blob: a876ae3003205a02643d1cd6a2de5de2fda55a9a [file] [log] [blame]
Austin Schuhec7f06d2019-01-04 07:47:15 +11001#include "frc971/control_loops/drivetrain/trajectory.h"
2
3#include <chrono>
4
5#include "Eigen/Dense"
Philipp Schrader790cb542023-07-05 21:06:52 -07006
7#include "aos/util/math.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +11008#include "frc971/control_loops/c2d.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -07009#include "frc971/control_loops/dlqr.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +110010#include "frc971/control_loops/drivetrain/distance_spline.h"
11#include "frc971/control_loops/drivetrain/drivetrain_config.h"
12#include "frc971/control_loops/hybrid_state_feedback_loop.h"
13#include "frc971/control_loops/state_feedback_loop.h"
14
Stephan Pleinesf63bde82024-01-13 15:59:33 -080015namespace frc971::control_loops::drivetrain {
Austin Schuhec7f06d2019-01-04 07:47:15 +110016
James Kuszmaul75a18c52021-03-10 22:02:07 -080017namespace {
18float DefaultConstraint(ConstraintType type) {
19 switch (type) {
20 case ConstraintType::LONGITUDINAL_ACCELERATION:
21 return 2.0;
22 case ConstraintType::LATERAL_ACCELERATION:
23 return 3.0;
24 case ConstraintType::VOLTAGE:
25 return 12.0;
26 case ConstraintType::VELOCITY:
27 case ConstraintType::CONSTRAINT_TYPE_UNDEFINED:
28 LOG(FATAL) << "No default constraint value for "
29 << EnumNameConstraintType(type);
30 }
31 LOG(FATAL) << "Invalid ConstraintType " << static_cast<int>(type);
32}
33} // namespace
34
Austin Schuhf7c65202022-11-04 21:28:20 -070035FinishedTrajectory::FinishedTrajectory(
James Kuszmaul5c4ccf62024-03-03 17:29:49 -080036 const DrivetrainConfig<double> *config, const fb::Trajectory *buffer,
Austin Schuhf7c65202022-11-04 21:28:20 -070037 std::shared_ptr<
38 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
39 HybridKalman<2, 2, 2>>>
40 velocity_drivetrain)
James Kuszmaul75a18c52021-03-10 22:02:07 -080041 : BaseTrajectory(CHECK_NOTNULL(CHECK_NOTNULL(buffer->spline())->spline())
42 ->constraints(),
Austin Schuhf7c65202022-11-04 21:28:20 -070043 config, std::move(velocity_drivetrain)),
James Kuszmaul75a18c52021-03-10 22:02:07 -080044 buffer_(buffer),
45 spline_(*buffer_->spline()) {}
46
47const Eigen::Matrix<double, 2, 1> BaseTrajectory::K1(
48 double current_ddtheta) const {
49 return (Eigen::Matrix<double, 2, 1>() << -robot_radius_l_ * current_ddtheta,
50 robot_radius_r_ * current_ddtheta)
51 .finished();
52}
53
54const Eigen::Matrix<double, 2, 1> BaseTrajectory::K2(
55 double current_dtheta) const {
56 return (Eigen::Matrix<double, 2, 1>()
57 << 1.0 - robot_radius_l_ * current_dtheta,
58 1.0 + robot_radius_r_ * current_dtheta)
59 .finished();
60}
61
62void BaseTrajectory::K345(const double x, Eigen::Matrix<double, 2, 1> *K3,
63 Eigen::Matrix<double, 2, 1> *K4,
64 Eigen::Matrix<double, 2, 1> *K5) const {
65 const double current_ddtheta = spline().DDTheta(x);
66 const double current_dtheta = spline().DTheta(x);
67 // We've now got the equation:
68 // K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
69 const Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta);
70
71 const Eigen::Matrix<double, 2, 2> B_inverse =
72 velocity_drivetrain_->plant().coefficients().B_continuous.inverse();
73
74 // Now, rephrase it as K5 a + K3 v^2 + K4 v = U
75 *K3 = B_inverse * K1(current_ddtheta);
76 *K4 = -B_inverse * velocity_drivetrain_->plant().coefficients().A_continuous *
77 my_K2;
78 *K5 = B_inverse * my_K2;
79}
80
81BaseTrajectory::BaseTrajectory(
82 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
James Kuszmaul5c4ccf62024-03-03 17:29:49 -080083 const DrivetrainConfig<double> *config,
Austin Schuhf7c65202022-11-04 21:28:20 -070084 std::shared_ptr<
85 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
86 HybridKalman<2, 2, 2>>>
87 velocity_drivetrain)
88 : velocity_drivetrain_(std::move(velocity_drivetrain)),
James Kuszmaulaa2499d2020-06-02 21:31:19 -070089 config_(config),
James Kuszmaul5c4ccf62024-03-03 17:29:49 -080090 robot_radius_l_(config->robot_radius),
91 robot_radius_r_(config->robot_radius),
James Kuszmaul75a18c52021-03-10 22:02:07 -080092 lateral_acceleration_(
93 ConstraintValue(constraints, ConstraintType::LATERAL_ACCELERATION)),
94 longitudinal_acceleration_(ConstraintValue(
95 constraints, ConstraintType::LONGITUDINAL_ACCELERATION)),
96 voltage_limit_(ConstraintValue(constraints, ConstraintType::VOLTAGE)) {}
97
98Trajectory::Trajectory(const SplineGoal &spline_goal,
James Kuszmaul5c4ccf62024-03-03 17:29:49 -080099 const DrivetrainConfig<double> *config)
James Kuszmaul75a18c52021-03-10 22:02:07 -0800100 : Trajectory(DistanceSpline{spline_goal.spline()}, config,
101 spline_goal.spline()->constraints(),
102 spline_goal.spline_idx()) {
103 drive_spline_backwards_ = spline_goal.drive_spline_backwards();
104}
105
106Trajectory::Trajectory(
James Kuszmaul5c4ccf62024-03-03 17:29:49 -0800107 DistanceSpline &&input_spline, const DrivetrainConfig<double> *config,
James Kuszmaul75a18c52021-03-10 22:02:07 -0800108 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
109 int spline_idx, double vmax, int num_distance)
110 : BaseTrajectory(constraints, config),
111 spline_idx_(spline_idx),
112 spline_(std::move(input_spline)),
113 config_(config),
Austin Schuhe73a9052019-01-07 12:16:17 -0800114 plan_(num_distance == 0
Austin Schuh890196c2021-03-31 20:18:45 -0700115 ? std::max(10000, static_cast<int>(spline_.length() / 0.0025))
Austin Schuhe73a9052019-01-07 12:16:17 -0800116 : num_distance,
117 vmax),
James Kuszmaul75a18c52021-03-10 22:02:07 -0800118 plan_segment_type_(plan_.size(),
119 fb::SegmentConstraint::VELOCITY_LIMITED) {
120 if (constraints != nullptr) {
121 for (const Constraint *constraint : *constraints) {
122 if (constraint->constraint_type() == ConstraintType::VELOCITY) {
123 LimitVelocity(constraint->start_distance(), constraint->end_distance(),
124 constraint->value());
125 }
126 }
127 }
128}
Austin Schuhec7f06d2019-01-04 07:47:15 +1100129
James Kuszmaul5c4ccf62024-03-03 17:29:49 -0800130Trajectory::Trajectory(
131 DistanceSpline &&spline, std::unique_ptr<DrivetrainConfig<double>> config,
132 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
133 int spline_idx, double vmax, int num_distance)
134 : Trajectory(std::move(spline), config.get(), constraints, spline_idx, vmax,
135 num_distance) {
136 owned_config_ = std::move(config);
137}
138
Austin Schuhec7f06d2019-01-04 07:47:15 +1100139void Trajectory::LateralAccelPass() {
140 for (size_t i = 0; i < plan_.size(); ++i) {
141 const double distance = Distance(i);
Austin Schuhd749d932020-12-30 21:38:40 -0800142 const double velocity_limit = LateralVelocityCurvature(distance);
James Kuszmaulea314d92019-02-18 19:45:06 -0800143 if (velocity_limit < plan_[i]) {
144 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800145 plan_segment_type_[i] = fb::SegmentConstraint::CURVATURE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800146 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100147 }
148}
149
James Kuszmaulea314d92019-02-18 19:45:06 -0800150void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) {
151 for (size_t i = 0; i < plan_.size(); ++i) {
152 const double distance = Distance(i);
153 const double velocity_limit = VoltageVelocityLimit(distance, limit_type);
154 if (velocity_limit < plan_[i]) {
155 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800156 plan_segment_type_[i] = fb::SegmentConstraint::VOLTAGE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800157 }
158 }
159}
160
James Kuszmaul75a18c52021-03-10 22:02:07 -0800161double BaseTrajectory::BestAcceleration(double x, double v,
162 bool backwards) const {
163 Eigen::Matrix<double, 2, 1> K3;
164 Eigen::Matrix<double, 2, 1> K4;
165 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100166 K345(x, &K3, &K4, &K5);
167
Austin Schuhec7f06d2019-01-04 07:47:15 +1100168 // Now, solve for all a's and find the best one which meets our criteria.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800169 const Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
170 double min_voltage_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800171 double max_voltage_accel = -min_voltage_accel;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800172 for (const double a : {(max_voltage() - C(0, 0)) / K5(0, 0),
173 (max_voltage() - C(1, 0)) / K5(1, 0),
174 (-max_voltage() - C(0, 0)) / K5(0, 0),
175 (-max_voltage() - C(1, 0)) / K5(1, 0)}) {
176 const Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
177 if ((U.array().abs() < max_voltage() + 1e-6).all()) {
178 min_voltage_accel = std::min(a, min_voltage_accel);
179 max_voltage_accel = std::max(a, max_voltage_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100180 }
181 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800182 double best_accel = backwards ? min_voltage_accel : max_voltage_accel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100183
James Kuszmaulea314d92019-02-18 19:45:06 -0800184 double min_friction_accel, max_friction_accel;
185 FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel);
186 if (backwards) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800187 best_accel = std::max(best_accel, min_friction_accel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800188 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800189 best_accel = std::min(best_accel, max_friction_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100190 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800191
James Kuszmaul66b78042020-02-23 15:30:51 -0800192 // Ideally, the max would never be less than the min, but due to the way that
193 // the runge kutta solver works, it sometimes ticks over the edge.
194 if (max_friction_accel < min_friction_accel) {
195 VLOG(1) << "At x " << x << " v " << v << " min fric acc "
196 << min_friction_accel << " max fric accel " << max_friction_accel;
197 }
198 if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) {
199 LOG(WARNING) << "Viable friction limits and viable voltage limits do not "
Austin Schuhd749d932020-12-30 21:38:40 -0800200 "overlap (x: "
201 << x << ", v: " << v << ", backwards: " << backwards
James Kuszmaul66b78042020-02-23 15:30:51 -0800202 << ") best_accel = " << best_accel << ", min voltage "
203 << min_voltage_accel << ", max voltage " << max_voltage_accel
204 << " min friction " << min_friction_accel << " max friction "
205 << max_friction_accel << ".";
206
James Kuszmaulea314d92019-02-18 19:45:06 -0800207 // Don't actually do anything--this will just result in attempting to drive
208 // higher voltages thatn we have available. In practice, that'll probably
209 // work out fine.
210 }
211
212 return best_accel;
213}
214
James Kuszmaul75a18c52021-03-10 22:02:07 -0800215double BaseTrajectory::LateralVelocityCurvature(double distance) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800216 // To calculate these constraints, we first note that:
217 // wheel accels = K2 * v_robot' + K1 * v_robot^2
218 // All that this logic does is solve for v_robot, leaving v_robot' free,
219 // assuming that the wheels are at their limits.
220 // To do this, we:
221 //
222 // 1) Determine what the wheel accels will be at the limit--since we have
223 // two free variables (v_robot, v_robot'), both wheels will be at their
224 // limits--if in a sufficiently tight turn (such that the signs of the
225 // coefficients of K2 are different), then the wheels will be accelerating
226 // in opposite directions; otherwise, they accelerate in the same direction.
227 // The magnitude of these per-wheel accelerations is a function of velocity,
228 // so it must also be solved for.
229 //
230 // 2) Eliminate that v_robot' term (since we don't care
231 // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on
232 // both sides of the equation.
233 //
234 // 3) Solving the relatively tractable remaining equation, which is
235 // basically just grouping all the terms together in one spot and taking the
236 // 4th root of everything.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800237 const double dtheta = spline().DTheta(distance);
238 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800239 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800240 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
James Kuszmaulea314d92019-02-18 19:45:06 -0800241 // Calculate whether the wheels are spinning in opposite directions.
242 const bool opposites = K2prime(0) * K2prime(1) < 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800243 const Eigen::Matrix<double, 2, 1> K1calc = K1(spline().DDTheta(distance));
244 const double lat_accel_squared = std::pow(dtheta / max_lateral_accel(), 2);
James Kuszmaulea314d92019-02-18 19:45:06 -0800245 const double curvature_change_term =
246 (K2prime * K1calc).value() /
247 (K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800248 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800249 .finished() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800250 max_longitudinal_accel())
James Kuszmaulea314d92019-02-18 19:45:06 -0800251 .value();
James Kuszmaul75a18c52021-03-10 22:02:07 -0800252 const double vel_inv = std::sqrt(
253 std::sqrt(std::pow(curvature_change_term, 2) + lat_accel_squared));
James Kuszmaulea314d92019-02-18 19:45:06 -0800254 if (vel_inv == 0.0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800255 return std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800256 }
257 return 1.0 / vel_inv;
258}
259
James Kuszmaul75a18c52021-03-10 22:02:07 -0800260void BaseTrajectory::FrictionLngAccelLimits(double x, double v,
261 double *min_accel,
262 double *max_accel) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800263 // First, calculate the max longitudinal acceleration that can be achieved
264 // by either wheel given the friction elliipse that we have.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800265 const double lateral_acceleration = v * v * spline().DDXY(x).norm();
James Kuszmaulea314d92019-02-18 19:45:06 -0800266 const double max_wheel_lng_accel_squared =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800267 1.0 - std::pow(lateral_acceleration / max_lateral_accel(), 2.0);
James Kuszmaulea314d92019-02-18 19:45:06 -0800268 if (max_wheel_lng_accel_squared < 0.0) {
James Kuszmaul66b78042020-02-23 15:30:51 -0800269 VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v
270 << " at distance " << x;
James Kuszmaulea314d92019-02-18 19:45:06 -0800271 // If we encounter this, it means that the Runge-Kutta has attempted to
272 // sample points a bit past the edge of the friction boundary. If so, we
273 // gradually ramp the min/max accels to be more and more incorrect (note
274 // how min_accel > max_accel if we reach this case) to avoid causing any
275 // numerical issues.
276 *min_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800277 std::sqrt(-max_wheel_lng_accel_squared) * max_longitudinal_accel();
James Kuszmaulea314d92019-02-18 19:45:06 -0800278 *max_accel = -*min_accel;
279 return;
280 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800281 *min_accel = -std::numeric_limits<double>::infinity();
282 *max_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800283
284 // Calculate max/min accelerations by calculating what the robots overall
285 // longitudinal acceleration would be if each wheel were running at the max
286 // forwards/backwards longitudinal acceleration.
287 const double max_wheel_lng_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800288 max_longitudinal_accel() * std::sqrt(max_wheel_lng_accel_squared);
289 const Eigen::Matrix<double, 2, 1> K1v2 = K1(spline().DDTheta(x)) * v * v;
290 const Eigen::Matrix<double, 2, 1> K2inv =
291 K2(spline().DTheta(x)).cwiseInverse();
James Kuszmaulea314d92019-02-18 19:45:06 -0800292 // Store the accelerations of the robot corresponding to each wheel being at
293 // the max/min acceleration. The first coefficient in each vector
294 // corresponds to the left wheel, the second to the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800295 const Eigen::Matrix<double, 2, 1> accels1 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800296 K2inv.array() * (-K1v2.array() + max_wheel_lng_accel);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800297 const Eigen::Matrix<double, 2, 1> accels2 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800298 K2inv.array() * (-K1v2.array() - max_wheel_lng_accel);
299
300 // If either term is non-finite, that suggests that a term of K2 is zero
301 // (which is physically possible when turning such that one wheel is
302 // stationary), so just ignore that side of the drivetrain.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800303 if (std::isfinite(accels1(0))) {
James Kuszmaulea314d92019-02-18 19:45:06 -0800304 // The inner max/min in this case determines which of the two cases (+ or
305 // - acceleration on the left wheel) we care about--in a sufficiently
306 // tight turning radius, the left hweel may be accelerating backwards when
307 // the robot as a whole accelerates forwards. We then use that
308 // acceleration to bound the min/max accel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800309 *min_accel = std::max(*min_accel, std::min(accels1(0), accels2(0)));
310 *max_accel = std::min(*max_accel, std::max(accels1(0), accels2(0)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800311 }
312 // Same logic as previous if-statement, but for the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800313 if (std::isfinite(accels1(1))) {
314 *min_accel = std::max(*min_accel, std::min(accels1(1), accels2(1)));
315 *max_accel = std::min(*max_accel, std::max(accels1(1), accels2(1)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800316 }
317}
318
319double Trajectory::VoltageVelocityLimit(
320 double distance, VoltageLimit limit_type,
321 Eigen::Matrix<double, 2, 1> *constraint_voltages) const {
322 // To sketch an outline of the math going on here, we start with the basic
323 // dynamics of the robot along the spline:
324 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U
325 // We need to determine the maximum v_robot given constrained U and free
326 // v_robot'.
327 // Similarly to the friction constraints, we accomplish this by first
328 // multiplying by a K2prime term to eliminate the v_robot' term.
329 // As with the friction constraints, we also know that the limits will occur
330 // when both sides of the drivetrain are driven at their max magnitude
331 // voltages, although they may be driven at different signs.
332 // Once we determine whether the voltages match signs, we still have to
333 // consider both possible pairings (technically we could probably
334 // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't
335 // need to).
336 //
337 // For each pairing, we then get to solve a quadratic formula for the robot
338 // velocity at those voltages. This gives us up to 4 solutions, of which
339 // up to 3 will give us positive velocities; each solution velocity
340 // corresponds to a transition from feasibility to infeasibility, where a
341 // velocity of zero is always feasible, and there will always be 0, 1, or 3
342 // positive solutions. Among the positive solutions, we take both the min
343 // and the max--the min will be the highest velocity such that all
344 // velocities between zero and that velocity are valid; the max will be
345 // the highest feasible velocity. Which we return depends on what the
346 // limit_type is.
347 //
348 // Sketching the actual math:
349 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max
350 // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max)
351 // a v_robot^2 + b v_robot +/- c = 0
James Kuszmaul75a18c52021-03-10 22:02:07 -0800352 const Eigen::Matrix<double, 2, 2> B =
353 velocity_drivetrain().plant().coefficients().B_continuous;
354 const double dtheta = spline().DTheta(distance);
355 const Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta);
James Kuszmaulea314d92019-02-18 19:45:06 -0800356 // Because voltages can actually impact *both* wheels, in order to determine
357 // whether the voltages will have opposite signs, we need to use B^-1 * K2.
358 const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800359 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800360 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800361 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
362 const double a = K2prime * K1(spline().DDTheta(distance));
James Kuszmaulea314d92019-02-18 19:45:06 -0800363 const double b = -K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800364 velocity_drivetrain().plant().coefficients().A_continuous *
James Kuszmaulea314d92019-02-18 19:45:06 -0800365 K2(dtheta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800366 const Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B;
James Kuszmaulea314d92019-02-18 19:45:06 -0800367 // Calculate the "positive" version of the voltage limits we will use.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800368 const Eigen::Matrix<double, 2, 1> abs_volts =
369 max_voltage() *
370 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800371 .finished();
372
James Kuszmaul75a18c52021-03-10 22:02:07 -0800373 double min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800374 if (limit_type == VoltageLimit::kAggressive) {
375 min_valid_vel = 0.0;
376 }
377 // Iterate over both possibilites for +/- voltage, and solve the quadratic
378 // formula. For every positive solution, adjust the velocity limit
379 // appropriately.
380 for (const double sign : {1.0, -1.0}) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800381 const Eigen::Matrix<double, 2, 1> U = sign * abs_volts;
James Kuszmaulea314d92019-02-18 19:45:06 -0800382 const double prev_vel = min_valid_vel;
383 const double c = c_coeff * U;
384 const double determinant = b * b - 4 * a * c;
385 if (a == 0) {
386 // If a == 0, that implies we are on a constant curvature path, in which
387 // case we just have b * v + c = 0.
388 // Note that if -b * c > 0.0, then vel will be greater than zero and b
389 // will be non-zero.
390 if (-b * c > 0.0) {
391 const double vel = -c / b;
392 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800393 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800394 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800395 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800396 }
397 } else if (b == 0) {
398 // If a and b are zero, then we are travelling in a straight line and
399 // have no voltage-based velocity constraints.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800400 min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800401 }
402 } else if (determinant > 0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800403 const double sqrt_determinant = std::sqrt(determinant);
James Kuszmaulea314d92019-02-18 19:45:06 -0800404 const double high_vel = (-b + sqrt_determinant) / (2.0 * a);
405 const double low_vel = (-b - sqrt_determinant) / (2.0 * a);
406 if (low_vel > 0) {
407 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800408 min_valid_vel = std::min(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800409 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800410 min_valid_vel = std::max(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800411 }
412 }
413 if (high_vel > 0) {
414 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800415 min_valid_vel = std::min(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800416 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800417 min_valid_vel = std::max(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800418 }
419 }
420 } else if (determinant == 0 && -b * a > 0) {
421 const double vel = -b / (2.0 * a);
422 if (vel > 0.0) {
423 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800424 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800425 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800426 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800427 }
428 }
429 }
430 if (constraint_voltages != nullptr && prev_vel != min_valid_vel) {
431 *constraint_voltages = U;
432 }
433 }
434 return min_valid_vel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100435}
436
437void Trajectory::ForwardPass() {
438 plan_[0] = 0.0;
439 const double delta_distance = Distance(1) - Distance(0);
440 for (size_t i = 0; i < plan_.size() - 1; ++i) {
441 const double distance = Distance(i);
442
443 // Integrate our acceleration forward one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800444 const double new_plan_velocity = IntegrateAccelForDistance(
445 [this](double x, double v) { return ForwardAcceleration(x, v); },
446 plan_[i], distance, delta_distance);
447
James Kuszmaulea314d92019-02-18 19:45:06 -0800448 if (new_plan_velocity <= plan_[i + 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800449 plan_[i + 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800450 plan_segment_type_[i] = fb::SegmentConstraint::ACCELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800451 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100452 }
453}
454
Austin Schuhec7f06d2019-01-04 07:47:15 +1100455void Trajectory::BackwardPass() {
456 const double delta_distance = Distance(0) - Distance(1);
457 plan_.back() = 0.0;
458 for (size_t i = plan_.size() - 1; i > 0; --i) {
459 const double distance = Distance(i);
460
461 // Integrate our deceleration back one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800462 const double new_plan_velocity = IntegrateAccelForDistance(
463 [this](double x, double v) { return BackwardAcceleration(x, v); },
464 plan_[i], distance, delta_distance);
465
James Kuszmaulea314d92019-02-18 19:45:06 -0800466 if (new_plan_velocity <= plan_[i - 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800467 plan_[i - 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800468 plan_segment_type_[i - 1] = fb::SegmentConstraint::DECELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800469 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100470 }
471}
472
James Kuszmaul75a18c52021-03-10 22:02:07 -0800473Eigen::Matrix<double, 3, 1> BaseTrajectory::FFAcceleration(
474 double distance) const {
Austin Schuhe73a9052019-01-07 12:16:17 -0800475 if (distance < 0.0) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100476 // Make sure we don't end up off the beginning of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800477 distance = 0.0;
478 } else if (distance > length()) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100479 // Make sure we don't end up off the end of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800480 distance = length();
Austin Schuhec7f06d2019-01-04 07:47:15 +1100481 }
Austin Schuhe73a9052019-01-07 12:16:17 -0800482 const size_t before_index = DistanceToSegment(distance);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800483 const size_t after_index =
484 std::min(before_index + 1, distance_plan_size() - 1);
Austin Schuhe73a9052019-01-07 12:16:17 -0800485
Austin Schuhec7f06d2019-01-04 07:47:15 +1100486 const double before_distance = Distance(before_index);
487 const double after_distance = Distance(after_index);
488
Austin Schuhec7f06d2019-01-04 07:47:15 +1100489 // And then also make sure we aren't curvature limited.
490 const double vcurvature = LateralVelocityCurvature(distance);
491
492 double acceleration;
493 double velocity;
James Kuszmaulea314d92019-02-18 19:45:06 -0800494 // TODO(james): While technically correct for sufficiently small segment
495 // steps, this method of switching between limits has a tendency to produce
496 // sudden jumps in acceelrations, which is undesirable.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800497 switch (plan_constraint(DistanceToSegment(distance))) {
498 case fb::SegmentConstraint::VELOCITY_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800499 acceleration = 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800500 velocity =
501 (plan_velocity(before_index) + plan_velocity(after_index)) / 2.0;
Austin Schuhe73a9052019-01-07 12:16:17 -0800502 // TODO(austin): Accelerate or decelerate until we hit the limit in the
503 // time slice. Otherwise our acceleration will be lying for this slice.
504 // Do note, we've got small slices so the effect will be small.
505 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800506 case fb::SegmentConstraint::CURVATURE_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800507 velocity = vcurvature;
James Kuszmaulea314d92019-02-18 19:45:06 -0800508 FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration);
509 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800510 case fb::SegmentConstraint::VOLTAGE_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800511 // Normally, we expect that voltage limited plans will all get dominated
512 // by the acceleration/deceleration limits. This may not always be true;
513 // if we ever encounter this error, we just need to back out what the
514 // accelerations would be in this case.
Austin Schuhd749d932020-12-30 21:38:40 -0800515 LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan.";
Austin Schuhe73a9052019-01-07 12:16:17 -0800516 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800517 case fb::SegmentConstraint::ACCELERATION_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800518 // TODO(james): The integration done here and in the DECELERATION_LIMITED
519 // can technically cause us to violate friction constraints. We currently
520 // don't do anything about it to avoid causing sudden jumps in voltage,
521 // but we probably *should* at some point.
Austin Schuhe73a9052019-01-07 12:16:17 -0800522 velocity = IntegrateAccelForDistance(
523 [this](double x, double v) { return ForwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800524 plan_velocity(before_index), before_distance,
525 distance - before_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800526 acceleration = ForwardAcceleration(distance, velocity);
527 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800528 case fb::SegmentConstraint::DECELERATION_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800529 velocity = IntegrateAccelForDistance(
530 [this](double x, double v) { return BackwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800531 plan_velocity(after_index), after_distance,
532 distance - after_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800533 acceleration = BackwardAcceleration(distance, velocity);
534 break;
535 default:
James Kuszmaul75a18c52021-03-10 22:02:07 -0800536 AOS_LOG(FATAL, "Unknown segment type %d\n",
537 static_cast<int>(plan_constraint(DistanceToSegment(distance))));
Austin Schuhe73a9052019-01-07 12:16:17 -0800538 break;
539 }
540
James Kuszmaul75a18c52021-03-10 22:02:07 -0800541 return (Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration)
Austin Schuhec7f06d2019-01-04 07:47:15 +1100542 .finished();
543}
544
James Kuszmaul75a18c52021-03-10 22:02:07 -0800545size_t FinishedTrajectory::distance_plan_size() const {
546 return trajectory().has_distance_based_plan()
547 ? trajectory().distance_based_plan()->size()
548 : 0u;
549}
550
551fb::SegmentConstraint FinishedTrajectory::plan_constraint(size_t index) const {
552 CHECK_LT(index, distance_plan_size());
553 return trajectory().distance_based_plan()->Get(index)->segment_constraint();
554}
555
556float FinishedTrajectory::plan_velocity(size_t index) const {
557 CHECK_LT(index, distance_plan_size());
558 return trajectory().distance_based_plan()->Get(index)->velocity();
559}
560
561Eigen::Matrix<double, 2, 1> BaseTrajectory::FFVoltage(double distance) const {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100562 const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance);
563 const double velocity = xva(1);
564 const double acceleration = xva(2);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100565
James Kuszmaul75a18c52021-03-10 22:02:07 -0800566 Eigen::Matrix<double, 2, 1> K3;
567 Eigen::Matrix<double, 2, 1> K4;
568 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhe73a9052019-01-07 12:16:17 -0800569 K345(distance, &K3, &K4, &K5);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100570
571 return K5 * acceleration + K3 * velocity * velocity + K4 * velocity;
572}
573
James Kuszmaul75a18c52021-03-10 22:02:07 -0800574const std::vector<double> Trajectory::Distances() const {
575 std::vector<double> d;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100576 d.reserve(plan_.size());
577 for (size_t i = 0; i < plan_.size(); ++i) {
578 d.push_back(Distance(i));
579 }
580 return d;
581}
582
James Kuszmaul75a18c52021-03-10 22:02:07 -0800583Eigen::Matrix<double, 3, 1> BaseTrajectory::GetNextXVA(
584 std::chrono::nanoseconds dt, Eigen::Matrix<double, 2, 1> *state) const {
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700585 double dt_float = ::aos::time::DurationInSeconds(dt);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100586
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800587 const double last_distance = (*state)(0);
Alex Perry4ae2fd72019-02-03 15:55:57 -0800588 // TODO(austin): This feels like something that should be pulled out into
589 // a library for re-use.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700590 *state = RungeKutta(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800591 [this](const Eigen::Matrix<double, 2, 1> x) {
592 Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0));
593 return (Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished();
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700594 },
595 *state, dt_float);
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800596 // Force the distance to move forwards, to guarantee that we actually finish
597 // the planning.
598 constexpr double kMinDistanceIncrease = 1e-7;
599 if ((*state)(0) < last_distance + kMinDistanceIncrease) {
600 (*state)(0) = last_distance + kMinDistanceIncrease;
601 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800602
James Kuszmaul75a18c52021-03-10 22:02:07 -0800603 Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0));
Alex Perry4ae2fd72019-02-03 15:55:57 -0800604 (*state)(1) = result(1);
605 return result;
606}
607
James Kuszmaul75a18c52021-03-10 22:02:07 -0800608std::vector<Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA(
609 std::chrono::nanoseconds dt) {
610 Eigen::Matrix<double, 2, 1> state = Eigen::Matrix<double, 2, 1>::Zero();
611 std::vector<Eigen::Matrix<double, 3, 1>> result;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100612 result.emplace_back(FFAcceleration(0));
613 result.back()(1) = 0.0;
614
Alex Perry4ae2fd72019-02-03 15:55:57 -0800615 while (!is_at_end(state)) {
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800616 if (state_is_faulted(state)) {
617 LOG(WARNING)
618 << "Found invalid state in generating spline and aborting. This is "
619 "likely due to a spline with extremely high jerk/changes in "
620 "curvature with an insufficiently small step size.";
621 return {};
622 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800623 result.emplace_back(GetNextXVA(dt, &state));
Austin Schuhec7f06d2019-01-04 07:47:15 +1100624 }
625 return result;
626}
627
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800628void Trajectory::LimitVelocity(double starting_distance, double ending_distance,
629 const double max_velocity) {
630 const double segment_length = ending_distance - starting_distance;
631
632 const double min_length = length() / static_cast<double>(plan_.size() - 1);
633 if (starting_distance > ending_distance) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700634 AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance,
635 ending_distance);
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800636 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800637 starting_distance = std::min(length(), std::max(0.0, starting_distance));
638 ending_distance = std::min(length(), std::max(0.0, ending_distance));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800639 if (segment_length < min_length) {
640 const size_t plan_index = static_cast<size_t>(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800641 std::round((starting_distance + ending_distance) / 2.0 / min_length));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800642 if (max_velocity < plan_[plan_index]) {
643 plan_[plan_index] = max_velocity;
644 }
645 } else {
646 for (size_t i = DistanceToSegment(starting_distance) + 1;
647 i < DistanceToSegment(ending_distance) + 1; ++i) {
648 if (max_velocity < plan_[i]) {
649 plan_[i] = max_velocity;
650 if (i < DistanceToSegment(ending_distance)) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800651 plan_segment_type_[i] = fb::SegmentConstraint::VELOCITY_LIMITED;
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800652 }
653 }
654 }
655 }
656}
657
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700658void Trajectory::PathRelativeContinuousSystem(double distance,
659 Eigen::Matrix<double, 5, 5> *A,
660 Eigen::Matrix<double, 5, 2> *B) {
661 const double nominal_velocity = FFAcceleration(distance)(1);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800662 const double dtheta_dt = spline().DThetaDt(distance, nominal_velocity);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700663 // Calculate the "path-relative" coordinates, which are:
664 // [[distance along the path],
665 // [lateral position along path],
666 // [theta],
667 // [left wheel velocity],
668 // [right wheel velocity]]
669 Eigen::Matrix<double, 5, 1> nominal_X;
670 nominal_X << distance, 0.0, 0.0,
James Kuszmaul75a18c52021-03-10 22:02:07 -0800671 nominal_velocity - dtheta_dt * robot_radius_l(),
672 nominal_velocity + dtheta_dt * robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700673 PathRelativeContinuousSystem(nominal_X, A, B);
674}
675
676void Trajectory::PathRelativeContinuousSystem(
677 const Eigen::Matrix<double, 5, 1> &X, Eigen::Matrix<double, 5, 5> *A,
678 Eigen::Matrix<double, 5, 2> *B) {
679 A->setZero();
680 B->setZero();
681 const double theta = X(2);
682 const double ctheta = std::cos(theta);
683 const double stheta = std::sin(theta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800684 const double curvature = spline().DTheta(X(0));
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700685 const double longitudinal_velocity = (X(3) + X(4)) / 2.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800686 const double diameter = robot_radius_l() + robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700687 // d_dpath / dt = (v_left + v_right) / 2.0 * cos(theta)
688 // (d_dpath / dt) / dv_left = cos(theta) / 2.0
689 (*A)(0, 3) = ctheta / 2.0;
690 // (d_dpath / dt) / dv_right = cos(theta) / 2.0
691 (*A)(0, 4) = ctheta / 2.0;
692 // (d_dpath / dt) / dtheta = -(v_left + v_right) / 2.0 * sin(theta)
693 (*A)(0, 2) = -longitudinal_velocity * stheta;
694 // d_dlat / dt = (v_left + v_right) / 2.0 * sin(theta)
695 // (d_dlat / dt) / dv_left = sin(theta) / 2.0
696 (*A)(1, 3) = stheta / 2.0;
697 // (d_dlat / dt) / dv_right = sin(theta) / 2.0
698 (*A)(1, 4) = stheta / 2.0;
699 // (d_dlat / dt) / dtheta = (v_left + v_right) / 2.0 * cos(theta)
700 (*A)(1, 2) = longitudinal_velocity * ctheta;
701 // dtheta / dt = (v_right - v_left) / diameter - curvature * (v_left +
702 // v_right) / 2.0
703 // (dtheta / dt) / dv_left = -1.0 / diameter - curvature / 2.0
704 (*A)(2, 3) = -1.0 / diameter - curvature / 2.0;
705 // (dtheta / dt) / dv_right = 1.0 / diameter - curvature / 2.0
706 (*A)(2, 4) = 1.0 / diameter - curvature / 2.0;
707 // v_{left,right} / dt = the normal LTI system.
708 A->block<2, 2>(3, 3) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800709 velocity_drivetrain().plant().coefficients().A_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700710 B->block<2, 2>(3, 0) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800711 velocity_drivetrain().plant().coefficients().B_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700712}
713
714double Trajectory::EstimateDistanceAlongPath(
715 double nominal_distance, const Eigen::Matrix<double, 5, 1> &state) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800716 const double nominal_theta = spline().Theta(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700717 const Eigen::Matrix<double, 2, 1> xy_err =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800718 state.block<2, 1>(0, 0) - spline().XY(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700719 return nominal_distance + xy_err.x() * std::cos(nominal_theta) +
720 xy_err.y() * std::sin(nominal_theta);
721}
722
James Kuszmaul75a18c52021-03-10 22:02:07 -0800723Eigen::Matrix<double, 5, 1> FinishedTrajectory::StateToPathRelativeState(
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700724 double distance, const Eigen::Matrix<double, 5, 1> &state,
725 bool drive_backwards) const {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800726 const double nominal_theta = spline().Theta(distance);
727 const Eigen::Matrix<double, 2, 1> nominal_xy = spline().XY(distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700728 const Eigen::Matrix<double, 2, 1> xy_err =
729 state.block<2, 1>(0, 0) - nominal_xy;
730 const double ctheta = std::cos(nominal_theta);
731 const double stheta = std::sin(nominal_theta);
732 Eigen::Matrix<double, 5, 1> path_state;
733 path_state(0) = distance + xy_err.x() * ctheta + xy_err.y() * stheta;
734 path_state(1) = -xy_err.x() * stheta + xy_err.y() * ctheta;
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700735 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta +
736 (drive_backwards ? M_PI : 0.0));
737 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700738 path_state(3) = state(3);
739 path_state(4) = state(4);
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700740 if (drive_backwards) {
741 std::swap(path_state(3), path_state(4));
742 path_state(3) *= -1.0;
743 path_state(4) *= -1.0;
744 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700745 return path_state;
746}
747
748// Path-relative controller method:
749// For the path relative controller, we use a non-standard version of LQR to
750// perform the control. Essentially, we first transform the system into
751// a set of path-relative coordinates (where the reference that we use is the
752// desired path reference). This gives us a system that is linear and
753// time-varying, i.e. the system is a set of A_k, B_k matrices for each
754// timestep k.
755// In order to control this, we use a discrete-time finite-horizon LQR, using
756// the appropraite [AB]_k for the given timestep. Note that the finite-horizon
757// LQR requires choosing a terminal cost (i.e., what the cost should be
758// for if we have not precisely reached the goal at the end of the time-period).
759// For this, I approximate the infinite-horizon LQR solution by extending the
760// finite-horizon much longer (albeit with the extension just using the
761// linearization for the infal point).
762void Trajectory::CalculatePathGains() {
James Kuszmaul5c4ccf62024-03-03 17:29:49 -0800763 const std::vector<Eigen::Matrix<double, 3, 1>> xva_plan =
764 PlanXVA(config_->dt);
James Kuszmaulc3eaa472021-03-03 19:43:45 -0800765 if (xva_plan.empty()) {
766 LOG(ERROR) << "Plan is empty--unable to plan trajectory.";
767 return;
768 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700769 plan_gains_.resize(xva_plan.size());
770
771 // Set up reasonable gain matrices. Current choices of gains are arbitrary
772 // and just setup to work well enough for the simulation tests.
773 // TODO(james): Tune this on a real robot.
774 // TODO(james): Pull these out into a config.
775 Eigen::Matrix<double, 5, 5> Q;
776 Q.setIdentity();
James Kuszmaul49c93202023-03-23 20:44:03 -0700777 Q.diagonal() << 30.0, 30.0, 20.0, 15.0, 15.0;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700778 Q *= 2.0;
779 Q = (Q * Q).eval();
780
781 Eigen::Matrix<double, 2, 2> R;
782 R.setIdentity();
783 R *= 5.0;
784
785 Eigen::Matrix<double, 5, 5> P = Q;
786
787 CHECK_LT(0u, xva_plan.size());
788 const int max_index = static_cast<int>(xva_plan.size()) - 1;
789 for (int i = max_index; i >= 0; --i) {
790 const double distance = xva_plan[i](0);
791 Eigen::Matrix<double, 5, 5> A_continuous;
792 Eigen::Matrix<double, 5, 2> B_continuous;
793 PathRelativeContinuousSystem(distance, &A_continuous, &B_continuous);
794 Eigen::Matrix<double, 5, 5> A_discrete;
795 Eigen::Matrix<double, 5, 2> B_discrete;
James Kuszmaul5c4ccf62024-03-03 17:29:49 -0800796 controls::C2D(A_continuous, B_continuous, config_->dt, &A_discrete,
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700797 &B_discrete);
798
799 if (i == max_index) {
800 // At the final timestep, approximate P by iterating a bunch of times.
801 // This is terminal cost mentioned in function-level comments.
802 // This does a very loose job of solving the DARE. Ideally, we would
803 // actually use a DARE solver directly, but based on some initial testing,
804 // this method is a bit more robust (or, at least, it is a bit more robust
805 // if we don't want to spend more time handling the potential error
806 // cases the DARE solver can encounter).
807 constexpr int kExtraIters = 100;
808 for (int jj = 0; jj < kExtraIters; ++jj) {
809 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
810 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
811 const Eigen::Matrix<double, 2, 2> RBPBinv =
812 (R + B_discrete.transpose() * P * B_discrete).inverse();
813 P = AP * A_discrete - APB * RBPBinv * APB.transpose() + Q;
814 }
815 }
816
817 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
818 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
819 const Eigen::Matrix<double, 2, 2> RBPBinv =
820 (R + B_discrete.transpose() * P * B_discrete).inverse();
821 plan_gains_[i].first = distance;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800822 const Eigen::Matrix<double, 2, 5> K = RBPBinv * APB.transpose();
823 plan_gains_[i].second = K.cast<float>();
824 P = AP * A_discrete - APB * K + Q;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700825 }
826}
827
James Kuszmaul75a18c52021-03-10 22:02:07 -0800828Eigen::Matrix<double, 2, 5> FinishedTrajectory::GainForDistance(
829 double distance) const {
830 const flatbuffers::Vector<flatbuffers::Offset<fb::GainPoint>> &gains =
831 *CHECK_NOTNULL(trajectory().gains());
832 CHECK_LT(0u, gains.size());
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700833 size_t index = 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800834 for (index = 0; index < gains.size() - 1; ++index) {
835 if (gains[index + 1]->distance() > distance) {
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700836 break;
837 }
838 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800839 // ColMajor is the default storage order, but call it out explicitly here.
840 return Eigen::Matrix<float, 2, 5, Eigen::ColMajor>{
841 gains[index]->gains()->data()}
842 .cast<double>();
843}
844
845namespace {
846flatbuffers::Offset<Constraint> MakeWholeLengthConstraint(
847 flatbuffers::FlatBufferBuilder *fbb, ConstraintType constraint_type,
848 float value) {
849 Constraint::Builder builder(*fbb);
850 builder.add_constraint_type(constraint_type);
851 builder.add_value(value);
852 return builder.Finish();
853}
854} // namespace
855
856flatbuffers::Offset<fb::Trajectory> Trajectory::Serialize(
857 flatbuffers::FlatBufferBuilder *fbb) const {
858 std::array<flatbuffers::Offset<Constraint>, 3> constraints_offsets = {
859 MakeWholeLengthConstraint(fbb, ConstraintType::LONGITUDINAL_ACCELERATION,
860 max_longitudinal_accel()),
861 MakeWholeLengthConstraint(fbb, ConstraintType::LATERAL_ACCELERATION,
862 max_lateral_accel()),
863 MakeWholeLengthConstraint(fbb, ConstraintType::VOLTAGE, max_voltage())};
864 const auto constraints = fbb->CreateVector<Constraint>(
865 constraints_offsets.data(), constraints_offsets.size());
866 const flatbuffers::Offset<fb::DistanceSpline> spline_offset =
867 spline().Serialize(fbb, constraints);
868
869 std::vector<flatbuffers::Offset<fb::PlanPoint>> plan_points;
870 for (size_t ii = 0; ii < distance_plan_size(); ++ii) {
871 plan_points.push_back(fb::CreatePlanPoint(
872 *fbb, Distance(ii), plan_velocity(ii), plan_constraint(ii)));
873 }
874
875 // TODO(james): What is an appropriate cap?
876 CHECK_LT(plan_gains_.size(), 5000u);
877 CHECK_LT(0u, plan_gains_.size());
878 std::vector<flatbuffers::Offset<fb::GainPoint>> gain_points;
879 const size_t matrix_size = plan_gains_[0].second.size();
880 for (size_t ii = 0; ii < plan_gains_.size(); ++ii) {
881 gain_points.push_back(fb::CreateGainPoint(
882 *fbb, plan_gains_[ii].first,
883 fbb->CreateVector(plan_gains_[ii].second.data(), matrix_size)));
884 }
885
886 return fb::CreateTrajectory(*fbb, spline_idx_, fbb->CreateVector(plan_points),
887 fbb->CreateVector(gain_points), spline_offset,
888 drive_spline_backwards_);
889}
890
891float BaseTrajectory::ConstraintValue(
892 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
893 ConstraintType type) {
894 if (constraints != nullptr) {
895 for (const Constraint *constraint : *constraints) {
896 if (constraint->constraint_type() == type) {
897 return constraint->value();
898 }
899 }
900 }
901 return DefaultConstraint(type);
902}
903
904const Eigen::Matrix<double, 5, 1> BaseTrajectory::GoalState(
905 double distance, double velocity) const {
906 Eigen::Matrix<double, 5, 1> result;
907 result.block<2, 1>(0, 0) = spline().XY(distance);
908 result(2, 0) = spline().Theta(distance);
909
910 result.block<2, 1>(3, 0) =
James Kuszmaul5c4ccf62024-03-03 17:29:49 -0800911 config_->Tla_to_lr() * (Eigen::Matrix<double, 2, 1>() << velocity,
912 spline().DThetaDt(distance, velocity))
913 .finished();
James Kuszmaul75a18c52021-03-10 22:02:07 -0800914 return result;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700915}
916
Stephan Pleinesf63bde82024-01-13 15:59:33 -0800917} // namespace frc971::control_loops::drivetrain