Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 1 | #include "frc971/control_loops/drivetrain/trajectory.h" |
| 2 | |
| 3 | #include <chrono> |
| 4 | |
| 5 | #include "Eigen/Dense" |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 6 | #include "frc971/control_loops/c2d.h" |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 7 | #include "frc971/control_loops/dlqr.h" |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 8 | #include "frc971/control_loops/drivetrain/distance_spline.h" |
| 9 | #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| 10 | #include "frc971/control_loops/hybrid_state_feedback_loop.h" |
| 11 | #include "frc971/control_loops/state_feedback_loop.h" |
| 12 | |
| 13 | namespace frc971 { |
| 14 | namespace control_loops { |
| 15 | namespace drivetrain { |
| 16 | |
| 17 | Trajectory::Trajectory(const DistanceSpline *spline, |
| 18 | const DrivetrainConfig<double> &config, double vmax, |
| 19 | int num_distance) |
| 20 | : spline_(spline), |
James Kuszmaul | aa2499d | 2020-06-02 21:31:19 -0700 | [diff] [blame^] | 21 | velocity_drivetrain_( |
| 22 | ::std::unique_ptr<StateFeedbackLoop<2, 2, 2, double, |
| 23 | StateFeedbackHybridPlant<2, 2, 2>, |
| 24 | HybridKalman<2, 2, 2>>>( |
| 25 | new StateFeedbackLoop<2, 2, 2, double, |
| 26 | StateFeedbackHybridPlant<2, 2, 2>, |
| 27 | HybridKalman<2, 2, 2>>( |
| 28 | config.make_hybrid_drivetrain_velocity_loop()))), |
| 29 | config_(config), |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 30 | robot_radius_l_(config.robot_radius), |
| 31 | robot_radius_r_(config.robot_radius), |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 32 | longitudinal_acceleration_(3.0), |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 33 | lateral_acceleration_(2.0), |
| 34 | Tlr_to_la_((::Eigen::Matrix<double, 2, 2>() << 0.5, 0.5, |
| 35 | -1.0 / (robot_radius_l_ + robot_radius_r_), |
James Kuszmaul | aa2499d | 2020-06-02 21:31:19 -0700 | [diff] [blame^] | 36 | 1.0 / (robot_radius_l_ + robot_radius_r_)) |
| 37 | .finished()), |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 38 | Tla_to_lr_(Tlr_to_la_.inverse()), |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 39 | plan_(num_distance == 0 |
| 40 | ? ::std::max(100, static_cast<int>(spline_->length() / 0.0025)) |
| 41 | : num_distance, |
| 42 | vmax), |
James Kuszmaul | 31ac891 | 2020-02-28 17:12:00 -0800 | [diff] [blame] | 43 | plan_segment_type_(plan_.size(), SegmentType::VELOCITY_LIMITED) {} |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 44 | |
| 45 | void Trajectory::LateralAccelPass() { |
| 46 | for (size_t i = 0; i < plan_.size(); ++i) { |
| 47 | const double distance = Distance(i); |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 48 | const double velocity_limit = LateralVelocityCurvature(distance); |
| 49 | if (velocity_limit < plan_[i]) { |
| 50 | plan_[i] = velocity_limit; |
| 51 | plan_segment_type_[i] = CURVATURE_LIMITED; |
| 52 | } |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 53 | } |
| 54 | } |
| 55 | |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 56 | void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) { |
| 57 | for (size_t i = 0; i < plan_.size(); ++i) { |
| 58 | const double distance = Distance(i); |
| 59 | const double velocity_limit = VoltageVelocityLimit(distance, limit_type); |
| 60 | if (velocity_limit < plan_[i]) { |
| 61 | plan_[i] = velocity_limit; |
| 62 | plan_segment_type_[i] = VOLTAGE_LIMITED; |
| 63 | } |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | double Trajectory::BestAcceleration(double x, double v, bool backwards) { |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 68 | ::Eigen::Matrix<double, 2, 1> K3; |
| 69 | ::Eigen::Matrix<double, 2, 1> K4; |
| 70 | ::Eigen::Matrix<double, 2, 1> K5; |
| 71 | K345(x, &K3, &K4, &K5); |
| 72 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 73 | // Now, solve for all a's and find the best one which meets our criteria. |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 74 | const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v; |
| 75 | double min_voltage_accel = ::std::numeric_limits<double>::infinity(); |
| 76 | double max_voltage_accel = -min_voltage_accel; |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 77 | for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0), |
| 78 | (voltage_limit_ - C(1, 0)) / K5(1, 0), |
| 79 | (-voltage_limit_ - C(0, 0)) / K5(0, 0), |
| 80 | (-voltage_limit_ - C(1, 0)) / K5(1, 0)}) { |
| 81 | const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v; |
| 82 | if ((U.array().abs() < voltage_limit_ + 1e-6).all()) { |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 83 | min_voltage_accel = ::std::min(a, min_voltage_accel); |
| 84 | max_voltage_accel = ::std::max(a, max_voltage_accel); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 85 | } |
| 86 | } |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 87 | double best_accel = backwards ? min_voltage_accel : max_voltage_accel; |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 88 | |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 89 | double min_friction_accel, max_friction_accel; |
| 90 | FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel); |
| 91 | if (backwards) { |
| 92 | best_accel = ::std::max(best_accel, min_friction_accel); |
| 93 | } else { |
| 94 | best_accel = ::std::min(best_accel, max_friction_accel); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 95 | } |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 96 | |
James Kuszmaul | 66b7804 | 2020-02-23 15:30:51 -0800 | [diff] [blame] | 97 | // Ideally, the max would never be less than the min, but due to the way that |
| 98 | // the runge kutta solver works, it sometimes ticks over the edge. |
| 99 | if (max_friction_accel < min_friction_accel) { |
| 100 | VLOG(1) << "At x " << x << " v " << v << " min fric acc " |
| 101 | << min_friction_accel << " max fric accel " << max_friction_accel; |
| 102 | } |
| 103 | if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) { |
| 104 | LOG(WARNING) << "Viable friction limits and viable voltage limits do not " |
| 105 | "overlap (x: " << x << ", v: " << v |
| 106 | << ", backwards: " << backwards |
| 107 | << ") best_accel = " << best_accel << ", min voltage " |
| 108 | << min_voltage_accel << ", max voltage " << max_voltage_accel |
| 109 | << " min friction " << min_friction_accel << " max friction " |
| 110 | << max_friction_accel << "."; |
| 111 | |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 112 | // Don't actually do anything--this will just result in attempting to drive |
| 113 | // higher voltages thatn we have available. In practice, that'll probably |
| 114 | // work out fine. |
| 115 | } |
| 116 | |
| 117 | return best_accel; |
| 118 | } |
| 119 | |
| 120 | double Trajectory::LateralVelocityCurvature(double distance) const { |
| 121 | // To calculate these constraints, we first note that: |
| 122 | // wheel accels = K2 * v_robot' + K1 * v_robot^2 |
| 123 | // All that this logic does is solve for v_robot, leaving v_robot' free, |
| 124 | // assuming that the wheels are at their limits. |
| 125 | // To do this, we: |
| 126 | // |
| 127 | // 1) Determine what the wheel accels will be at the limit--since we have |
| 128 | // two free variables (v_robot, v_robot'), both wheels will be at their |
| 129 | // limits--if in a sufficiently tight turn (such that the signs of the |
| 130 | // coefficients of K2 are different), then the wheels will be accelerating |
| 131 | // in opposite directions; otherwise, they accelerate in the same direction. |
| 132 | // The magnitude of these per-wheel accelerations is a function of velocity, |
| 133 | // so it must also be solved for. |
| 134 | // |
| 135 | // 2) Eliminate that v_robot' term (since we don't care |
| 136 | // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on |
| 137 | // both sides of the equation. |
| 138 | // |
| 139 | // 3) Solving the relatively tractable remaining equation, which is |
| 140 | // basically just grouping all the terms together in one spot and taking the |
| 141 | // 4th root of everything. |
| 142 | const double dtheta = spline_->DTheta(distance); |
| 143 | const ::Eigen::Matrix<double, 1, 2> K2prime = |
| 144 | K2(dtheta).transpose() * |
| 145 | (::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| 146 | // Calculate whether the wheels are spinning in opposite directions. |
| 147 | const bool opposites = K2prime(0) * K2prime(1) < 0; |
| 148 | const ::Eigen::Matrix<double, 2, 1> K1calc = K1(spline_->DDTheta(distance)); |
| 149 | const double lat_accel_squared = |
| 150 | ::std::pow(dtheta / lateral_acceleration_, 2); |
| 151 | const double curvature_change_term = |
| 152 | (K2prime * K1calc).value() / |
| 153 | (K2prime * |
| 154 | (::Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0)) |
| 155 | .finished() * |
| 156 | longitudinal_acceleration_) |
| 157 | .value(); |
| 158 | const double vel_inv = ::std::sqrt( |
| 159 | ::std::sqrt(::std::pow(curvature_change_term, 2) + lat_accel_squared)); |
| 160 | if (vel_inv == 0.0) { |
| 161 | return ::std::numeric_limits<double>::infinity(); |
| 162 | } |
| 163 | return 1.0 / vel_inv; |
| 164 | } |
| 165 | |
| 166 | void Trajectory::FrictionLngAccelLimits(double x, double v, double *min_accel, |
| 167 | double *max_accel) const { |
| 168 | // First, calculate the max longitudinal acceleration that can be achieved |
| 169 | // by either wheel given the friction elliipse that we have. |
| 170 | const double lateral_acceleration = v * v * spline_->DDXY(x).norm(); |
| 171 | const double max_wheel_lng_accel_squared = |
| 172 | 1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_, 2.0); |
| 173 | if (max_wheel_lng_accel_squared < 0.0) { |
James Kuszmaul | 66b7804 | 2020-02-23 15:30:51 -0800 | [diff] [blame] | 174 | VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v |
| 175 | << " at distance " << x; |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 176 | // If we encounter this, it means that the Runge-Kutta has attempted to |
| 177 | // sample points a bit past the edge of the friction boundary. If so, we |
| 178 | // gradually ramp the min/max accels to be more and more incorrect (note |
| 179 | // how min_accel > max_accel if we reach this case) to avoid causing any |
| 180 | // numerical issues. |
| 181 | *min_accel = |
| 182 | ::std::sqrt(-max_wheel_lng_accel_squared) * longitudinal_acceleration_; |
| 183 | *max_accel = -*min_accel; |
| 184 | return; |
| 185 | } |
| 186 | *min_accel = -::std::numeric_limits<double>::infinity(); |
| 187 | *max_accel = ::std::numeric_limits<double>::infinity(); |
| 188 | |
| 189 | // Calculate max/min accelerations by calculating what the robots overall |
| 190 | // longitudinal acceleration would be if each wheel were running at the max |
| 191 | // forwards/backwards longitudinal acceleration. |
| 192 | const double max_wheel_lng_accel = |
| 193 | longitudinal_acceleration_ * ::std::sqrt(max_wheel_lng_accel_squared); |
| 194 | const ::Eigen::Matrix<double, 2, 1> K1v2 = K1(spline_->DDTheta(x)) * v * v; |
| 195 | const ::Eigen::Matrix<double, 2, 1> K2inv = |
| 196 | K2(spline_->DTheta(x)).cwiseInverse(); |
| 197 | // Store the accelerations of the robot corresponding to each wheel being at |
| 198 | // the max/min acceleration. The first coefficient in each vector |
| 199 | // corresponds to the left wheel, the second to the right wheel. |
| 200 | const ::Eigen::Matrix<double, 2, 1> accels1 = |
| 201 | K2inv.array() * (-K1v2.array() + max_wheel_lng_accel); |
| 202 | const ::Eigen::Matrix<double, 2, 1> accels2 = |
| 203 | K2inv.array() * (-K1v2.array() - max_wheel_lng_accel); |
| 204 | |
| 205 | // If either term is non-finite, that suggests that a term of K2 is zero |
| 206 | // (which is physically possible when turning such that one wheel is |
| 207 | // stationary), so just ignore that side of the drivetrain. |
| 208 | if (::std::isfinite(accels1(0))) { |
| 209 | // The inner max/min in this case determines which of the two cases (+ or |
| 210 | // - acceleration on the left wheel) we care about--in a sufficiently |
| 211 | // tight turning radius, the left hweel may be accelerating backwards when |
| 212 | // the robot as a whole accelerates forwards. We then use that |
| 213 | // acceleration to bound the min/max accel. |
| 214 | *min_accel = ::std::max(*min_accel, ::std::min(accels1(0), accels2(0))); |
| 215 | *max_accel = ::std::min(*max_accel, ::std::max(accels1(0), accels2(0))); |
| 216 | } |
| 217 | // Same logic as previous if-statement, but for the right wheel. |
| 218 | if (::std::isfinite(accels1(1))) { |
| 219 | *min_accel = ::std::max(*min_accel, ::std::min(accels1(1), accels2(1))); |
| 220 | *max_accel = ::std::min(*max_accel, ::std::max(accels1(1), accels2(1))); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | double Trajectory::VoltageVelocityLimit( |
| 225 | double distance, VoltageLimit limit_type, |
| 226 | Eigen::Matrix<double, 2, 1> *constraint_voltages) const { |
| 227 | // To sketch an outline of the math going on here, we start with the basic |
| 228 | // dynamics of the robot along the spline: |
| 229 | // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U |
| 230 | // We need to determine the maximum v_robot given constrained U and free |
| 231 | // v_robot'. |
| 232 | // Similarly to the friction constraints, we accomplish this by first |
| 233 | // multiplying by a K2prime term to eliminate the v_robot' term. |
| 234 | // As with the friction constraints, we also know that the limits will occur |
| 235 | // when both sides of the drivetrain are driven at their max magnitude |
| 236 | // voltages, although they may be driven at different signs. |
| 237 | // Once we determine whether the voltages match signs, we still have to |
| 238 | // consider both possible pairings (technically we could probably |
| 239 | // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't |
| 240 | // need to). |
| 241 | // |
| 242 | // For each pairing, we then get to solve a quadratic formula for the robot |
| 243 | // velocity at those voltages. This gives us up to 4 solutions, of which |
| 244 | // up to 3 will give us positive velocities; each solution velocity |
| 245 | // corresponds to a transition from feasibility to infeasibility, where a |
| 246 | // velocity of zero is always feasible, and there will always be 0, 1, or 3 |
| 247 | // positive solutions. Among the positive solutions, we take both the min |
| 248 | // and the max--the min will be the highest velocity such that all |
| 249 | // velocities between zero and that velocity are valid; the max will be |
| 250 | // the highest feasible velocity. Which we return depends on what the |
| 251 | // limit_type is. |
| 252 | // |
| 253 | // Sketching the actual math: |
| 254 | // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max |
| 255 | // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max) |
| 256 | // a v_robot^2 + b v_robot +/- c = 0 |
| 257 | const ::Eigen::Matrix<double, 2, 2> B = |
| 258 | velocity_drivetrain_->plant().coefficients().B_continuous; |
| 259 | const double dtheta = spline_->DTheta(distance); |
| 260 | const ::Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta); |
| 261 | // Because voltages can actually impact *both* wheels, in order to determine |
| 262 | // whether the voltages will have opposite signs, we need to use B^-1 * K2. |
| 263 | const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0; |
| 264 | const ::Eigen::Matrix<double, 1, 2> K2prime = |
| 265 | K2(dtheta).transpose() * |
| 266 | (::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| 267 | const double a = K2prime * K1(spline_->DDTheta(distance)); |
| 268 | const double b = -K2prime * |
| 269 | velocity_drivetrain_->plant().coefficients().A_continuous * |
| 270 | K2(dtheta); |
| 271 | const ::Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B; |
| 272 | // Calculate the "positive" version of the voltage limits we will use. |
| 273 | const ::Eigen::Matrix<double, 2, 1> abs_volts = |
| 274 | voltage_limit_ * |
| 275 | (::Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0)) |
| 276 | .finished(); |
| 277 | |
| 278 | double min_valid_vel = ::std::numeric_limits<double>::infinity(); |
| 279 | if (limit_type == VoltageLimit::kAggressive) { |
| 280 | min_valid_vel = 0.0; |
| 281 | } |
| 282 | // Iterate over both possibilites for +/- voltage, and solve the quadratic |
| 283 | // formula. For every positive solution, adjust the velocity limit |
| 284 | // appropriately. |
| 285 | for (const double sign : {1.0, -1.0}) { |
| 286 | const ::Eigen::Matrix<double, 2, 1> U = sign * abs_volts; |
| 287 | const double prev_vel = min_valid_vel; |
| 288 | const double c = c_coeff * U; |
| 289 | const double determinant = b * b - 4 * a * c; |
| 290 | if (a == 0) { |
| 291 | // If a == 0, that implies we are on a constant curvature path, in which |
| 292 | // case we just have b * v + c = 0. |
| 293 | // Note that if -b * c > 0.0, then vel will be greater than zero and b |
| 294 | // will be non-zero. |
| 295 | if (-b * c > 0.0) { |
| 296 | const double vel = -c / b; |
| 297 | if (limit_type == VoltageLimit::kConservative) { |
| 298 | min_valid_vel = ::std::min(min_valid_vel, vel); |
| 299 | } else { |
| 300 | min_valid_vel = ::std::max(min_valid_vel, vel); |
| 301 | } |
| 302 | } else if (b == 0) { |
| 303 | // If a and b are zero, then we are travelling in a straight line and |
| 304 | // have no voltage-based velocity constraints. |
| 305 | min_valid_vel = ::std::numeric_limits<double>::infinity(); |
| 306 | } |
| 307 | } else if (determinant > 0) { |
| 308 | const double sqrt_determinant = ::std::sqrt(determinant); |
| 309 | const double high_vel = (-b + sqrt_determinant) / (2.0 * a); |
| 310 | const double low_vel = (-b - sqrt_determinant) / (2.0 * a); |
| 311 | if (low_vel > 0) { |
| 312 | if (limit_type == VoltageLimit::kConservative) { |
| 313 | min_valid_vel = ::std::min(min_valid_vel, low_vel); |
| 314 | } else { |
| 315 | min_valid_vel = ::std::max(min_valid_vel, low_vel); |
| 316 | } |
| 317 | } |
| 318 | if (high_vel > 0) { |
| 319 | if (limit_type == VoltageLimit::kConservative) { |
| 320 | min_valid_vel = ::std::min(min_valid_vel, high_vel); |
| 321 | } else { |
| 322 | min_valid_vel = ::std::max(min_valid_vel, high_vel); |
| 323 | } |
| 324 | } |
| 325 | } else if (determinant == 0 && -b * a > 0) { |
| 326 | const double vel = -b / (2.0 * a); |
| 327 | if (vel > 0.0) { |
| 328 | if (limit_type == VoltageLimit::kConservative) { |
| 329 | min_valid_vel = ::std::min(min_valid_vel, vel); |
| 330 | } else { |
| 331 | min_valid_vel = ::std::max(min_valid_vel, vel); |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | if (constraint_voltages != nullptr && prev_vel != min_valid_vel) { |
| 336 | *constraint_voltages = U; |
| 337 | } |
| 338 | } |
| 339 | return min_valid_vel; |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 340 | } |
| 341 | |
| 342 | void Trajectory::ForwardPass() { |
| 343 | plan_[0] = 0.0; |
| 344 | const double delta_distance = Distance(1) - Distance(0); |
| 345 | for (size_t i = 0; i < plan_.size() - 1; ++i) { |
| 346 | const double distance = Distance(i); |
| 347 | |
| 348 | // Integrate our acceleration forward one step. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 349 | const double new_plan_velocity = IntegrateAccelForDistance( |
| 350 | [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| 351 | plan_[i], distance, delta_distance); |
| 352 | |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 353 | if (new_plan_velocity <= plan_[i + 1]) { |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 354 | plan_[i + 1] = new_plan_velocity; |
| 355 | plan_segment_type_[i] = SegmentType::ACCELERATION_LIMITED; |
| 356 | } |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 357 | } |
| 358 | } |
| 359 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 360 | void Trajectory::BackwardPass() { |
| 361 | const double delta_distance = Distance(0) - Distance(1); |
| 362 | plan_.back() = 0.0; |
| 363 | for (size_t i = plan_.size() - 1; i > 0; --i) { |
| 364 | const double distance = Distance(i); |
| 365 | |
| 366 | // Integrate our deceleration back one step. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 367 | const double new_plan_velocity = IntegrateAccelForDistance( |
| 368 | [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| 369 | plan_[i], distance, delta_distance); |
| 370 | |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 371 | if (new_plan_velocity <= plan_[i - 1]) { |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 372 | plan_[i - 1] = new_plan_velocity; |
| 373 | plan_segment_type_[i - 1] = SegmentType::DECELERATION_LIMITED; |
| 374 | } |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 375 | } |
| 376 | } |
| 377 | |
| 378 | ::Eigen::Matrix<double, 3, 1> Trajectory::FFAcceleration(double distance) { |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 379 | if (distance < 0.0) { |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 380 | // Make sure we don't end up off the beginning of the curve. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 381 | distance = 0.0; |
| 382 | } else if (distance > length()) { |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 383 | // Make sure we don't end up off the end of the curve. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 384 | distance = length(); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 385 | } |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 386 | const size_t before_index = DistanceToSegment(distance); |
James Kuszmaul | aa2499d | 2020-06-02 21:31:19 -0700 | [diff] [blame^] | 387 | const size_t after_index = std::min(before_index + 1, plan_.size() - 1); |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 388 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 389 | const double before_distance = Distance(before_index); |
| 390 | const double after_distance = Distance(after_index); |
| 391 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 392 | // And then also make sure we aren't curvature limited. |
| 393 | const double vcurvature = LateralVelocityCurvature(distance); |
| 394 | |
| 395 | double acceleration; |
| 396 | double velocity; |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 397 | // TODO(james): While technically correct for sufficiently small segment |
| 398 | // steps, this method of switching between limits has a tendency to produce |
| 399 | // sudden jumps in acceelrations, which is undesirable. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 400 | switch (plan_segment_type_[DistanceToSegment(distance)]) { |
| 401 | case SegmentType::VELOCITY_LIMITED: |
| 402 | acceleration = 0.0; |
| 403 | velocity = (plan_[before_index] + plan_[after_index]) / 2.0; |
| 404 | // TODO(austin): Accelerate or decelerate until we hit the limit in the |
| 405 | // time slice. Otherwise our acceleration will be lying for this slice. |
| 406 | // Do note, we've got small slices so the effect will be small. |
| 407 | break; |
| 408 | case SegmentType::CURVATURE_LIMITED: |
| 409 | velocity = vcurvature; |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 410 | FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration); |
| 411 | break; |
| 412 | case SegmentType::VOLTAGE_LIMITED: |
| 413 | // Normally, we expect that voltage limited plans will all get dominated |
| 414 | // by the acceleration/deceleration limits. This may not always be true; |
| 415 | // if we ever encounter this error, we just need to back out what the |
| 416 | // accelerations would be in this case. |
| 417 | LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan."; |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 418 | break; |
| 419 | case SegmentType::ACCELERATION_LIMITED: |
James Kuszmaul | ea314d9 | 2019-02-18 19:45:06 -0800 | [diff] [blame] | 420 | // TODO(james): The integration done here and in the DECELERATION_LIMITED |
| 421 | // can technically cause us to violate friction constraints. We currently |
| 422 | // don't do anything about it to avoid causing sudden jumps in voltage, |
| 423 | // but we probably *should* at some point. |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 424 | velocity = IntegrateAccelForDistance( |
| 425 | [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| 426 | plan_[before_index], before_distance, distance - before_distance); |
| 427 | acceleration = ForwardAcceleration(distance, velocity); |
| 428 | break; |
| 429 | case SegmentType::DECELERATION_LIMITED: |
| 430 | velocity = IntegrateAccelForDistance( |
| 431 | [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| 432 | plan_[after_index], after_distance, distance - after_distance); |
| 433 | acceleration = BackwardAcceleration(distance, velocity); |
| 434 | break; |
| 435 | default: |
Austin Schuh | f257f3c | 2019-10-27 21:00:43 -0700 | [diff] [blame] | 436 | AOS_LOG( |
| 437 | FATAL, "Unknown segment type %d\n", |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 438 | static_cast<int>(plan_segment_type_[DistanceToSegment(distance)])); |
| 439 | break; |
| 440 | } |
| 441 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 442 | return (::Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration) |
| 443 | .finished(); |
| 444 | } |
| 445 | |
| 446 | ::Eigen::Matrix<double, 2, 1> Trajectory::FFVoltage(double distance) { |
| 447 | const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance); |
| 448 | const double velocity = xva(1); |
| 449 | const double acceleration = xva(2); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 450 | |
Austin Schuh | e73a905 | 2019-01-07 12:16:17 -0800 | [diff] [blame] | 451 | ::Eigen::Matrix<double, 2, 1> K3; |
| 452 | ::Eigen::Matrix<double, 2, 1> K4; |
| 453 | ::Eigen::Matrix<double, 2, 1> K5; |
| 454 | K345(distance, &K3, &K4, &K5); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 455 | |
| 456 | return K5 * acceleration + K3 * velocity * velocity + K4 * velocity; |
| 457 | } |
| 458 | |
| 459 | const ::std::vector<double> Trajectory::Distances() const { |
| 460 | ::std::vector<double> d; |
| 461 | d.reserve(plan_.size()); |
| 462 | for (size_t i = 0; i < plan_.size(); ++i) { |
| 463 | d.push_back(Distance(i)); |
| 464 | } |
| 465 | return d; |
| 466 | } |
| 467 | |
| 468 | ::Eigen::Matrix<double, 5, 5> Trajectory::ALinearizedContinuous( |
| 469 | const ::Eigen::Matrix<double, 5, 1> &state) const { |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 470 | const double sintheta = ::std::sin(state(2)); |
| 471 | const double costheta = ::std::cos(state(2)); |
| 472 | const ::Eigen::Matrix<double, 2, 1> linear_angular = |
| 473 | Tlr_to_la_ * state.block<2, 1>(3, 0); |
| 474 | |
| 475 | // When stopped, just roll with a min velocity. |
| 476 | double linear_velocity = 0.0; |
| 477 | constexpr double kMinVelocity = 0.1; |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 478 | if (::std::abs(linear_angular(0)) < kMinVelocity / 100.0) { |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 479 | linear_velocity = 0.1; |
| 480 | } else if (::std::abs(linear_angular(0)) > kMinVelocity) { |
| 481 | linear_velocity = linear_angular(0); |
| 482 | } else if (linear_angular(0) > 0) { |
| 483 | linear_velocity = kMinVelocity; |
| 484 | } else if (linear_angular(0) < 0) { |
| 485 | linear_velocity = -kMinVelocity; |
| 486 | } |
| 487 | |
| 488 | ::Eigen::Matrix<double, 5, 5> result = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| 489 | result(0, 2) = -sintheta * linear_velocity; |
| 490 | result(0, 3) = 0.5 * costheta; |
| 491 | result(0, 4) = 0.5 * costheta; |
| 492 | |
| 493 | result(1, 2) = costheta * linear_velocity; |
| 494 | result(1, 3) = 0.5 * sintheta; |
| 495 | result(1, 4) = 0.5 * sintheta; |
| 496 | |
| 497 | result(2, 3) = Tlr_to_la_(1, 0); |
| 498 | result(2, 4) = Tlr_to_la_(1, 1); |
| 499 | |
| 500 | result.block<2, 2>(3, 3) = |
| 501 | velocity_drivetrain_->plant().coefficients().A_continuous; |
| 502 | return result; |
| 503 | } |
| 504 | |
| 505 | ::Eigen::Matrix<double, 5, 2> Trajectory::BLinearizedContinuous() const { |
| 506 | ::Eigen::Matrix<double, 5, 2> result = ::Eigen::Matrix<double, 5, 2>::Zero(); |
| 507 | result.block<2, 2>(3, 0) = |
| 508 | velocity_drivetrain_->plant().coefficients().B_continuous; |
| 509 | return result; |
| 510 | } |
| 511 | |
| 512 | void Trajectory::AB(const ::Eigen::Matrix<double, 5, 1> &state, |
| 513 | ::std::chrono::nanoseconds dt, |
| 514 | ::Eigen::Matrix<double, 5, 5> *A, |
| 515 | ::Eigen::Matrix<double, 5, 2> *B) const { |
| 516 | ::Eigen::Matrix<double, 5, 5> A_linearized_continuous = |
| 517 | ALinearizedContinuous(state); |
| 518 | ::Eigen::Matrix<double, 5, 2> B_linearized_continuous = |
| 519 | BLinearizedContinuous(); |
| 520 | |
| 521 | // Now, convert it to discrete. |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 522 | controls::C2D(A_linearized_continuous, B_linearized_continuous, dt, A, B); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 523 | } |
| 524 | |
| 525 | ::Eigen::Matrix<double, 2, 5> Trajectory::KForState( |
| 526 | const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt, |
| 527 | const ::Eigen::DiagonalMatrix<double, 5> &Q, |
| 528 | const ::Eigen::DiagonalMatrix<double, 2> &R) const { |
| 529 | ::Eigen::Matrix<double, 5, 5> A; |
| 530 | ::Eigen::Matrix<double, 5, 2> B; |
| 531 | AB(state, dt, &A, &B); |
| 532 | |
| 533 | ::Eigen::Matrix<double, 5, 5> S = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| 534 | ::Eigen::Matrix<double, 2, 5> K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| 535 | |
| 536 | int info = ::frc971::controls::dlqr<5, 2>(A, B, Q, R, &K, &S); |
Alex Perry | cb7da4b | 2019-08-28 19:35:56 -0700 | [diff] [blame] | 537 | if (info != 0) { |
Austin Schuh | f257f3c | 2019-10-27 21:00:43 -0700 | [diff] [blame] | 538 | AOS_LOG(ERROR, "Failed to solve %d, controllability: %d\n", info, |
| 539 | controls::Controllability(A, B)); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 540 | // TODO(austin): Can we be more clever here? Use the last one? We should |
| 541 | // collect more info about when this breaks down from logs. |
| 542 | K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| 543 | } |
James Kuszmaul | 1bce577 | 2020-03-08 22:13:50 -0700 | [diff] [blame] | 544 | if (VLOG_IS_ON(1)) { |
| 545 | ::Eigen::EigenSolver<::Eigen::Matrix<double, 5, 5>> eigensolver(A - B * K); |
| 546 | const auto eigenvalues = eigensolver.eigenvalues(); |
| 547 | LOG(INFO) << "Eigenvalues: " << eigenvalues; |
| 548 | } |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 549 | return K; |
| 550 | } |
| 551 | |
| 552 | const ::Eigen::Matrix<double, 5, 1> Trajectory::GoalState(double distance, |
| 553 | double velocity) { |
| 554 | ::Eigen::Matrix<double, 5, 1> result; |
| 555 | result.block<2, 1>(0, 0) = spline_->XY(distance); |
| 556 | result(2, 0) = spline_->Theta(distance); |
| 557 | |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 558 | result.block<2, 1>(3, 0) = |
| 559 | Tla_to_lr_ * (::Eigen::Matrix<double, 2, 1>() << velocity, |
| 560 | spline_->DThetaDt(distance, velocity)) |
| 561 | .finished(); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 562 | return result; |
| 563 | } |
| 564 | |
Alex Perry | 4ae2fd7 | 2019-02-03 15:55:57 -0800 | [diff] [blame] | 565 | ::Eigen::Matrix<double, 3, 1> Trajectory::GetNextXVA( |
| 566 | ::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 2, 1> *state) { |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 567 | double dt_float = ::aos::time::DurationInSeconds(dt); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 568 | |
James Kuszmaul | 4d3c264 | 2020-03-05 07:32:39 -0800 | [diff] [blame] | 569 | const double last_distance = (*state)(0); |
Alex Perry | 4ae2fd7 | 2019-02-03 15:55:57 -0800 | [diff] [blame] | 570 | // TODO(austin): This feels like something that should be pulled out into |
| 571 | // a library for re-use. |
James Kuszmaul | 651fc3f | 2019-05-15 21:14:25 -0700 | [diff] [blame] | 572 | *state = RungeKutta( |
| 573 | [this](const ::Eigen::Matrix<double, 2, 1> x) { |
| 574 | ::Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0)); |
| 575 | return (::Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished(); |
| 576 | }, |
| 577 | *state, dt_float); |
James Kuszmaul | 4d3c264 | 2020-03-05 07:32:39 -0800 | [diff] [blame] | 578 | // Force the distance to move forwards, to guarantee that we actually finish |
| 579 | // the planning. |
| 580 | constexpr double kMinDistanceIncrease = 1e-7; |
| 581 | if ((*state)(0) < last_distance + kMinDistanceIncrease) { |
| 582 | (*state)(0) = last_distance + kMinDistanceIncrease; |
| 583 | } |
Alex Perry | 4ae2fd7 | 2019-02-03 15:55:57 -0800 | [diff] [blame] | 584 | |
| 585 | ::Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0)); |
| 586 | (*state)(1) = result(1); |
| 587 | return result; |
| 588 | } |
| 589 | |
| 590 | ::std::vector<::Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA( |
| 591 | ::std::chrono::nanoseconds dt) { |
| 592 | ::Eigen::Matrix<double, 2, 1> state = ::Eigen::Matrix<double, 2, 1>::Zero(); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 593 | ::std::vector<::Eigen::Matrix<double, 3, 1>> result; |
| 594 | result.emplace_back(FFAcceleration(0)); |
| 595 | result.back()(1) = 0.0; |
| 596 | |
Alex Perry | 4ae2fd7 | 2019-02-03 15:55:57 -0800 | [diff] [blame] | 597 | while (!is_at_end(state)) { |
James Kuszmaul | 4d3c264 | 2020-03-05 07:32:39 -0800 | [diff] [blame] | 598 | if (state_is_faulted(state)) { |
| 599 | LOG(WARNING) |
| 600 | << "Found invalid state in generating spline and aborting. This is " |
| 601 | "likely due to a spline with extremely high jerk/changes in " |
| 602 | "curvature with an insufficiently small step size."; |
| 603 | return {}; |
| 604 | } |
Alex Perry | 4ae2fd7 | 2019-02-03 15:55:57 -0800 | [diff] [blame] | 605 | result.emplace_back(GetNextXVA(dt, &state)); |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 606 | } |
| 607 | return result; |
| 608 | } |
| 609 | |
Austin Schuh | 5b9e9c2 | 2019-01-07 15:44:06 -0800 | [diff] [blame] | 610 | void Trajectory::LimitVelocity(double starting_distance, double ending_distance, |
| 611 | const double max_velocity) { |
| 612 | const double segment_length = ending_distance - starting_distance; |
| 613 | |
| 614 | const double min_length = length() / static_cast<double>(plan_.size() - 1); |
| 615 | if (starting_distance > ending_distance) { |
Austin Schuh | f257f3c | 2019-10-27 21:00:43 -0700 | [diff] [blame] | 616 | AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance, |
| 617 | ending_distance); |
Austin Schuh | 5b9e9c2 | 2019-01-07 15:44:06 -0800 | [diff] [blame] | 618 | } |
| 619 | starting_distance = ::std::min(length(), ::std::max(0.0, starting_distance)); |
| 620 | ending_distance = ::std::min(length(), ::std::max(0.0, ending_distance)); |
| 621 | if (segment_length < min_length) { |
| 622 | const size_t plan_index = static_cast<size_t>( |
| 623 | ::std::round((starting_distance + ending_distance) / 2.0 / min_length)); |
| 624 | if (max_velocity < plan_[plan_index]) { |
| 625 | plan_[plan_index] = max_velocity; |
| 626 | } |
| 627 | } else { |
| 628 | for (size_t i = DistanceToSegment(starting_distance) + 1; |
| 629 | i < DistanceToSegment(ending_distance) + 1; ++i) { |
| 630 | if (max_velocity < plan_[i]) { |
| 631 | plan_[i] = max_velocity; |
| 632 | if (i < DistanceToSegment(ending_distance)) { |
| 633 | plan_segment_type_[i] = SegmentType::VELOCITY_LIMITED; |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | } |
| 639 | |
James Kuszmaul | aa2499d | 2020-06-02 21:31:19 -0700 | [diff] [blame^] | 640 | void Trajectory::PathRelativeContinuousSystem(double distance, |
| 641 | Eigen::Matrix<double, 5, 5> *A, |
| 642 | Eigen::Matrix<double, 5, 2> *B) { |
| 643 | const double nominal_velocity = FFAcceleration(distance)(1); |
| 644 | const double dtheta_dt = spline_->DThetaDt(distance, nominal_velocity); |
| 645 | // Calculate the "path-relative" coordinates, which are: |
| 646 | // [[distance along the path], |
| 647 | // [lateral position along path], |
| 648 | // [theta], |
| 649 | // [left wheel velocity], |
| 650 | // [right wheel velocity]] |
| 651 | Eigen::Matrix<double, 5, 1> nominal_X; |
| 652 | nominal_X << distance, 0.0, 0.0, |
| 653 | nominal_velocity - dtheta_dt * robot_radius_l_, |
| 654 | nominal_velocity + dtheta_dt * robot_radius_r_; |
| 655 | PathRelativeContinuousSystem(nominal_X, A, B); |
| 656 | } |
| 657 | |
| 658 | void Trajectory::PathRelativeContinuousSystem( |
| 659 | const Eigen::Matrix<double, 5, 1> &X, Eigen::Matrix<double, 5, 5> *A, |
| 660 | Eigen::Matrix<double, 5, 2> *B) { |
| 661 | A->setZero(); |
| 662 | B->setZero(); |
| 663 | const double theta = X(2); |
| 664 | const double ctheta = std::cos(theta); |
| 665 | const double stheta = std::sin(theta); |
| 666 | const double curvature = spline_->DTheta(X(0)); |
| 667 | const double longitudinal_velocity = (X(3) + X(4)) / 2.0; |
| 668 | const double diameter = robot_radius_l_ + robot_radius_r_; |
| 669 | // d_dpath / dt = (v_left + v_right) / 2.0 * cos(theta) |
| 670 | // (d_dpath / dt) / dv_left = cos(theta) / 2.0 |
| 671 | (*A)(0, 3) = ctheta / 2.0; |
| 672 | // (d_dpath / dt) / dv_right = cos(theta) / 2.0 |
| 673 | (*A)(0, 4) = ctheta / 2.0; |
| 674 | // (d_dpath / dt) / dtheta = -(v_left + v_right) / 2.0 * sin(theta) |
| 675 | (*A)(0, 2) = -longitudinal_velocity * stheta; |
| 676 | // d_dlat / dt = (v_left + v_right) / 2.0 * sin(theta) |
| 677 | // (d_dlat / dt) / dv_left = sin(theta) / 2.0 |
| 678 | (*A)(1, 3) = stheta / 2.0; |
| 679 | // (d_dlat / dt) / dv_right = sin(theta) / 2.0 |
| 680 | (*A)(1, 4) = stheta / 2.0; |
| 681 | // (d_dlat / dt) / dtheta = (v_left + v_right) / 2.0 * cos(theta) |
| 682 | (*A)(1, 2) = longitudinal_velocity * ctheta; |
| 683 | // dtheta / dt = (v_right - v_left) / diameter - curvature * (v_left + |
| 684 | // v_right) / 2.0 |
| 685 | // (dtheta / dt) / dv_left = -1.0 / diameter - curvature / 2.0 |
| 686 | (*A)(2, 3) = -1.0 / diameter - curvature / 2.0; |
| 687 | // (dtheta / dt) / dv_right = 1.0 / diameter - curvature / 2.0 |
| 688 | (*A)(2, 4) = 1.0 / diameter - curvature / 2.0; |
| 689 | // v_{left,right} / dt = the normal LTI system. |
| 690 | A->block<2, 2>(3, 3) = |
| 691 | velocity_drivetrain_->plant().coefficients().A_continuous; |
| 692 | B->block<2, 2>(3, 0) = |
| 693 | velocity_drivetrain_->plant().coefficients().B_continuous; |
| 694 | } |
| 695 | |
| 696 | double Trajectory::EstimateDistanceAlongPath( |
| 697 | double nominal_distance, const Eigen::Matrix<double, 5, 1> &state) { |
| 698 | const double nominal_theta = spline_->Theta(nominal_distance); |
| 699 | const Eigen::Matrix<double, 2, 1> xy_err = |
| 700 | state.block<2, 1>(0, 0) - spline_->XY(nominal_distance); |
| 701 | return nominal_distance + xy_err.x() * std::cos(nominal_theta) + |
| 702 | xy_err.y() * std::sin(nominal_theta); |
| 703 | } |
| 704 | |
| 705 | Eigen::Matrix<double, 5, 1> Trajectory::StateToPathRelativeState( |
| 706 | double distance, const Eigen::Matrix<double, 5, 1> &state) { |
| 707 | const double nominal_theta = spline_->Theta(distance); |
| 708 | const Eigen::Matrix<double, 2, 1> nominal_xy = spline_->XY(distance); |
| 709 | const Eigen::Matrix<double, 2, 1> xy_err = |
| 710 | state.block<2, 1>(0, 0) - nominal_xy; |
| 711 | const double ctheta = std::cos(nominal_theta); |
| 712 | const double stheta = std::sin(nominal_theta); |
| 713 | Eigen::Matrix<double, 5, 1> path_state; |
| 714 | path_state(0) = distance + xy_err.x() * ctheta + xy_err.y() * stheta; |
| 715 | path_state(1) = -xy_err.x() * stheta + xy_err.y() * ctheta; |
| 716 | path_state(2) = state(2) - nominal_theta; |
| 717 | path_state(3) = state(3); |
| 718 | path_state(4) = state(4); |
| 719 | return path_state; |
| 720 | } |
| 721 | |
| 722 | // Path-relative controller method: |
| 723 | // For the path relative controller, we use a non-standard version of LQR to |
| 724 | // perform the control. Essentially, we first transform the system into |
| 725 | // a set of path-relative coordinates (where the reference that we use is the |
| 726 | // desired path reference). This gives us a system that is linear and |
| 727 | // time-varying, i.e. the system is a set of A_k, B_k matrices for each |
| 728 | // timestep k. |
| 729 | // In order to control this, we use a discrete-time finite-horizon LQR, using |
| 730 | // the appropraite [AB]_k for the given timestep. Note that the finite-horizon |
| 731 | // LQR requires choosing a terminal cost (i.e., what the cost should be |
| 732 | // for if we have not precisely reached the goal at the end of the time-period). |
| 733 | // For this, I approximate the infinite-horizon LQR solution by extending the |
| 734 | // finite-horizon much longer (albeit with the extension just using the |
| 735 | // linearization for the infal point). |
| 736 | void Trajectory::CalculatePathGains() { |
| 737 | const std::vector<Eigen::Matrix<double, 3, 1>> xva_plan = PlanXVA(config_.dt); |
| 738 | plan_gains_.resize(xva_plan.size()); |
| 739 | |
| 740 | // Set up reasonable gain matrices. Current choices of gains are arbitrary |
| 741 | // and just setup to work well enough for the simulation tests. |
| 742 | // TODO(james): Tune this on a real robot. |
| 743 | // TODO(james): Pull these out into a config. |
| 744 | Eigen::Matrix<double, 5, 5> Q; |
| 745 | Q.setIdentity(); |
| 746 | Q.diagonal() << 20.0, 20.0, 20.0, 10.0, 10.0; |
| 747 | Q *= 2.0; |
| 748 | Q = (Q * Q).eval(); |
| 749 | |
| 750 | Eigen::Matrix<double, 2, 2> R; |
| 751 | R.setIdentity(); |
| 752 | R *= 5.0; |
| 753 | |
| 754 | Eigen::Matrix<double, 5, 5> P = Q; |
| 755 | |
| 756 | CHECK_LT(0u, xva_plan.size()); |
| 757 | const int max_index = static_cast<int>(xva_plan.size()) - 1; |
| 758 | for (int i = max_index; i >= 0; --i) { |
| 759 | const double distance = xva_plan[i](0); |
| 760 | Eigen::Matrix<double, 5, 5> A_continuous; |
| 761 | Eigen::Matrix<double, 5, 2> B_continuous; |
| 762 | PathRelativeContinuousSystem(distance, &A_continuous, &B_continuous); |
| 763 | Eigen::Matrix<double, 5, 5> A_discrete; |
| 764 | Eigen::Matrix<double, 5, 2> B_discrete; |
| 765 | controls::C2D(A_continuous, B_continuous, config_.dt, &A_discrete, |
| 766 | &B_discrete); |
| 767 | |
| 768 | if (i == max_index) { |
| 769 | // At the final timestep, approximate P by iterating a bunch of times. |
| 770 | // This is terminal cost mentioned in function-level comments. |
| 771 | // This does a very loose job of solving the DARE. Ideally, we would |
| 772 | // actually use a DARE solver directly, but based on some initial testing, |
| 773 | // this method is a bit more robust (or, at least, it is a bit more robust |
| 774 | // if we don't want to spend more time handling the potential error |
| 775 | // cases the DARE solver can encounter). |
| 776 | constexpr int kExtraIters = 100; |
| 777 | for (int jj = 0; jj < kExtraIters; ++jj) { |
| 778 | const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P; |
| 779 | const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete; |
| 780 | const Eigen::Matrix<double, 2, 2> RBPBinv = |
| 781 | (R + B_discrete.transpose() * P * B_discrete).inverse(); |
| 782 | P = AP * A_discrete - APB * RBPBinv * APB.transpose() + Q; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P; |
| 787 | const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete; |
| 788 | const Eigen::Matrix<double, 2, 2> RBPBinv = |
| 789 | (R + B_discrete.transpose() * P * B_discrete).inverse(); |
| 790 | plan_gains_[i].first = distance; |
| 791 | plan_gains_[i].second = RBPBinv * APB.transpose(); |
| 792 | P = AP * A_discrete - APB * plan_gains_[i].second + Q; |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | Eigen::Matrix<double, 2, 5> Trajectory::GainForDistance(double distance) { |
| 797 | CHECK(!plan_gains_.empty()); |
| 798 | size_t index = 0; |
| 799 | for (index = 0; index < plan_gains_.size() - 1; ++index) { |
| 800 | if (plan_gains_[index + 1].first > distance) { |
| 801 | break; |
| 802 | } |
| 803 | } |
| 804 | return plan_gains_[index].second; |
| 805 | } |
| 806 | |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 807 | } // namespace drivetrain |
| 808 | } // namespace control_loops |
| 809 | } // namespace frc971 |