163 return message_header_builder.Finish();
164}
165
Austin Schuh05b70472020-01-01 17:11:17 -0800166SpanReader::SpanReader(std::string_view filename)
Austin Schuh6f3babe2020-01-26 20:34:50 -0800167 : filename_(filename),
168 fd_(open(std::string(filename).c_str(), O_RDONLY | O_CLOEXEC)) {
Austin Schuh05b70472020-01-01 17:11:17 -0800169 PCHECK(fd_ != -1) << ": Failed to open " << filename;
170}
171
172absl::Span<const uint8_t> SpanReader::ReadMessage() {
173 // Make sure we have enough for the size.
174 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
175 if (!ReadBlock()) {
176 return absl::Span<const uint8_t>();
177 }
178 }
179
180 // Now make sure we have enough for the message.
181 const size_t data_size =
182 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
183 sizeof(flatbuffers::uoffset_t);
184 while (data_.size() < consumed_data_ + data_size) {
185 if (!ReadBlock()) {
186 return absl::Span<const uint8_t>();
187 }
188 }
189
190 // And return it, consuming the data.
191 const uint8_t *data_ptr = data_.data() + consumed_data_;
192
193 consumed_data_ += data_size;
194
195 return absl::Span<const uint8_t>(data_ptr, data_size);
196}
197
198bool SpanReader::MessageAvailable() {
199 // Are we big enough to read the size?
200 if (data_.size() - consumed_data_ < sizeof(flatbuffers::uoffset_t)) {
201 return false;
202 }
203
204 // Then, are we big enough to read the full message?
205 const size_t data_size =
206 flatbuffers::GetPrefixedSize(data_.data() + consumed_data_) +
207 sizeof(flatbuffers::uoffset_t);
208 if (data_.size() < consumed_data_ + data_size) {
209 return false;
210 }
211
212 return true;
213}
214
215bool SpanReader::ReadBlock() {
216 if (end_of_file_) {
217 return false;
218 }
219
220 // Appends 256k. This is enough that the read call is efficient. We don't
221 // want to spend too much time reading small chunks because the syscalls for
222 // that will be expensive.
223 constexpr size_t kReadSize = 256 * 1024;
224
225 // Strip off any unused data at the front.
226 if (consumed_data_ != 0) {
227 data_.erase(data_.begin(), data_.begin() + consumed_data_);
228 consumed_data_ = 0;
229 }
230
231 const size_t starting_size = data_.size();
232
233 // This should automatically grow the backing store. It won't shrink if we
234 // get a small chunk later. This reduces allocations when we want to append
235 // more data.
236 data_.resize(data_.size() + kReadSize);
237
238 ssize_t count = read(fd_, &data_[starting_size], kReadSize);
239 data_.resize(starting_size + std::max(count, static_cast<ssize_t>(0)));
240 if (count == 0) {
241 end_of_file_ = true;
242 return false;
243 }
244 PCHECK(count > 0);
245
246 return true;
247}
248
Austin Schuh6f3babe2020-01-26 20:34:50 -0800249FlatbufferVector<LogFileHeader> ReadHeader(std::string_view filename) {
250 SpanReader span_reader(filename);
251 // Make sure we have enough to read the size.
252 absl::Span<const uint8_t> config_data = span_reader.ReadMessage();
253
254 // Make sure something was read.
255 CHECK(config_data != absl::Span<const uint8_t>());
256
257 // And copy the config so we have it forever.
258 std::vector<uint8_t> data(
259 config_data.begin() + sizeof(flatbuffers::uoffset_t), config_data.end());
260 return FlatbufferVector<LogFileHeader>(std::move(data));
261}
262
Austin Schuh05b70472020-01-01 17:11:17 -0800263MessageReader::MessageReader(std::string_view filename)
264 : span_reader_(filename) {
265 // Make sure we have enough to read the size.
266 absl::Span<const uint8_t> config_data = span_reader_.ReadMessage();
267
268 // Make sure something was read.
269 CHECK(config_data != absl::Span<const uint8_t>());
270
271 // And copy the config so we have it forever.
272 configuration_ = std::vector<uint8_t>(config_data.begin(), config_data.end());
273
274 max_out_of_order_duration_ = std::chrono::nanoseconds(
275 flatbuffers::GetSizePrefixedRoot<LogFileHeader>(configuration_.data())
276 ->max_out_of_order_duration());
277}
278
279std::optional<FlatbufferVector<MessageHeader>> MessageReader::ReadMessage() {
280 absl::Span<const uint8_t> msg_data = span_reader_.ReadMessage();
281 if (msg_data == absl::Span<const uint8_t>()) {
282 return std::nullopt;
283 }
284
285 FlatbufferVector<MessageHeader> result{std::vector<uint8_t>(
286 msg_data.begin() + sizeof(flatbuffers::uoffset_t), msg_data.end())};
287
288 const monotonic_clock::time_point timestamp = monotonic_clock::time_point(
289 chrono::nanoseconds(result.message().monotonic_sent_time()));
290
291 newest_timestamp_ = std::max(newest_timestamp_, timestamp);
Austin Schuh6f3babe2020-01-26 20:34:50 -0800292 VLOG(1) << "Read from " << filename().substr(130) << " data "
293 << FlatbufferToJson(result);
294 return std::move(result);
Austin Schuh05b70472020-01-01 17:11:17 -0800295}
296
Austin Schuh6f3babe2020-01-26 20:34:50 -0800297SplitMessageReader::SplitMessageReader(
Austin Schuhfa895892020-01-07 20:07:41 -0800298 const std::vector<std::string> &filenames)
299 : filenames_(filenames),
300 log_file_header_(FlatbufferDetachedBuffer<LogFileHeader>::Empty()) {
301 CHECK(NextLogFile()) << ": filenames is empty. Need files to read.";
302
Austin Schuh6f3babe2020-01-26 20:34:50 -0800303 // Grab any log file header. They should all match (and we will check as we
304 // open more of them).
Austin Schuhfa895892020-01-07 20:07:41 -0800305 log_file_header_ = CopyFlatBuffer(message_reader_->log_file_header());
306
Austin Schuh6f3babe2020-01-26 20:34:50 -0800307 // Setup per channel state.
Austin Schuh05b70472020-01-01 17:11:17 -0800308 channels_.resize(configuration()->channels()->size());
Austin Schuh6f3babe2020-01-26 20:34:50 -0800309 for (ChannelData &channel_data : channels_) {
310 channel_data.data.split_reader = this;
311 // Build up the timestamp list.
312 if (configuration::MultiNode(configuration())) {
313 channel_data.timestamps.resize(configuration()->nodes()->size());
314 for (MessageHeaderQueue &queue : channel_data.timestamps) {
315 queue.timestamps = true;
316 queue.split_reader = this;
317 }
318 }
319 }
Austin Schuh05b70472020-01-01 17:11:17 -0800320
Austin Schuh6f3babe2020-01-26 20:34:50 -0800321 // Build up channels_to_write_ as an optimization to make it fast to figure
322 // out which datastructure to place any new data from a channel on.
323 for (const Channel *channel : *configuration()->channels()) {
324 // This is the main case. We will only see data on this node.
325 if (configuration::ChannelIsSendableOnNode(channel, node())) {
326 channels_to_write_.emplace_back(
327 &channels_[channels_to_write_.size()].data);
328 } else
329 // If we can't send, but can receive, we should be able to see
330 // timestamps here.
331 if (configuration::ChannelIsReadableOnNode(channel, node())) {
332 channels_to_write_.emplace_back(
333 &(channels_[channels_to_write_.size()]
334 .timestamps[configuration::GetNodeIndex(configuration(),
335 node())]));
336 } else {
337 channels_to_write_.emplace_back(nullptr);
338 }
339 }
Austin Schuh05b70472020-01-01 17:11:17 -0800340}
341
Austin Schuh6f3babe2020-01-26 20:34:50 -0800342bool SplitMessageReader::NextLogFile() {
Austin Schuhfa895892020-01-07 20:07:41 -0800343 if (next_filename_index_ == filenames_.size()) {
344 return false;
345 }
346 message_reader_ =
347 std::make_unique<MessageReader>(filenames_[next_filename_index_]);
348
349 // We can't support the config diverging between two log file headers. See if
350 // they are the same.
351 if (next_filename_index_ != 0) {
Austin Schuh6f3babe2020-01-26 20:34:50 -0800352 CHECK(CompareFlatBuffer(&log_file_header_.message(),
353 message_reader_->log_file_header()))
Austin Schuhfa895892020-01-07 20:07:41 -0800354 << ": Header is different between log file chunks "
355 << filenames_[next_filename_index_] << " and "
356 << filenames_[next_filename_index_ - 1] << ", this is not supported.";
357 }
358
359 ++next_filename_index_;
360 return true;
361}
362
Austin Schuh6f3babe2020-01-26 20:34:50 -0800363bool SplitMessageReader::QueueMessages(
364 monotonic_clock::time_point oldest_message_time) {
365 // TODO(austin): Once we are happy that everything works, read a 256kb chunk
366 // to reduce the need to re-heap down below.
367 while (true) {
368 // Don't queue if we have enough data already.
369 // When a log file starts, there should be a message from each channel.
370 // Those messages might be very old. Make sure to read a chunk past the
371 // starting time.
372 if (queued_messages_ > 0 &&
373 message_reader_->queue_data_time() > oldest_message_time) {
374 return true;
375 }
Austin Schuh05b70472020-01-01 17:11:17 -0800376
Austin Schuh6f3babe2020-01-26 20:34:50 -0800377 if (std::optional<FlatbufferVector<MessageHeader>> msg =
378 message_reader_->ReadMessage()) {
379 const MessageHeader &header = msg.value().message();
380
381 const int channel_index = header.channel_index();
382 channels_to_write_[channel_index]->emplace_back(std::move(msg.value()));
383
384 ++queued_messages_;
385 } else {
386 if (!NextLogFile()) {
387 return false;
388 }
389 }
Austin Schuh05b70472020-01-01 17:11:17 -0800390 }
Austin Schuh6f3babe2020-01-26 20:34:50 -0800391}
392
393void SplitMessageReader::SetTimestampMerger(TimestampMerger *timestamp_merger,
394 int channel_index,
395 const Node *target_node) {
396 const Node *reinterpreted_target_node =
397 configuration::GetNodeOrDie(configuration(), target_node);
398 const Channel *const channel =
399 configuration()->channels()->Get(channel_index);
400
401 MessageHeaderQueue *message_header_queue = nullptr;
402
403 // Figure out if this log file is from our point of view, or the other node's
404 // point of view.
405 if (node() == reinterpreted_target_node) {
406 if (channels_to_write_[channel_index] != nullptr) {
407 // We already have deduced which is the right channel. Use
408 // channels_to_write_ here.
409 message_header_queue = channels_to_write_[channel_index];
410 } else {
411 // This means this is data from another node, and will be ignored.
412 }
413 } else {
414 // We are replaying from another node's point of view. The only interesting
415 // data is data that is forwarded to our node, ie was sent on the other
416 // node.
417 if (configuration::ChannelIsSendableOnNode(channel, node())) {
418 // Data from another node.
419 message_header_queue = &(channels_[channel_index].data);
420 } else {
421 // This is either not sendable on the other node, or is a timestamp and
422 // therefore not interesting.
423 }
424 }
425
426 // If we found one, write it down. This will be nullptr when there is nothing
427 // relevant on this channel on this node for the target node. In that case,
428 // we want to drop the message instead of queueing it.
429 if (message_header_queue != nullptr) {
430 message_header_queue->timestamp_merger = timestamp_merger;
431 }
432}
433
434std::tuple<monotonic_clock::time_point, uint32_t,
435 FlatbufferVector<MessageHeader>>
436SplitMessageReader::PopOldest(int channel_index) {
437 CHECK_GT(channels_[channel_index].data.size(), 0u);
438 const std::tuple<monotonic_clock::time_point, uint32_t> timestamp =
439 channels_[channel_index].data.front_timestamp();
440 FlatbufferVector<MessageHeader> front =
441 std::move(channels_[channel_index].data.front());
442 channels_[channel_index].data.pop_front();
443 --queued_messages_;
444
445 return std::make_tuple(std::get<0>(timestamp), std::get<1>(timestamp),
446 std::move(front));
447}
448
449std::tuple<monotonic_clock::time_point, uint32_t,
450 FlatbufferVector<MessageHeader>>
451SplitMessageReader::PopOldest(int channel, int node_index) {
452 CHECK_GT(channels_[channel].timestamps[node_index].size(), 0u);
453 const std::tuple<monotonic_clock::time_point, uint32_t> timestamp =
454 channels_[channel].timestamps[node_index].front_timestamp();
455 FlatbufferVector<MessageHeader> front =
456 std::move(channels_[channel].timestamps[node_index].front());
457 channels_[channel].timestamps[node_index].pop_front();
458 --queued_messages_;
459
460 return std::make_tuple(std::get<0>(timestamp), std::get<1>(timestamp),
461 std::move(front));
462}
463
464void SplitMessageReader::MessageHeaderQueue::emplace_back(
465 FlatbufferVector<MessageHeader> &&msg) {
466 CHECK(split_reader != nullptr);
467
468 // If there is no timestamp merger for this queue, nobody is listening. Drop
469 // the message. This happens when a log file from another node is replayed,
470 // and the timestamp mergers down stream just don't care.
471 if (timestamp_merger == nullptr) {
472 return;
473 }
474
475 CHECK(timestamps != msg.message().has_data())
476 << ": Got timestamps and data mixed up on a node. "
477 << FlatbufferToJson(msg);
478
479 data_.emplace_back(std::move(msg));
480
481 if (data_.size() == 1u) {
482 // Yup, new data. Notify.
483 if (timestamps) {
484 timestamp_merger->UpdateTimestamp(split_reader, front_timestamp());
485 } else {
486 timestamp_merger->Update(split_reader, front_timestamp());
487 }
488 }
489}
490
491void SplitMessageReader::MessageHeaderQueue::pop_front() {
492 data_.pop_front();
493 if (data_.size() != 0u) {
494 // Yup, new data.
495 if (timestamps) {
496 timestamp_merger->UpdateTimestamp(split_reader, front_timestamp());
497 } else {
498 timestamp_merger->Update(split_reader, front_timestamp());
499 }
500 }
Austin Schuh05b70472020-01-01 17:11:17 -0800501}
502
503namespace {
504
Austin Schuh6f3babe2020-01-26 20:34:50 -0800505bool SplitMessageReaderHeapCompare(
506 const std::tuple<monotonic_clock::time_point, uint32_t,
507 SplitMessageReader *>
508 first,
509 const std::tuple<monotonic_clock::time_point, uint32_t,
510 SplitMessageReader *>
511 second) {
512 if (std::get<0>(first) > std::get<0>(second)) {
513 return true;
514 } else if (std::get<0>(first) == std::get<0>(second)) {
515 if (std::get<1>(first) > std::get<1>(second)) {
516 return true;
517 } else if (std::get<1>(first) == std::get<1>(second)) {
518 return std::get<2>(first) > std::get<2>(second);
519 } else {
520 return false;
521 }
522 } else {
523 return false;
524 }
525}
526
Austin Schuh05b70472020-01-01 17:11:17 -0800527bool ChannelHeapCompare(
528 const std::pair<monotonic_clock::time_point, int> first,
529 const std::pair<monotonic_clock::time_point, int> second) {
530 if (first.first > second.first) {
531 return true;
532 } else if (first.first == second.first) {
533 return first.second > second.second;
534 } else {
535 return false;
536 }
537}
538
539} // namespace
540
Austin Schuh6f3babe2020-01-26 20:34:50 -0800541TimestampMerger::TimestampMerger(
542 const Configuration *configuration,
543 std::vector<SplitMessageReader *> split_message_readers, int channel_index,
544 const Node *target_node, ChannelMerger *channel_merger)
545 : configuration_(configuration),
546 split_message_readers_(std::move(split_message_readers)),
547 channel_index_(channel_index),
548 node_index_(configuration::MultiNode(configuration)
549 ? configuration::GetNodeIndex(configuration, target_node)
550 : -1),
551 channel_merger_(channel_merger) {
552 // Tell the readers we care so they know who to notify.
553 for (SplitMessageReader *reader : split_message_readers_) {
554 reader->SetTimestampMerger(this, channel_index, target_node);
555 }
556
557 // And then determine if we need to track timestamps.
558 const Channel *channel = configuration->channels()->Get(channel_index);
559 if (!configuration::ChannelIsSendableOnNode(channel, target_node) &&
560 configuration::ChannelIsReadableOnNode(channel, target_node)) {
561 has_timestamps_ = true;
562 }
563}
564
565void TimestampMerger::PushMessageHeap(
566 std::tuple<monotonic_clock::time_point, uint32_t> timestamp,
567 SplitMessageReader *split_message_reader) {
568 DCHECK(std::find_if(message_heap_.begin(), message_heap_.end(),
569 [split_message_reader](
570 const std::tuple<monotonic_clock::time_point,
571 uint32_t, SplitMessageReader *>
572 x) {
573 return std::get<2>(x) == split_message_reader;
574 }) == message_heap_.end())
575 << ": Pushing message when it is already in the heap.";
576
577 message_heap_.push_back(std::make_tuple(
578 std::get<0>(timestamp), std::get<1>(timestamp), split_message_reader));
579
580 std::push_heap(message_heap_.begin(), message_heap_.end(),
581 &SplitMessageReaderHeapCompare);
582
583 // If we are just a data merger, don't wait for timestamps.
584 if (!has_timestamps_) {
585 channel_merger_->Update(std::get<0>(timestamp), channel_index_);
586 pushed_ = true;
587 }
588}
589
590void TimestampMerger::PushTimestampHeap(
591 std::tuple<monotonic_clock::time_point, uint32_t> timestamp,
592 SplitMessageReader *split_message_reader) {
593 DCHECK(std::find_if(timestamp_heap_.begin(), timestamp_heap_.end(),
594 [split_message_reader](
595 const std::tuple<monotonic_clock::time_point,
596 uint32_t, SplitMessageReader *>
597 x) {
598 return std::get<2>(x) == split_message_reader;
599 }) == timestamp_heap_.end())
600 << ": Pushing timestamp when it is already in the heap.";
601
602 timestamp_heap_.push_back(std::make_tuple(
603 std::get<0>(timestamp), std::get<1>(timestamp), split_message_reader));
604
605 std::push_heap(timestamp_heap_.begin(), timestamp_heap_.end(),
606 SplitMessageReaderHeapCompare);
607
608 // If we are a timestamp merger, don't wait for data. Missing data will be
609 // caught at read time.
610 if (has_timestamps_) {
611 channel_merger_->Update(std::get<0>(timestamp), channel_index_);
612 pushed_ = true;
613 }
614}
615
616std::tuple<monotonic_clock::time_point, uint32_t,
617 FlatbufferVector<MessageHeader>>
618TimestampMerger::PopMessageHeap() {
619 // Pop the oldest message reader pointer off the heap.
620 CHECK_GT(message_heap_.size(), 0u);
621 std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>
622 oldest_message_reader = message_heap_.front();
623
624 std::pop_heap(message_heap_.begin(), message_heap_.end(),
625 &SplitMessageReaderHeapCompare);
626 message_heap_.pop_back();
627
628 // Pop the oldest message. This re-pushes any messages from the reader to the
629 // message heap.
630 std::tuple<monotonic_clock::time_point, uint32_t,
631 FlatbufferVector<MessageHeader>>
632 oldest_message =
633 std::get<2>(oldest_message_reader)->PopOldest(channel_index_);
634
635 // Confirm that the time and queue_index we have recorded matches.
636 CHECK_EQ(std::get<0>(oldest_message), std::get<0>(oldest_message_reader));
637 CHECK_EQ(std::get<1>(oldest_message), std::get<1>(oldest_message_reader));
638
639 // Now, keep reading until we have found all duplicates.
640 while (message_heap_.size() > 0u) {
641 // See if it is a duplicate.
642 std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>
643 next_oldest_message_reader = message_heap_.front();
644
645 std::tuple<monotonic_clock::time_point, uint32_t> next_oldest_message_time =
646 std::get<2>(next_oldest_message_reader)->oldest_message(channel_index_);
647
648 if (std::get<0>(next_oldest_message_time) == std::get<0>(oldest_message) &&
649 std::get<1>(next_oldest_message_time) == std::get<1>(oldest_message)) {
650 // Pop the message reader pointer.
651 std::pop_heap(message_heap_.begin(), message_heap_.end(),
652 &SplitMessageReaderHeapCompare);
653 message_heap_.pop_back();
654
655 // Pop the next oldest message. This re-pushes any messages from the
656 // reader.
657 std::tuple<monotonic_clock::time_point, uint32_t,
658 FlatbufferVector<MessageHeader>>
659 next_oldest_message = std::get<2>(next_oldest_message_reader)
660 ->PopOldest(channel_index_);
661
662 // And make sure the message matches in it's entirety.
663 CHECK(std::get<2>(oldest_message).span() ==
664 std::get<2>(next_oldest_message).span())
665 << ": Data at the same timestamp doesn't match.";
666 } else {
667 break;
668 }
669 }
670
671 return oldest_message;
672}
673
674std::tuple<monotonic_clock::time_point, uint32_t,
675 FlatbufferVector<MessageHeader>>
676TimestampMerger::PopTimestampHeap() {
677 // Pop the oldest message reader pointer off the heap.
678 CHECK_GT(timestamp_heap_.size(), 0u);
679
680 std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>
681 oldest_timestamp_reader = timestamp_heap_.front();
682
683 std::pop_heap(timestamp_heap_.begin(), timestamp_heap_.end(),
684 &SplitMessageReaderHeapCompare);
685 timestamp_heap_.pop_back();
686
687 CHECK(node_index_ != -1) << ": Timestamps in a single node environment";
688
689 // Pop the oldest message. This re-pushes any timestamps from the reader to
690 // the timestamp heap.
691 std::tuple<monotonic_clock::time_point, uint32_t,
692 FlatbufferVector<MessageHeader>>
693 oldest_timestamp = std::get<2>(oldest_timestamp_reader)
694 ->PopOldest(channel_index_, node_index_);
695
696 // Confirm that the time we have recorded matches.
697 CHECK_EQ(std::get<0>(oldest_timestamp), std::get<0>(oldest_timestamp_reader));
698 CHECK_EQ(std::get<1>(oldest_timestamp), std::get<1>(oldest_timestamp_reader));
699
700 // TODO(austin): What if we get duplicate timestamps?
701
702 return oldest_timestamp;
703}
704
705std::tuple<TimestampMerger::DeliveryTimestamp, FlatbufferVector<MessageHeader>>
706TimestampMerger::PopOldest() {
707 if (has_timestamps_) {
708 CHECK_GT(message_heap_.size(), 0u)
709 << ": Missing data from source node, no data available to match "
710 "timestamp on "
711 << configuration::CleanedChannelToString(
712 configuration_->channels()->Get(channel_index_));
713
714 std::tuple<monotonic_clock::time_point, uint32_t,
715 FlatbufferVector<MessageHeader>>
716 oldest_timestamp = PopTimestampHeap();
717
718 TimestampMerger::DeliveryTimestamp timestamp;
719 timestamp.monotonic_event_time =
720 monotonic_clock::time_point(chrono::nanoseconds(
721 std::get<2>(oldest_timestamp).message().monotonic_sent_time()));
722 timestamp.realtime_event_time =
723 realtime_clock::time_point(chrono::nanoseconds(
724 std::get<2>(oldest_timestamp).message().realtime_sent_time()));
725
726 // Consistency check.
727 CHECK_EQ(timestamp.monotonic_event_time, std::get<0>(oldest_timestamp));
728 CHECK_EQ(std::get<2>(oldest_timestamp).message().queue_index(),
729 std::get<1>(oldest_timestamp));
730
731 monotonic_clock::time_point remote_timestamp_monotonic_time(
732 chrono::nanoseconds(
733 std::get<2>(oldest_timestamp).message().monotonic_remote_time()));
734
735 while (true) {
736 // Ok, now try grabbing data until we find one which matches.
737 std::tuple<monotonic_clock::time_point, uint32_t,
738 FlatbufferVector<MessageHeader>>
739 oldest_message = PopMessageHeap();
740
741 // Time at which the message was sent (this message is written from the
742 // sending node's perspective.
743 monotonic_clock::time_point remote_monotonic_time(chrono::nanoseconds(
744 std::get<2>(oldest_message).message().monotonic_sent_time()));
745
746 if (remote_monotonic_time < remote_timestamp_monotonic_time) {
747 LOG(INFO) << "Undelivered message, skipping. Remote time is "
748 << remote_monotonic_time << " timestamp is "
749 << remote_timestamp_monotonic_time << " on channel "
750 << channel_index_;
751 continue;
752 }
753
754 timestamp.monotonic_remote_time = remote_monotonic_time;
755 timestamp.realtime_remote_time =
756 realtime_clock::time_point(chrono::nanoseconds(
757 std::get<2>(oldest_message).message().realtime_sent_time()));
758 timestamp.remote_queue_index =
759 std::get<2>(oldest_message).message().queue_index();
760
761 CHECK_EQ(remote_monotonic_time, remote_timestamp_monotonic_time);
762 CHECK_EQ(timestamp.remote_queue_index, std::get<1>(oldest_timestamp));
763
764 return std::make_tuple(timestamp, std::get<2>(oldest_message));
765 }
766 } else {
767 std::tuple<monotonic_clock::time_point, uint32_t,
768 FlatbufferVector<MessageHeader>>
769 oldest_message = PopMessageHeap();
770
771 TimestampMerger::DeliveryTimestamp timestamp;
772 timestamp.monotonic_event_time =
773 monotonic_clock::time_point(chrono::nanoseconds(
774 std::get<2>(oldest_message).message().monotonic_sent_time()));
775 timestamp.realtime_event_time =
776 realtime_clock::time_point(chrono::nanoseconds(
777 std::get<2>(oldest_message).message().realtime_sent_time()));
778 timestamp.remote_queue_index = 0xffffffff;
779
780 CHECK_EQ(std::get<0>(oldest_message), timestamp.monotonic_event_time);
781 CHECK_EQ(std::get<1>(oldest_message),
782 std::get<2>(oldest_message).message().queue_index());
783
784 return std::make_tuple(timestamp, std::get<2>(oldest_message));
785 }
786}
787
788namespace {
789std::vector<std::unique_ptr<SplitMessageReader>> MakeSplitMessageReaders(
790 const std::vector<std::vector<std::string>> &filenames) {
791 CHECK_GT(filenames.size(), 0u);
792 // Build up all the SplitMessageReaders.
793 std::vector<std::unique_ptr<SplitMessageReader>> result;
794 for (const std::vector<std::string> &filenames : filenames) {
795 result.emplace_back(std::make_unique<SplitMessageReader>(filenames));
796 }
797 return result;
798}
799} // namespace
800
801ChannelMerger::ChannelMerger(
802 const std::vector<std::vector<std::string>> &filenames)
803 : split_message_readers_(MakeSplitMessageReaders(filenames)),
804 log_file_header_(
805 CopyFlatBuffer(split_message_readers_[0]->log_file_header())) {
806 // Now, confirm that the configuration matches for each and pick a start time.
807 // Also return the list of possible nodes.
808 for (const std::unique_ptr<SplitMessageReader> &reader :
809 split_message_readers_) {
810 CHECK(CompareFlatBuffer(log_file_header_.message().configuration(),
811 reader->log_file_header()->configuration()))
812 << ": Replaying log files with different configurations isn't "
813 "supported";
814 }
815
816 nodes_ = configuration::GetNodes(configuration());
817}
818
819bool ChannelMerger::SetNode(const Node *target_node) {
820 std::vector<SplitMessageReader *> split_message_readers;
821 for (const std::unique_ptr<SplitMessageReader> &reader :
822 split_message_readers_) {
823 split_message_readers.emplace_back(reader.get());
824 }
825
826 // Go find a log_file_header for this node.
827 {
828 bool found_node = false;
829
830 for (const std::unique_ptr<SplitMessageReader> &reader :
831 split_message_readers_) {
832 if (CompareFlatBuffer(reader->node(), target_node)) {
833 if (!found_node) {
834 found_node = true;
835 log_file_header_ = CopyFlatBuffer(reader->log_file_header());
836 } else {
837 // And then make sure all the other files have matching headers.
838 CHECK(
839 CompareFlatBuffer(log_file_header(), reader->log_file_header()));
840 }
841 }
842 }
843
844 if (!found_node) {
845 LOG(WARNING) << "Failed to find log file for node "
846 << FlatbufferToJson(target_node);
847 return false;
848 }
849 }
850
851 // Build up all the timestamp mergers. This connects up all the
852 // SplitMessageReaders.
853 timestamp_mergers_.reserve(configuration()->channels()->size());
854 for (size_t channel_index = 0;
855 channel_index < configuration()->channels()->size(); ++channel_index) {
856 timestamp_mergers_.emplace_back(
857 configuration(), split_message_readers, channel_index,
858 configuration::GetNode(configuration(), target_node), this);
859 }
860
861 // And prime everything.
862 size_t split_message_reader_index = 0;
863 for (std::unique_ptr<SplitMessageReader> &split_message_reader :
864 split_message_readers_) {
865 if (split_message_reader->QueueMessages(
866 split_message_reader->monotonic_start_time())) {
867 split_message_reader_heap_.push_back(std::make_pair(
868 split_message_reader->queue_data_time(), split_message_reader_index));
869
870 std::push_heap(split_message_reader_heap_.begin(),
871 split_message_reader_heap_.end(), ChannelHeapCompare);
872 }
873 ++split_message_reader_index;
874 }
875
876 node_ = configuration::GetNodeOrDie(configuration(), target_node);
877 return true;
878}
879
880monotonic_clock::time_point ChannelMerger::OldestMessage() const {
881 if (channel_heap_.size() == 0u) {
882 return monotonic_clock::max_time;
883 }
884 return channel_heap_.front().first;
885}
886
887void ChannelMerger::PushChannelHeap(monotonic_clock::time_point timestamp,
888 int channel_index) {
889 // Pop and recreate the heap if it has already been pushed. And since we are
890 // pushing again, we don't need to clear pushed.
891 if (timestamp_mergers_[channel_index].pushed()) {
892 channel_heap_.erase(std::find_if(
893 channel_heap_.begin(), channel_heap_.end(),
894 [channel_index](const std::pair<monotonic_clock::time_point, int> x) {
895 return x.second == channel_index;
896 }));
897 std::make_heap(channel_heap_.begin(), channel_heap_.end(),
898 ChannelHeapCompare);
899 }
900
Austin Schuh05b70472020-01-01 17:11:17 -0800901 channel_heap_.push_back(std::make_pair(timestamp, channel_index));
902
903 // The default sort puts the newest message first. Use a custom comparator to
904 // put the oldest message first.
905 std::push_heap(channel_heap_.begin(), channel_heap_.end(),
906 ChannelHeapCompare);
907}
908
Austin Schuh6f3babe2020-01-26 20:34:50 -0800909std::tuple<TimestampMerger::DeliveryTimestamp, int,
910 FlatbufferVector<MessageHeader>>
911ChannelMerger::PopOldest() {
912 CHECK(channel_heap_.size() > 0);
Austin Schuh05b70472020-01-01 17:11:17 -0800913 std::pair<monotonic_clock::time_point, int> oldest_channel_data =
914 channel_heap_.front();
Austin Schuh6f3babe2020-01-26 20:34:50 -0800915 int channel_index = oldest_channel_data.second;
Austin Schuh05b70472020-01-01 17:11:17 -0800916 std::pop_heap(channel_heap_.begin(), channel_heap_.end(),
917 &ChannelHeapCompare);
918 channel_heap_.pop_back();
Austin Schuh6f3babe2020-01-26 20:34:50 -0800919 timestamp_mergers_[channel_index].set_pushed(false);
Austin Schuh05b70472020-01-01 17:11:17 -0800920
Austin Schuh6f3babe2020-01-26 20:34:50 -0800921 TimestampMerger *merger = &timestamp_mergers_[channel_index];
Austin Schuh05b70472020-01-01 17:11:17 -0800922
Austin Schuh6f3babe2020-01-26 20:34:50 -0800923 // Merger auto-pushes from here, but doesn't fetch anything new from the log
924 // file.
925 std::tuple<TimestampMerger::DeliveryTimestamp,
926 FlatbufferVector<MessageHeader>>
927 message = merger->PopOldest();
Austin Schuh05b70472020-01-01 17:11:17 -0800928
Austin Schuh6f3babe2020-01-26 20:34:50 -0800929 QueueMessages(OldestMessage());
Austin Schuh05b70472020-01-01 17:11:17 -0800930
Austin Schuh6f3babe2020-01-26 20:34:50 -0800931 return std::make_tuple(std::get<0>(message), channel_index,
932 std::move(std::get<1>(message)));
933}
934
935void ChannelMerger::QueueMessages(
936 monotonic_clock::time_point oldest_message_time) {
937 // Pop and re-queue readers until they are all caught up.
938 while (true) {
939 if (split_message_reader_heap_.size() == 0) {
940 return;
941 }
942 std::pair<monotonic_clock::time_point, int> oldest_channel_data =
943 split_message_reader_heap_.front();
944
945 // No work to do, bail.
946 if (oldest_channel_data.first > oldest_message_time) {
947 return;
948 }
949
950 // Drop it off the heap.
951 std::pop_heap(split_message_reader_heap_.begin(),
952 split_message_reader_heap_.end(), &ChannelHeapCompare);
953 split_message_reader_heap_.pop_back();
954
955 // And if there is data left in the log file, push it back on the heap with
956 // the updated time.
957 const int split_message_reader_index = oldest_channel_data.second;
958 if (split_message_readers_[split_message_reader_index]->QueueMessages(
959 oldest_message_time)) {
960 split_message_reader_heap_.push_back(std::make_pair(
961 split_message_readers_[split_message_reader_index]->queue_data_time(),
962 split_message_reader_index));
963
964 std::push_heap(split_message_reader_heap_.begin(),
965 split_message_reader_heap_.end(), ChannelHeapCompare);
966 }
Austin Schuh05b70472020-01-01 17:11:17 -0800967 }
Austin Schuh05b70472020-01-01 17:11:17 -0800968}
969
Austin Schuha36c8902019-12-30 18:07:15 -0800970} // namespace logger
971} // namespace aos