blob: 33a85774b5371dd11e9a912531e6c4606d2745ca [file] [log] [blame]
Austin Schuhec7f06d2019-01-04 07:47:15 +11001#include "frc971/control_loops/drivetrain/trajectory.h"
2
3#include <chrono>
4
James Kuszmaul5e8ce312021-03-27 14:59:17 -07005#include "aos/util/math.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +11006#include "Eigen/Dense"
Austin Schuhec7f06d2019-01-04 07:47:15 +11007#include "frc971/control_loops/c2d.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -07008#include "frc971/control_loops/dlqr.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +11009#include "frc971/control_loops/drivetrain/distance_spline.h"
10#include "frc971/control_loops/drivetrain/drivetrain_config.h"
11#include "frc971/control_loops/hybrid_state_feedback_loop.h"
12#include "frc971/control_loops/state_feedback_loop.h"
13
14namespace frc971 {
15namespace control_loops {
16namespace drivetrain {
17
James Kuszmaul75a18c52021-03-10 22:02:07 -080018namespace {
19float DefaultConstraint(ConstraintType type) {
20 switch (type) {
21 case ConstraintType::LONGITUDINAL_ACCELERATION:
22 return 2.0;
23 case ConstraintType::LATERAL_ACCELERATION:
24 return 3.0;
25 case ConstraintType::VOLTAGE:
26 return 12.0;
27 case ConstraintType::VELOCITY:
28 case ConstraintType::CONSTRAINT_TYPE_UNDEFINED:
29 LOG(FATAL) << "No default constraint value for "
30 << EnumNameConstraintType(type);
31 }
32 LOG(FATAL) << "Invalid ConstraintType " << static_cast<int>(type);
33}
34} // namespace
35
Austin Schuhf7c65202022-11-04 21:28:20 -070036FinishedTrajectory::FinishedTrajectory(
37 const DrivetrainConfig<double> &config, const fb::Trajectory *buffer,
38 std::shared_ptr<
39 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
40 HybridKalman<2, 2, 2>>>
41 velocity_drivetrain)
James Kuszmaul75a18c52021-03-10 22:02:07 -080042 : BaseTrajectory(CHECK_NOTNULL(CHECK_NOTNULL(buffer->spline())->spline())
43 ->constraints(),
Austin Schuhf7c65202022-11-04 21:28:20 -070044 config, std::move(velocity_drivetrain)),
James Kuszmaul75a18c52021-03-10 22:02:07 -080045 buffer_(buffer),
46 spline_(*buffer_->spline()) {}
47
48const Eigen::Matrix<double, 2, 1> BaseTrajectory::K1(
49 double current_ddtheta) const {
50 return (Eigen::Matrix<double, 2, 1>() << -robot_radius_l_ * current_ddtheta,
51 robot_radius_r_ * current_ddtheta)
52 .finished();
53}
54
55const Eigen::Matrix<double, 2, 1> BaseTrajectory::K2(
56 double current_dtheta) const {
57 return (Eigen::Matrix<double, 2, 1>()
58 << 1.0 - robot_radius_l_ * current_dtheta,
59 1.0 + robot_radius_r_ * current_dtheta)
60 .finished();
61}
62
63void BaseTrajectory::K345(const double x, Eigen::Matrix<double, 2, 1> *K3,
64 Eigen::Matrix<double, 2, 1> *K4,
65 Eigen::Matrix<double, 2, 1> *K5) const {
66 const double current_ddtheta = spline().DDTheta(x);
67 const double current_dtheta = spline().DTheta(x);
68 // We've now got the equation:
69 // K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
70 const Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta);
71
72 const Eigen::Matrix<double, 2, 2> B_inverse =
73 velocity_drivetrain_->plant().coefficients().B_continuous.inverse();
74
75 // Now, rephrase it as K5 a + K3 v^2 + K4 v = U
76 *K3 = B_inverse * K1(current_ddtheta);
77 *K4 = -B_inverse * velocity_drivetrain_->plant().coefficients().A_continuous *
78 my_K2;
79 *K5 = B_inverse * my_K2;
80}
81
82BaseTrajectory::BaseTrajectory(
83 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
Austin Schuhf7c65202022-11-04 21:28:20 -070084 const DrivetrainConfig<double> &config,
85 std::shared_ptr<
86 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
87 HybridKalman<2, 2, 2>>>
88 velocity_drivetrain)
89 : velocity_drivetrain_(std::move(velocity_drivetrain)),
James Kuszmaulaa2499d2020-06-02 21:31:19 -070090 config_(config),
Austin Schuhec7f06d2019-01-04 07:47:15 +110091 robot_radius_l_(config.robot_radius),
92 robot_radius_r_(config.robot_radius),
James Kuszmaul75a18c52021-03-10 22:02:07 -080093 lateral_acceleration_(
94 ConstraintValue(constraints, ConstraintType::LATERAL_ACCELERATION)),
95 longitudinal_acceleration_(ConstraintValue(
96 constraints, ConstraintType::LONGITUDINAL_ACCELERATION)),
97 voltage_limit_(ConstraintValue(constraints, ConstraintType::VOLTAGE)) {}
98
99Trajectory::Trajectory(const SplineGoal &spline_goal,
100 const DrivetrainConfig<double> &config)
101 : Trajectory(DistanceSpline{spline_goal.spline()}, config,
102 spline_goal.spline()->constraints(),
103 spline_goal.spline_idx()) {
104 drive_spline_backwards_ = spline_goal.drive_spline_backwards();
105}
106
107Trajectory::Trajectory(
108 DistanceSpline &&input_spline, const DrivetrainConfig<double> &config,
109 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
110 int spline_idx, double vmax, int num_distance)
111 : BaseTrajectory(constraints, config),
112 spline_idx_(spline_idx),
113 spline_(std::move(input_spline)),
114 config_(config),
Austin Schuhe73a9052019-01-07 12:16:17 -0800115 plan_(num_distance == 0
Austin Schuh890196c2021-03-31 20:18:45 -0700116 ? std::max(10000, static_cast<int>(spline_.length() / 0.0025))
Austin Schuhe73a9052019-01-07 12:16:17 -0800117 : num_distance,
118 vmax),
James Kuszmaul75a18c52021-03-10 22:02:07 -0800119 plan_segment_type_(plan_.size(),
120 fb::SegmentConstraint::VELOCITY_LIMITED) {
121 if (constraints != nullptr) {
122 for (const Constraint *constraint : *constraints) {
123 if (constraint->constraint_type() == ConstraintType::VELOCITY) {
124 LimitVelocity(constraint->start_distance(), constraint->end_distance(),
125 constraint->value());
126 }
127 }
128 }
129}
Austin Schuhec7f06d2019-01-04 07:47:15 +1100130
131void Trajectory::LateralAccelPass() {
132 for (size_t i = 0; i < plan_.size(); ++i) {
133 const double distance = Distance(i);
Austin Schuhd749d932020-12-30 21:38:40 -0800134 const double velocity_limit = LateralVelocityCurvature(distance);
James Kuszmaulea314d92019-02-18 19:45:06 -0800135 if (velocity_limit < plan_[i]) {
136 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800137 plan_segment_type_[i] = fb::SegmentConstraint::CURVATURE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800138 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100139 }
140}
141
James Kuszmaulea314d92019-02-18 19:45:06 -0800142void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) {
143 for (size_t i = 0; i < plan_.size(); ++i) {
144 const double distance = Distance(i);
145 const double velocity_limit = VoltageVelocityLimit(distance, limit_type);
146 if (velocity_limit < plan_[i]) {
147 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800148 plan_segment_type_[i] = fb::SegmentConstraint::VOLTAGE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800149 }
150 }
151}
152
James Kuszmaul75a18c52021-03-10 22:02:07 -0800153double BaseTrajectory::BestAcceleration(double x, double v,
154 bool backwards) const {
155 Eigen::Matrix<double, 2, 1> K3;
156 Eigen::Matrix<double, 2, 1> K4;
157 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100158 K345(x, &K3, &K4, &K5);
159
Austin Schuhec7f06d2019-01-04 07:47:15 +1100160 // Now, solve for all a's and find the best one which meets our criteria.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800161 const Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
162 double min_voltage_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800163 double max_voltage_accel = -min_voltage_accel;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800164 for (const double a : {(max_voltage() - C(0, 0)) / K5(0, 0),
165 (max_voltage() - C(1, 0)) / K5(1, 0),
166 (-max_voltage() - C(0, 0)) / K5(0, 0),
167 (-max_voltage() - C(1, 0)) / K5(1, 0)}) {
168 const Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
169 if ((U.array().abs() < max_voltage() + 1e-6).all()) {
170 min_voltage_accel = std::min(a, min_voltage_accel);
171 max_voltage_accel = std::max(a, max_voltage_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100172 }
173 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800174 double best_accel = backwards ? min_voltage_accel : max_voltage_accel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100175
James Kuszmaulea314d92019-02-18 19:45:06 -0800176 double min_friction_accel, max_friction_accel;
177 FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel);
178 if (backwards) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800179 best_accel = std::max(best_accel, min_friction_accel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800180 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800181 best_accel = std::min(best_accel, max_friction_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100182 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800183
James Kuszmaul66b78042020-02-23 15:30:51 -0800184 // Ideally, the max would never be less than the min, but due to the way that
185 // the runge kutta solver works, it sometimes ticks over the edge.
186 if (max_friction_accel < min_friction_accel) {
187 VLOG(1) << "At x " << x << " v " << v << " min fric acc "
188 << min_friction_accel << " max fric accel " << max_friction_accel;
189 }
190 if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) {
191 LOG(WARNING) << "Viable friction limits and viable voltage limits do not "
Austin Schuhd749d932020-12-30 21:38:40 -0800192 "overlap (x: "
193 << x << ", v: " << v << ", backwards: " << backwards
James Kuszmaul66b78042020-02-23 15:30:51 -0800194 << ") best_accel = " << best_accel << ", min voltage "
195 << min_voltage_accel << ", max voltage " << max_voltage_accel
196 << " min friction " << min_friction_accel << " max friction "
197 << max_friction_accel << ".";
198
James Kuszmaulea314d92019-02-18 19:45:06 -0800199 // Don't actually do anything--this will just result in attempting to drive
200 // higher voltages thatn we have available. In practice, that'll probably
201 // work out fine.
202 }
203
204 return best_accel;
205}
206
James Kuszmaul75a18c52021-03-10 22:02:07 -0800207double BaseTrajectory::LateralVelocityCurvature(double distance) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800208 // To calculate these constraints, we first note that:
209 // wheel accels = K2 * v_robot' + K1 * v_robot^2
210 // All that this logic does is solve for v_robot, leaving v_robot' free,
211 // assuming that the wheels are at their limits.
212 // To do this, we:
213 //
214 // 1) Determine what the wheel accels will be at the limit--since we have
215 // two free variables (v_robot, v_robot'), both wheels will be at their
216 // limits--if in a sufficiently tight turn (such that the signs of the
217 // coefficients of K2 are different), then the wheels will be accelerating
218 // in opposite directions; otherwise, they accelerate in the same direction.
219 // The magnitude of these per-wheel accelerations is a function of velocity,
220 // so it must also be solved for.
221 //
222 // 2) Eliminate that v_robot' term (since we don't care
223 // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on
224 // both sides of the equation.
225 //
226 // 3) Solving the relatively tractable remaining equation, which is
227 // basically just grouping all the terms together in one spot and taking the
228 // 4th root of everything.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800229 const double dtheta = spline().DTheta(distance);
230 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800231 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800232 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
James Kuszmaulea314d92019-02-18 19:45:06 -0800233 // Calculate whether the wheels are spinning in opposite directions.
234 const bool opposites = K2prime(0) * K2prime(1) < 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800235 const Eigen::Matrix<double, 2, 1> K1calc = K1(spline().DDTheta(distance));
236 const double lat_accel_squared = std::pow(dtheta / max_lateral_accel(), 2);
James Kuszmaulea314d92019-02-18 19:45:06 -0800237 const double curvature_change_term =
238 (K2prime * K1calc).value() /
239 (K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800240 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800241 .finished() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800242 max_longitudinal_accel())
James Kuszmaulea314d92019-02-18 19:45:06 -0800243 .value();
James Kuszmaul75a18c52021-03-10 22:02:07 -0800244 const double vel_inv = std::sqrt(
245 std::sqrt(std::pow(curvature_change_term, 2) + lat_accel_squared));
James Kuszmaulea314d92019-02-18 19:45:06 -0800246 if (vel_inv == 0.0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800247 return std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800248 }
249 return 1.0 / vel_inv;
250}
251
James Kuszmaul75a18c52021-03-10 22:02:07 -0800252void BaseTrajectory::FrictionLngAccelLimits(double x, double v,
253 double *min_accel,
254 double *max_accel) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800255 // First, calculate the max longitudinal acceleration that can be achieved
256 // by either wheel given the friction elliipse that we have.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800257 const double lateral_acceleration = v * v * spline().DDXY(x).norm();
James Kuszmaulea314d92019-02-18 19:45:06 -0800258 const double max_wheel_lng_accel_squared =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800259 1.0 - std::pow(lateral_acceleration / max_lateral_accel(), 2.0);
James Kuszmaulea314d92019-02-18 19:45:06 -0800260 if (max_wheel_lng_accel_squared < 0.0) {
James Kuszmaul66b78042020-02-23 15:30:51 -0800261 VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v
262 << " at distance " << x;
James Kuszmaulea314d92019-02-18 19:45:06 -0800263 // If we encounter this, it means that the Runge-Kutta has attempted to
264 // sample points a bit past the edge of the friction boundary. If so, we
265 // gradually ramp the min/max accels to be more and more incorrect (note
266 // how min_accel > max_accel if we reach this case) to avoid causing any
267 // numerical issues.
268 *min_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800269 std::sqrt(-max_wheel_lng_accel_squared) * max_longitudinal_accel();
James Kuszmaulea314d92019-02-18 19:45:06 -0800270 *max_accel = -*min_accel;
271 return;
272 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800273 *min_accel = -std::numeric_limits<double>::infinity();
274 *max_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800275
276 // Calculate max/min accelerations by calculating what the robots overall
277 // longitudinal acceleration would be if each wheel were running at the max
278 // forwards/backwards longitudinal acceleration.
279 const double max_wheel_lng_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800280 max_longitudinal_accel() * std::sqrt(max_wheel_lng_accel_squared);
281 const Eigen::Matrix<double, 2, 1> K1v2 = K1(spline().DDTheta(x)) * v * v;
282 const Eigen::Matrix<double, 2, 1> K2inv =
283 K2(spline().DTheta(x)).cwiseInverse();
James Kuszmaulea314d92019-02-18 19:45:06 -0800284 // Store the accelerations of the robot corresponding to each wheel being at
285 // the max/min acceleration. The first coefficient in each vector
286 // corresponds to the left wheel, the second to the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800287 const Eigen::Matrix<double, 2, 1> accels1 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800288 K2inv.array() * (-K1v2.array() + max_wheel_lng_accel);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800289 const Eigen::Matrix<double, 2, 1> accels2 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800290 K2inv.array() * (-K1v2.array() - max_wheel_lng_accel);
291
292 // If either term is non-finite, that suggests that a term of K2 is zero
293 // (which is physically possible when turning such that one wheel is
294 // stationary), so just ignore that side of the drivetrain.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800295 if (std::isfinite(accels1(0))) {
James Kuszmaulea314d92019-02-18 19:45:06 -0800296 // The inner max/min in this case determines which of the two cases (+ or
297 // - acceleration on the left wheel) we care about--in a sufficiently
298 // tight turning radius, the left hweel may be accelerating backwards when
299 // the robot as a whole accelerates forwards. We then use that
300 // acceleration to bound the min/max accel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800301 *min_accel = std::max(*min_accel, std::min(accels1(0), accels2(0)));
302 *max_accel = std::min(*max_accel, std::max(accels1(0), accels2(0)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800303 }
304 // Same logic as previous if-statement, but for the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800305 if (std::isfinite(accels1(1))) {
306 *min_accel = std::max(*min_accel, std::min(accels1(1), accels2(1)));
307 *max_accel = std::min(*max_accel, std::max(accels1(1), accels2(1)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800308 }
309}
310
311double Trajectory::VoltageVelocityLimit(
312 double distance, VoltageLimit limit_type,
313 Eigen::Matrix<double, 2, 1> *constraint_voltages) const {
314 // To sketch an outline of the math going on here, we start with the basic
315 // dynamics of the robot along the spline:
316 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U
317 // We need to determine the maximum v_robot given constrained U and free
318 // v_robot'.
319 // Similarly to the friction constraints, we accomplish this by first
320 // multiplying by a K2prime term to eliminate the v_robot' term.
321 // As with the friction constraints, we also know that the limits will occur
322 // when both sides of the drivetrain are driven at their max magnitude
323 // voltages, although they may be driven at different signs.
324 // Once we determine whether the voltages match signs, we still have to
325 // consider both possible pairings (technically we could probably
326 // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't
327 // need to).
328 //
329 // For each pairing, we then get to solve a quadratic formula for the robot
330 // velocity at those voltages. This gives us up to 4 solutions, of which
331 // up to 3 will give us positive velocities; each solution velocity
332 // corresponds to a transition from feasibility to infeasibility, where a
333 // velocity of zero is always feasible, and there will always be 0, 1, or 3
334 // positive solutions. Among the positive solutions, we take both the min
335 // and the max--the min will be the highest velocity such that all
336 // velocities between zero and that velocity are valid; the max will be
337 // the highest feasible velocity. Which we return depends on what the
338 // limit_type is.
339 //
340 // Sketching the actual math:
341 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max
342 // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max)
343 // a v_robot^2 + b v_robot +/- c = 0
James Kuszmaul75a18c52021-03-10 22:02:07 -0800344 const Eigen::Matrix<double, 2, 2> B =
345 velocity_drivetrain().plant().coefficients().B_continuous;
346 const double dtheta = spline().DTheta(distance);
347 const Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta);
James Kuszmaulea314d92019-02-18 19:45:06 -0800348 // Because voltages can actually impact *both* wheels, in order to determine
349 // whether the voltages will have opposite signs, we need to use B^-1 * K2.
350 const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800351 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800352 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800353 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
354 const double a = K2prime * K1(spline().DDTheta(distance));
James Kuszmaulea314d92019-02-18 19:45:06 -0800355 const double b = -K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800356 velocity_drivetrain().plant().coefficients().A_continuous *
James Kuszmaulea314d92019-02-18 19:45:06 -0800357 K2(dtheta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800358 const Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B;
James Kuszmaulea314d92019-02-18 19:45:06 -0800359 // Calculate the "positive" version of the voltage limits we will use.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800360 const Eigen::Matrix<double, 2, 1> abs_volts =
361 max_voltage() *
362 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800363 .finished();
364
James Kuszmaul75a18c52021-03-10 22:02:07 -0800365 double min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800366 if (limit_type == VoltageLimit::kAggressive) {
367 min_valid_vel = 0.0;
368 }
369 // Iterate over both possibilites for +/- voltage, and solve the quadratic
370 // formula. For every positive solution, adjust the velocity limit
371 // appropriately.
372 for (const double sign : {1.0, -1.0}) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800373 const Eigen::Matrix<double, 2, 1> U = sign * abs_volts;
James Kuszmaulea314d92019-02-18 19:45:06 -0800374 const double prev_vel = min_valid_vel;
375 const double c = c_coeff * U;
376 const double determinant = b * b - 4 * a * c;
377 if (a == 0) {
378 // If a == 0, that implies we are on a constant curvature path, in which
379 // case we just have b * v + c = 0.
380 // Note that if -b * c > 0.0, then vel will be greater than zero and b
381 // will be non-zero.
382 if (-b * c > 0.0) {
383 const double vel = -c / b;
384 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800385 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800386 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800387 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800388 }
389 } else if (b == 0) {
390 // If a and b are zero, then we are travelling in a straight line and
391 // have no voltage-based velocity constraints.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800392 min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800393 }
394 } else if (determinant > 0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800395 const double sqrt_determinant = std::sqrt(determinant);
James Kuszmaulea314d92019-02-18 19:45:06 -0800396 const double high_vel = (-b + sqrt_determinant) / (2.0 * a);
397 const double low_vel = (-b - sqrt_determinant) / (2.0 * a);
398 if (low_vel > 0) {
399 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800400 min_valid_vel = std::min(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800401 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800402 min_valid_vel = std::max(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800403 }
404 }
405 if (high_vel > 0) {
406 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800407 min_valid_vel = std::min(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800408 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800409 min_valid_vel = std::max(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800410 }
411 }
412 } else if (determinant == 0 && -b * a > 0) {
413 const double vel = -b / (2.0 * a);
414 if (vel > 0.0) {
415 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800416 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800417 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800418 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800419 }
420 }
421 }
422 if (constraint_voltages != nullptr && prev_vel != min_valid_vel) {
423 *constraint_voltages = U;
424 }
425 }
426 return min_valid_vel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100427}
428
429void Trajectory::ForwardPass() {
430 plan_[0] = 0.0;
431 const double delta_distance = Distance(1) - Distance(0);
432 for (size_t i = 0; i < plan_.size() - 1; ++i) {
433 const double distance = Distance(i);
434
435 // Integrate our acceleration forward one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800436 const double new_plan_velocity = IntegrateAccelForDistance(
437 [this](double x, double v) { return ForwardAcceleration(x, v); },
438 plan_[i], distance, delta_distance);
439
James Kuszmaulea314d92019-02-18 19:45:06 -0800440 if (new_plan_velocity <= plan_[i + 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800441 plan_[i + 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800442 plan_segment_type_[i] = fb::SegmentConstraint::ACCELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800443 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100444 }
445}
446
Austin Schuhec7f06d2019-01-04 07:47:15 +1100447void Trajectory::BackwardPass() {
448 const double delta_distance = Distance(0) - Distance(1);
449 plan_.back() = 0.0;
450 for (size_t i = plan_.size() - 1; i > 0; --i) {
451 const double distance = Distance(i);
452
453 // Integrate our deceleration back one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800454 const double new_plan_velocity = IntegrateAccelForDistance(
455 [this](double x, double v) { return BackwardAcceleration(x, v); },
456 plan_[i], distance, delta_distance);
457
James Kuszmaulea314d92019-02-18 19:45:06 -0800458 if (new_plan_velocity <= plan_[i - 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800459 plan_[i - 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800460 plan_segment_type_[i - 1] = fb::SegmentConstraint::DECELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800461 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100462 }
463}
464
James Kuszmaul75a18c52021-03-10 22:02:07 -0800465Eigen::Matrix<double, 3, 1> BaseTrajectory::FFAcceleration(
466 double distance) const {
Austin Schuhe73a9052019-01-07 12:16:17 -0800467 if (distance < 0.0) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100468 // Make sure we don't end up off the beginning of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800469 distance = 0.0;
470 } else if (distance > length()) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100471 // Make sure we don't end up off the end of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800472 distance = length();
Austin Schuhec7f06d2019-01-04 07:47:15 +1100473 }
Austin Schuhe73a9052019-01-07 12:16:17 -0800474 const size_t before_index = DistanceToSegment(distance);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800475 const size_t after_index =
476 std::min(before_index + 1, distance_plan_size() - 1);
Austin Schuhe73a9052019-01-07 12:16:17 -0800477
Austin Schuhec7f06d2019-01-04 07:47:15 +1100478 const double before_distance = Distance(before_index);
479 const double after_distance = Distance(after_index);
480
Austin Schuhec7f06d2019-01-04 07:47:15 +1100481 // And then also make sure we aren't curvature limited.
482 const double vcurvature = LateralVelocityCurvature(distance);
483
484 double acceleration;
485 double velocity;
James Kuszmaulea314d92019-02-18 19:45:06 -0800486 // TODO(james): While technically correct for sufficiently small segment
487 // steps, this method of switching between limits has a tendency to produce
488 // sudden jumps in acceelrations, which is undesirable.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800489 switch (plan_constraint(DistanceToSegment(distance))) {
490 case fb::SegmentConstraint::VELOCITY_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800491 acceleration = 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800492 velocity =
493 (plan_velocity(before_index) + plan_velocity(after_index)) / 2.0;
Austin Schuhe73a9052019-01-07 12:16:17 -0800494 // TODO(austin): Accelerate or decelerate until we hit the limit in the
495 // time slice. Otherwise our acceleration will be lying for this slice.
496 // Do note, we've got small slices so the effect will be small.
497 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800498 case fb::SegmentConstraint::CURVATURE_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800499 velocity = vcurvature;
James Kuszmaulea314d92019-02-18 19:45:06 -0800500 FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration);
501 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800502 case fb::SegmentConstraint::VOLTAGE_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800503 // Normally, we expect that voltage limited plans will all get dominated
504 // by the acceleration/deceleration limits. This may not always be true;
505 // if we ever encounter this error, we just need to back out what the
506 // accelerations would be in this case.
Austin Schuhd749d932020-12-30 21:38:40 -0800507 LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan.";
Austin Schuhe73a9052019-01-07 12:16:17 -0800508 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800509 case fb::SegmentConstraint::ACCELERATION_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800510 // TODO(james): The integration done here and in the DECELERATION_LIMITED
511 // can technically cause us to violate friction constraints. We currently
512 // don't do anything about it to avoid causing sudden jumps in voltage,
513 // but we probably *should* at some point.
Austin Schuhe73a9052019-01-07 12:16:17 -0800514 velocity = IntegrateAccelForDistance(
515 [this](double x, double v) { return ForwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800516 plan_velocity(before_index), before_distance,
517 distance - before_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800518 acceleration = ForwardAcceleration(distance, velocity);
519 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800520 case fb::SegmentConstraint::DECELERATION_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800521 velocity = IntegrateAccelForDistance(
522 [this](double x, double v) { return BackwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800523 plan_velocity(after_index), after_distance,
524 distance - after_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800525 acceleration = BackwardAcceleration(distance, velocity);
526 break;
527 default:
James Kuszmaul75a18c52021-03-10 22:02:07 -0800528 AOS_LOG(FATAL, "Unknown segment type %d\n",
529 static_cast<int>(plan_constraint(DistanceToSegment(distance))));
Austin Schuhe73a9052019-01-07 12:16:17 -0800530 break;
531 }
532
James Kuszmaul75a18c52021-03-10 22:02:07 -0800533 return (Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration)
Austin Schuhec7f06d2019-01-04 07:47:15 +1100534 .finished();
535}
536
James Kuszmaul75a18c52021-03-10 22:02:07 -0800537size_t FinishedTrajectory::distance_plan_size() const {
538 return trajectory().has_distance_based_plan()
539 ? trajectory().distance_based_plan()->size()
540 : 0u;
541}
542
543fb::SegmentConstraint FinishedTrajectory::plan_constraint(size_t index) const {
544 CHECK_LT(index, distance_plan_size());
545 return trajectory().distance_based_plan()->Get(index)->segment_constraint();
546}
547
548float FinishedTrajectory::plan_velocity(size_t index) const {
549 CHECK_LT(index, distance_plan_size());
550 return trajectory().distance_based_plan()->Get(index)->velocity();
551}
552
553Eigen::Matrix<double, 2, 1> BaseTrajectory::FFVoltage(double distance) const {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100554 const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance);
555 const double velocity = xva(1);
556 const double acceleration = xva(2);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100557
James Kuszmaul75a18c52021-03-10 22:02:07 -0800558 Eigen::Matrix<double, 2, 1> K3;
559 Eigen::Matrix<double, 2, 1> K4;
560 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhe73a9052019-01-07 12:16:17 -0800561 K345(distance, &K3, &K4, &K5);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100562
563 return K5 * acceleration + K3 * velocity * velocity + K4 * velocity;
564}
565
James Kuszmaul75a18c52021-03-10 22:02:07 -0800566const std::vector<double> Trajectory::Distances() const {
567 std::vector<double> d;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100568 d.reserve(plan_.size());
569 for (size_t i = 0; i < plan_.size(); ++i) {
570 d.push_back(Distance(i));
571 }
572 return d;
573}
574
James Kuszmaul75a18c52021-03-10 22:02:07 -0800575Eigen::Matrix<double, 3, 1> BaseTrajectory::GetNextXVA(
576 std::chrono::nanoseconds dt, Eigen::Matrix<double, 2, 1> *state) const {
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700577 double dt_float = ::aos::time::DurationInSeconds(dt);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100578
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800579 const double last_distance = (*state)(0);
Alex Perry4ae2fd72019-02-03 15:55:57 -0800580 // TODO(austin): This feels like something that should be pulled out into
581 // a library for re-use.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700582 *state = RungeKutta(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800583 [this](const Eigen::Matrix<double, 2, 1> x) {
584 Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0));
585 return (Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished();
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700586 },
587 *state, dt_float);
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800588 // Force the distance to move forwards, to guarantee that we actually finish
589 // the planning.
590 constexpr double kMinDistanceIncrease = 1e-7;
591 if ((*state)(0) < last_distance + kMinDistanceIncrease) {
592 (*state)(0) = last_distance + kMinDistanceIncrease;
593 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800594
James Kuszmaul75a18c52021-03-10 22:02:07 -0800595 Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0));
Alex Perry4ae2fd72019-02-03 15:55:57 -0800596 (*state)(1) = result(1);
597 return result;
598}
599
James Kuszmaul75a18c52021-03-10 22:02:07 -0800600std::vector<Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA(
601 std::chrono::nanoseconds dt) {
602 Eigen::Matrix<double, 2, 1> state = Eigen::Matrix<double, 2, 1>::Zero();
603 std::vector<Eigen::Matrix<double, 3, 1>> result;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100604 result.emplace_back(FFAcceleration(0));
605 result.back()(1) = 0.0;
606
Alex Perry4ae2fd72019-02-03 15:55:57 -0800607 while (!is_at_end(state)) {
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800608 if (state_is_faulted(state)) {
609 LOG(WARNING)
610 << "Found invalid state in generating spline and aborting. This is "
611 "likely due to a spline with extremely high jerk/changes in "
612 "curvature with an insufficiently small step size.";
613 return {};
614 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800615 result.emplace_back(GetNextXVA(dt, &state));
Austin Schuhec7f06d2019-01-04 07:47:15 +1100616 }
617 return result;
618}
619
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800620void Trajectory::LimitVelocity(double starting_distance, double ending_distance,
621 const double max_velocity) {
622 const double segment_length = ending_distance - starting_distance;
623
624 const double min_length = length() / static_cast<double>(plan_.size() - 1);
625 if (starting_distance > ending_distance) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700626 AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance,
627 ending_distance);
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800628 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800629 starting_distance = std::min(length(), std::max(0.0, starting_distance));
630 ending_distance = std::min(length(), std::max(0.0, ending_distance));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800631 if (segment_length < min_length) {
632 const size_t plan_index = static_cast<size_t>(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800633 std::round((starting_distance + ending_distance) / 2.0 / min_length));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800634 if (max_velocity < plan_[plan_index]) {
635 plan_[plan_index] = max_velocity;
636 }
637 } else {
638 for (size_t i = DistanceToSegment(starting_distance) + 1;
639 i < DistanceToSegment(ending_distance) + 1; ++i) {
640 if (max_velocity < plan_[i]) {
641 plan_[i] = max_velocity;
642 if (i < DistanceToSegment(ending_distance)) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800643 plan_segment_type_[i] = fb::SegmentConstraint::VELOCITY_LIMITED;
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800644 }
645 }
646 }
647 }
648}
649
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700650void Trajectory::PathRelativeContinuousSystem(double distance,
651 Eigen::Matrix<double, 5, 5> *A,
652 Eigen::Matrix<double, 5, 2> *B) {
653 const double nominal_velocity = FFAcceleration(distance)(1);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800654 const double dtheta_dt = spline().DThetaDt(distance, nominal_velocity);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700655 // Calculate the "path-relative" coordinates, which are:
656 // [[distance along the path],
657 // [lateral position along path],
658 // [theta],
659 // [left wheel velocity],
660 // [right wheel velocity]]
661 Eigen::Matrix<double, 5, 1> nominal_X;
662 nominal_X << distance, 0.0, 0.0,
James Kuszmaul75a18c52021-03-10 22:02:07 -0800663 nominal_velocity - dtheta_dt * robot_radius_l(),
664 nominal_velocity + dtheta_dt * robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700665 PathRelativeContinuousSystem(nominal_X, A, B);
666}
667
668void Trajectory::PathRelativeContinuousSystem(
669 const Eigen::Matrix<double, 5, 1> &X, Eigen::Matrix<double, 5, 5> *A,
670 Eigen::Matrix<double, 5, 2> *B) {
671 A->setZero();
672 B->setZero();
673 const double theta = X(2);
674 const double ctheta = std::cos(theta);
675 const double stheta = std::sin(theta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800676 const double curvature = spline().DTheta(X(0));
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700677 const double longitudinal_velocity = (X(3) + X(4)) / 2.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800678 const double diameter = robot_radius_l() + robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700679 // d_dpath / dt = (v_left + v_right) / 2.0 * cos(theta)
680 // (d_dpath / dt) / dv_left = cos(theta) / 2.0
681 (*A)(0, 3) = ctheta / 2.0;
682 // (d_dpath / dt) / dv_right = cos(theta) / 2.0
683 (*A)(0, 4) = ctheta / 2.0;
684 // (d_dpath / dt) / dtheta = -(v_left + v_right) / 2.0 * sin(theta)
685 (*A)(0, 2) = -longitudinal_velocity * stheta;
686 // d_dlat / dt = (v_left + v_right) / 2.0 * sin(theta)
687 // (d_dlat / dt) / dv_left = sin(theta) / 2.0
688 (*A)(1, 3) = stheta / 2.0;
689 // (d_dlat / dt) / dv_right = sin(theta) / 2.0
690 (*A)(1, 4) = stheta / 2.0;
691 // (d_dlat / dt) / dtheta = (v_left + v_right) / 2.0 * cos(theta)
692 (*A)(1, 2) = longitudinal_velocity * ctheta;
693 // dtheta / dt = (v_right - v_left) / diameter - curvature * (v_left +
694 // v_right) / 2.0
695 // (dtheta / dt) / dv_left = -1.0 / diameter - curvature / 2.0
696 (*A)(2, 3) = -1.0 / diameter - curvature / 2.0;
697 // (dtheta / dt) / dv_right = 1.0 / diameter - curvature / 2.0
698 (*A)(2, 4) = 1.0 / diameter - curvature / 2.0;
699 // v_{left,right} / dt = the normal LTI system.
700 A->block<2, 2>(3, 3) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800701 velocity_drivetrain().plant().coefficients().A_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700702 B->block<2, 2>(3, 0) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800703 velocity_drivetrain().plant().coefficients().B_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700704}
705
706double Trajectory::EstimateDistanceAlongPath(
707 double nominal_distance, const Eigen::Matrix<double, 5, 1> &state) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800708 const double nominal_theta = spline().Theta(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700709 const Eigen::Matrix<double, 2, 1> xy_err =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800710 state.block<2, 1>(0, 0) - spline().XY(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700711 return nominal_distance + xy_err.x() * std::cos(nominal_theta) +
712 xy_err.y() * std::sin(nominal_theta);
713}
714
James Kuszmaul75a18c52021-03-10 22:02:07 -0800715Eigen::Matrix<double, 5, 1> FinishedTrajectory::StateToPathRelativeState(
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700716 double distance, const Eigen::Matrix<double, 5, 1> &state,
717 bool drive_backwards) const {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800718 const double nominal_theta = spline().Theta(distance);
719 const Eigen::Matrix<double, 2, 1> nominal_xy = spline().XY(distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700720 const Eigen::Matrix<double, 2, 1> xy_err =
721 state.block<2, 1>(0, 0) - nominal_xy;
722 const double ctheta = std::cos(nominal_theta);
723 const double stheta = std::sin(nominal_theta);
724 Eigen::Matrix<double, 5, 1> path_state;
725 path_state(0) = distance + xy_err.x() * ctheta + xy_err.y() * stheta;
726 path_state(1) = -xy_err.x() * stheta + xy_err.y() * ctheta;
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700727 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta +
728 (drive_backwards ? M_PI : 0.0));
729 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700730 path_state(3) = state(3);
731 path_state(4) = state(4);
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700732 if (drive_backwards) {
733 std::swap(path_state(3), path_state(4));
734 path_state(3) *= -1.0;
735 path_state(4) *= -1.0;
736 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700737 return path_state;
738}
739
740// Path-relative controller method:
741// For the path relative controller, we use a non-standard version of LQR to
742// perform the control. Essentially, we first transform the system into
743// a set of path-relative coordinates (where the reference that we use is the
744// desired path reference). This gives us a system that is linear and
745// time-varying, i.e. the system is a set of A_k, B_k matrices for each
746// timestep k.
747// In order to control this, we use a discrete-time finite-horizon LQR, using
748// the appropraite [AB]_k for the given timestep. Note that the finite-horizon
749// LQR requires choosing a terminal cost (i.e., what the cost should be
750// for if we have not precisely reached the goal at the end of the time-period).
751// For this, I approximate the infinite-horizon LQR solution by extending the
752// finite-horizon much longer (albeit with the extension just using the
753// linearization for the infal point).
754void Trajectory::CalculatePathGains() {
755 const std::vector<Eigen::Matrix<double, 3, 1>> xva_plan = PlanXVA(config_.dt);
James Kuszmaulc3eaa472021-03-03 19:43:45 -0800756 if (xva_plan.empty()) {
757 LOG(ERROR) << "Plan is empty--unable to plan trajectory.";
758 return;
759 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700760 plan_gains_.resize(xva_plan.size());
761
762 // Set up reasonable gain matrices. Current choices of gains are arbitrary
763 // and just setup to work well enough for the simulation tests.
764 // TODO(james): Tune this on a real robot.
765 // TODO(james): Pull these out into a config.
766 Eigen::Matrix<double, 5, 5> Q;
767 Q.setIdentity();
James Kuszmaul49c93202023-03-23 20:44:03 -0700768 Q.diagonal() << 30.0, 30.0, 20.0, 15.0, 15.0;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700769 Q *= 2.0;
770 Q = (Q * Q).eval();
771
772 Eigen::Matrix<double, 2, 2> R;
773 R.setIdentity();
774 R *= 5.0;
775
776 Eigen::Matrix<double, 5, 5> P = Q;
777
778 CHECK_LT(0u, xva_plan.size());
779 const int max_index = static_cast<int>(xva_plan.size()) - 1;
780 for (int i = max_index; i >= 0; --i) {
781 const double distance = xva_plan[i](0);
782 Eigen::Matrix<double, 5, 5> A_continuous;
783 Eigen::Matrix<double, 5, 2> B_continuous;
784 PathRelativeContinuousSystem(distance, &A_continuous, &B_continuous);
785 Eigen::Matrix<double, 5, 5> A_discrete;
786 Eigen::Matrix<double, 5, 2> B_discrete;
787 controls::C2D(A_continuous, B_continuous, config_.dt, &A_discrete,
788 &B_discrete);
789
790 if (i == max_index) {
791 // At the final timestep, approximate P by iterating a bunch of times.
792 // This is terminal cost mentioned in function-level comments.
793 // This does a very loose job of solving the DARE. Ideally, we would
794 // actually use a DARE solver directly, but based on some initial testing,
795 // this method is a bit more robust (or, at least, it is a bit more robust
796 // if we don't want to spend more time handling the potential error
797 // cases the DARE solver can encounter).
798 constexpr int kExtraIters = 100;
799 for (int jj = 0; jj < kExtraIters; ++jj) {
800 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
801 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
802 const Eigen::Matrix<double, 2, 2> RBPBinv =
803 (R + B_discrete.transpose() * P * B_discrete).inverse();
804 P = AP * A_discrete - APB * RBPBinv * APB.transpose() + Q;
805 }
806 }
807
808 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
809 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
810 const Eigen::Matrix<double, 2, 2> RBPBinv =
811 (R + B_discrete.transpose() * P * B_discrete).inverse();
812 plan_gains_[i].first = distance;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800813 const Eigen::Matrix<double, 2, 5> K = RBPBinv * APB.transpose();
814 plan_gains_[i].second = K.cast<float>();
815 P = AP * A_discrete - APB * K + Q;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700816 }
817}
818
James Kuszmaul75a18c52021-03-10 22:02:07 -0800819Eigen::Matrix<double, 2, 5> FinishedTrajectory::GainForDistance(
820 double distance) const {
821 const flatbuffers::Vector<flatbuffers::Offset<fb::GainPoint>> &gains =
822 *CHECK_NOTNULL(trajectory().gains());
823 CHECK_LT(0u, gains.size());
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700824 size_t index = 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800825 for (index = 0; index < gains.size() - 1; ++index) {
826 if (gains[index + 1]->distance() > distance) {
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700827 break;
828 }
829 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800830 // ColMajor is the default storage order, but call it out explicitly here.
831 return Eigen::Matrix<float, 2, 5, Eigen::ColMajor>{
832 gains[index]->gains()->data()}
833 .cast<double>();
834}
835
836namespace {
837flatbuffers::Offset<Constraint> MakeWholeLengthConstraint(
838 flatbuffers::FlatBufferBuilder *fbb, ConstraintType constraint_type,
839 float value) {
840 Constraint::Builder builder(*fbb);
841 builder.add_constraint_type(constraint_type);
842 builder.add_value(value);
843 return builder.Finish();
844}
845} // namespace
846
847flatbuffers::Offset<fb::Trajectory> Trajectory::Serialize(
848 flatbuffers::FlatBufferBuilder *fbb) const {
849 std::array<flatbuffers::Offset<Constraint>, 3> constraints_offsets = {
850 MakeWholeLengthConstraint(fbb, ConstraintType::LONGITUDINAL_ACCELERATION,
851 max_longitudinal_accel()),
852 MakeWholeLengthConstraint(fbb, ConstraintType::LATERAL_ACCELERATION,
853 max_lateral_accel()),
854 MakeWholeLengthConstraint(fbb, ConstraintType::VOLTAGE, max_voltage())};
855 const auto constraints = fbb->CreateVector<Constraint>(
856 constraints_offsets.data(), constraints_offsets.size());
857 const flatbuffers::Offset<fb::DistanceSpline> spline_offset =
858 spline().Serialize(fbb, constraints);
859
860 std::vector<flatbuffers::Offset<fb::PlanPoint>> plan_points;
861 for (size_t ii = 0; ii < distance_plan_size(); ++ii) {
862 plan_points.push_back(fb::CreatePlanPoint(
863 *fbb, Distance(ii), plan_velocity(ii), plan_constraint(ii)));
864 }
865
866 // TODO(james): What is an appropriate cap?
867 CHECK_LT(plan_gains_.size(), 5000u);
868 CHECK_LT(0u, plan_gains_.size());
869 std::vector<flatbuffers::Offset<fb::GainPoint>> gain_points;
870 const size_t matrix_size = plan_gains_[0].second.size();
871 for (size_t ii = 0; ii < plan_gains_.size(); ++ii) {
872 gain_points.push_back(fb::CreateGainPoint(
873 *fbb, plan_gains_[ii].first,
874 fbb->CreateVector(plan_gains_[ii].second.data(), matrix_size)));
875 }
876
877 return fb::CreateTrajectory(*fbb, spline_idx_, fbb->CreateVector(plan_points),
878 fbb->CreateVector(gain_points), spline_offset,
879 drive_spline_backwards_);
880}
881
882float BaseTrajectory::ConstraintValue(
883 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
884 ConstraintType type) {
885 if (constraints != nullptr) {
886 for (const Constraint *constraint : *constraints) {
887 if (constraint->constraint_type() == type) {
888 return constraint->value();
889 }
890 }
891 }
892 return DefaultConstraint(type);
893}
894
895const Eigen::Matrix<double, 5, 1> BaseTrajectory::GoalState(
896 double distance, double velocity) const {
897 Eigen::Matrix<double, 5, 1> result;
898 result.block<2, 1>(0, 0) = spline().XY(distance);
899 result(2, 0) = spline().Theta(distance);
900
901 result.block<2, 1>(3, 0) =
902 config_.Tla_to_lr() * (Eigen::Matrix<double, 2, 1>() << velocity,
903 spline().DThetaDt(distance, velocity))
904 .finished();
905 return result;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700906}
907
Austin Schuhec7f06d2019-01-04 07:47:15 +1100908} // namespace drivetrain
909} // namespace control_loops
910} // namespace frc971