blob: 36d09471f9f2a3c15fef97741009cfdb6e1e0986 [file] [log] [blame]
Austin Schuhec7f06d2019-01-04 07:47:15 +11001#include "frc971/control_loops/drivetrain/trajectory.h"
2
3#include <chrono>
4
5#include "Eigen/Dense"
Philipp Schrader790cb542023-07-05 21:06:52 -07006
7#include "aos/util/math.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +11008#include "frc971/control_loops/c2d.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -07009#include "frc971/control_loops/dlqr.h"
Austin Schuhec7f06d2019-01-04 07:47:15 +110010#include "frc971/control_loops/drivetrain/distance_spline.h"
11#include "frc971/control_loops/drivetrain/drivetrain_config.h"
12#include "frc971/control_loops/hybrid_state_feedback_loop.h"
13#include "frc971/control_loops/state_feedback_loop.h"
14
Stephan Pleinesf63bde82024-01-13 15:59:33 -080015namespace frc971::control_loops::drivetrain {
Austin Schuhec7f06d2019-01-04 07:47:15 +110016
James Kuszmaul75a18c52021-03-10 22:02:07 -080017namespace {
18float DefaultConstraint(ConstraintType type) {
19 switch (type) {
20 case ConstraintType::LONGITUDINAL_ACCELERATION:
21 return 2.0;
22 case ConstraintType::LATERAL_ACCELERATION:
23 return 3.0;
24 case ConstraintType::VOLTAGE:
25 return 12.0;
26 case ConstraintType::VELOCITY:
27 case ConstraintType::CONSTRAINT_TYPE_UNDEFINED:
28 LOG(FATAL) << "No default constraint value for "
29 << EnumNameConstraintType(type);
30 }
31 LOG(FATAL) << "Invalid ConstraintType " << static_cast<int>(type);
32}
33} // namespace
34
Austin Schuhf7c65202022-11-04 21:28:20 -070035FinishedTrajectory::FinishedTrajectory(
36 const DrivetrainConfig<double> &config, const fb::Trajectory *buffer,
37 std::shared_ptr<
38 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
39 HybridKalman<2, 2, 2>>>
40 velocity_drivetrain)
James Kuszmaul75a18c52021-03-10 22:02:07 -080041 : BaseTrajectory(CHECK_NOTNULL(CHECK_NOTNULL(buffer->spline())->spline())
42 ->constraints(),
Austin Schuhf7c65202022-11-04 21:28:20 -070043 config, std::move(velocity_drivetrain)),
James Kuszmaul75a18c52021-03-10 22:02:07 -080044 buffer_(buffer),
45 spline_(*buffer_->spline()) {}
46
47const Eigen::Matrix<double, 2, 1> BaseTrajectory::K1(
48 double current_ddtheta) const {
49 return (Eigen::Matrix<double, 2, 1>() << -robot_radius_l_ * current_ddtheta,
50 robot_radius_r_ * current_ddtheta)
51 .finished();
52}
53
54const Eigen::Matrix<double, 2, 1> BaseTrajectory::K2(
55 double current_dtheta) const {
56 return (Eigen::Matrix<double, 2, 1>()
57 << 1.0 - robot_radius_l_ * current_dtheta,
58 1.0 + robot_radius_r_ * current_dtheta)
59 .finished();
60}
61
62void BaseTrajectory::K345(const double x, Eigen::Matrix<double, 2, 1> *K3,
63 Eigen::Matrix<double, 2, 1> *K4,
64 Eigen::Matrix<double, 2, 1> *K5) const {
65 const double current_ddtheta = spline().DDTheta(x);
66 const double current_dtheta = spline().DTheta(x);
67 // We've now got the equation:
68 // K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
69 const Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta);
70
71 const Eigen::Matrix<double, 2, 2> B_inverse =
72 velocity_drivetrain_->plant().coefficients().B_continuous.inverse();
73
74 // Now, rephrase it as K5 a + K3 v^2 + K4 v = U
75 *K3 = B_inverse * K1(current_ddtheta);
76 *K4 = -B_inverse * velocity_drivetrain_->plant().coefficients().A_continuous *
77 my_K2;
78 *K5 = B_inverse * my_K2;
79}
80
81BaseTrajectory::BaseTrajectory(
82 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
Austin Schuhf7c65202022-11-04 21:28:20 -070083 const DrivetrainConfig<double> &config,
84 std::shared_ptr<
85 StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
86 HybridKalman<2, 2, 2>>>
87 velocity_drivetrain)
88 : velocity_drivetrain_(std::move(velocity_drivetrain)),
James Kuszmaulaa2499d2020-06-02 21:31:19 -070089 config_(config),
Austin Schuhec7f06d2019-01-04 07:47:15 +110090 robot_radius_l_(config.robot_radius),
91 robot_radius_r_(config.robot_radius),
James Kuszmaul75a18c52021-03-10 22:02:07 -080092 lateral_acceleration_(
93 ConstraintValue(constraints, ConstraintType::LATERAL_ACCELERATION)),
94 longitudinal_acceleration_(ConstraintValue(
95 constraints, ConstraintType::LONGITUDINAL_ACCELERATION)),
96 voltage_limit_(ConstraintValue(constraints, ConstraintType::VOLTAGE)) {}
97
98Trajectory::Trajectory(const SplineGoal &spline_goal,
99 const DrivetrainConfig<double> &config)
100 : Trajectory(DistanceSpline{spline_goal.spline()}, config,
101 spline_goal.spline()->constraints(),
102 spline_goal.spline_idx()) {
103 drive_spline_backwards_ = spline_goal.drive_spline_backwards();
104}
105
106Trajectory::Trajectory(
107 DistanceSpline &&input_spline, const DrivetrainConfig<double> &config,
108 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
109 int spline_idx, double vmax, int num_distance)
110 : BaseTrajectory(constraints, config),
111 spline_idx_(spline_idx),
112 spline_(std::move(input_spline)),
113 config_(config),
Austin Schuhe73a9052019-01-07 12:16:17 -0800114 plan_(num_distance == 0
Austin Schuh890196c2021-03-31 20:18:45 -0700115 ? std::max(10000, static_cast<int>(spline_.length() / 0.0025))
Austin Schuhe73a9052019-01-07 12:16:17 -0800116 : num_distance,
117 vmax),
James Kuszmaul75a18c52021-03-10 22:02:07 -0800118 plan_segment_type_(plan_.size(),
119 fb::SegmentConstraint::VELOCITY_LIMITED) {
120 if (constraints != nullptr) {
121 for (const Constraint *constraint : *constraints) {
122 if (constraint->constraint_type() == ConstraintType::VELOCITY) {
123 LimitVelocity(constraint->start_distance(), constraint->end_distance(),
124 constraint->value());
125 }
126 }
127 }
128}
Austin Schuhec7f06d2019-01-04 07:47:15 +1100129
130void Trajectory::LateralAccelPass() {
131 for (size_t i = 0; i < plan_.size(); ++i) {
132 const double distance = Distance(i);
Austin Schuhd749d932020-12-30 21:38:40 -0800133 const double velocity_limit = LateralVelocityCurvature(distance);
James Kuszmaulea314d92019-02-18 19:45:06 -0800134 if (velocity_limit < plan_[i]) {
135 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800136 plan_segment_type_[i] = fb::SegmentConstraint::CURVATURE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800137 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100138 }
139}
140
James Kuszmaulea314d92019-02-18 19:45:06 -0800141void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) {
142 for (size_t i = 0; i < plan_.size(); ++i) {
143 const double distance = Distance(i);
144 const double velocity_limit = VoltageVelocityLimit(distance, limit_type);
145 if (velocity_limit < plan_[i]) {
146 plan_[i] = velocity_limit;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800147 plan_segment_type_[i] = fb::SegmentConstraint::VOLTAGE_LIMITED;
James Kuszmaulea314d92019-02-18 19:45:06 -0800148 }
149 }
150}
151
James Kuszmaul75a18c52021-03-10 22:02:07 -0800152double BaseTrajectory::BestAcceleration(double x, double v,
153 bool backwards) const {
154 Eigen::Matrix<double, 2, 1> K3;
155 Eigen::Matrix<double, 2, 1> K4;
156 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100157 K345(x, &K3, &K4, &K5);
158
Austin Schuhec7f06d2019-01-04 07:47:15 +1100159 // Now, solve for all a's and find the best one which meets our criteria.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800160 const Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
161 double min_voltage_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800162 double max_voltage_accel = -min_voltage_accel;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800163 for (const double a : {(max_voltage() - C(0, 0)) / K5(0, 0),
164 (max_voltage() - C(1, 0)) / K5(1, 0),
165 (-max_voltage() - C(0, 0)) / K5(0, 0),
166 (-max_voltage() - C(1, 0)) / K5(1, 0)}) {
167 const Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
168 if ((U.array().abs() < max_voltage() + 1e-6).all()) {
169 min_voltage_accel = std::min(a, min_voltage_accel);
170 max_voltage_accel = std::max(a, max_voltage_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100171 }
172 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800173 double best_accel = backwards ? min_voltage_accel : max_voltage_accel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100174
James Kuszmaulea314d92019-02-18 19:45:06 -0800175 double min_friction_accel, max_friction_accel;
176 FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel);
177 if (backwards) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800178 best_accel = std::max(best_accel, min_friction_accel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800179 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800180 best_accel = std::min(best_accel, max_friction_accel);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100181 }
James Kuszmaulea314d92019-02-18 19:45:06 -0800182
James Kuszmaul66b78042020-02-23 15:30:51 -0800183 // Ideally, the max would never be less than the min, but due to the way that
184 // the runge kutta solver works, it sometimes ticks over the edge.
185 if (max_friction_accel < min_friction_accel) {
186 VLOG(1) << "At x " << x << " v " << v << " min fric acc "
187 << min_friction_accel << " max fric accel " << max_friction_accel;
188 }
189 if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) {
190 LOG(WARNING) << "Viable friction limits and viable voltage limits do not "
Austin Schuhd749d932020-12-30 21:38:40 -0800191 "overlap (x: "
192 << x << ", v: " << v << ", backwards: " << backwards
James Kuszmaul66b78042020-02-23 15:30:51 -0800193 << ") best_accel = " << best_accel << ", min voltage "
194 << min_voltage_accel << ", max voltage " << max_voltage_accel
195 << " min friction " << min_friction_accel << " max friction "
196 << max_friction_accel << ".";
197
James Kuszmaulea314d92019-02-18 19:45:06 -0800198 // Don't actually do anything--this will just result in attempting to drive
199 // higher voltages thatn we have available. In practice, that'll probably
200 // work out fine.
201 }
202
203 return best_accel;
204}
205
James Kuszmaul75a18c52021-03-10 22:02:07 -0800206double BaseTrajectory::LateralVelocityCurvature(double distance) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800207 // To calculate these constraints, we first note that:
208 // wheel accels = K2 * v_robot' + K1 * v_robot^2
209 // All that this logic does is solve for v_robot, leaving v_robot' free,
210 // assuming that the wheels are at their limits.
211 // To do this, we:
212 //
213 // 1) Determine what the wheel accels will be at the limit--since we have
214 // two free variables (v_robot, v_robot'), both wheels will be at their
215 // limits--if in a sufficiently tight turn (such that the signs of the
216 // coefficients of K2 are different), then the wheels will be accelerating
217 // in opposite directions; otherwise, they accelerate in the same direction.
218 // The magnitude of these per-wheel accelerations is a function of velocity,
219 // so it must also be solved for.
220 //
221 // 2) Eliminate that v_robot' term (since we don't care
222 // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on
223 // both sides of the equation.
224 //
225 // 3) Solving the relatively tractable remaining equation, which is
226 // basically just grouping all the terms together in one spot and taking the
227 // 4th root of everything.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800228 const double dtheta = spline().DTheta(distance);
229 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800230 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800231 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
James Kuszmaulea314d92019-02-18 19:45:06 -0800232 // Calculate whether the wheels are spinning in opposite directions.
233 const bool opposites = K2prime(0) * K2prime(1) < 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800234 const Eigen::Matrix<double, 2, 1> K1calc = K1(spline().DDTheta(distance));
235 const double lat_accel_squared = std::pow(dtheta / max_lateral_accel(), 2);
James Kuszmaulea314d92019-02-18 19:45:06 -0800236 const double curvature_change_term =
237 (K2prime * K1calc).value() /
238 (K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800239 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800240 .finished() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800241 max_longitudinal_accel())
James Kuszmaulea314d92019-02-18 19:45:06 -0800242 .value();
James Kuszmaul75a18c52021-03-10 22:02:07 -0800243 const double vel_inv = std::sqrt(
244 std::sqrt(std::pow(curvature_change_term, 2) + lat_accel_squared));
James Kuszmaulea314d92019-02-18 19:45:06 -0800245 if (vel_inv == 0.0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800246 return std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800247 }
248 return 1.0 / vel_inv;
249}
250
James Kuszmaul75a18c52021-03-10 22:02:07 -0800251void BaseTrajectory::FrictionLngAccelLimits(double x, double v,
252 double *min_accel,
253 double *max_accel) const {
James Kuszmaulea314d92019-02-18 19:45:06 -0800254 // First, calculate the max longitudinal acceleration that can be achieved
255 // by either wheel given the friction elliipse that we have.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800256 const double lateral_acceleration = v * v * spline().DDXY(x).norm();
James Kuszmaulea314d92019-02-18 19:45:06 -0800257 const double max_wheel_lng_accel_squared =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800258 1.0 - std::pow(lateral_acceleration / max_lateral_accel(), 2.0);
James Kuszmaulea314d92019-02-18 19:45:06 -0800259 if (max_wheel_lng_accel_squared < 0.0) {
James Kuszmaul66b78042020-02-23 15:30:51 -0800260 VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v
261 << " at distance " << x;
James Kuszmaulea314d92019-02-18 19:45:06 -0800262 // If we encounter this, it means that the Runge-Kutta has attempted to
263 // sample points a bit past the edge of the friction boundary. If so, we
264 // gradually ramp the min/max accels to be more and more incorrect (note
265 // how min_accel > max_accel if we reach this case) to avoid causing any
266 // numerical issues.
267 *min_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800268 std::sqrt(-max_wheel_lng_accel_squared) * max_longitudinal_accel();
James Kuszmaulea314d92019-02-18 19:45:06 -0800269 *max_accel = -*min_accel;
270 return;
271 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800272 *min_accel = -std::numeric_limits<double>::infinity();
273 *max_accel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800274
275 // Calculate max/min accelerations by calculating what the robots overall
276 // longitudinal acceleration would be if each wheel were running at the max
277 // forwards/backwards longitudinal acceleration.
278 const double max_wheel_lng_accel =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800279 max_longitudinal_accel() * std::sqrt(max_wheel_lng_accel_squared);
280 const Eigen::Matrix<double, 2, 1> K1v2 = K1(spline().DDTheta(x)) * v * v;
281 const Eigen::Matrix<double, 2, 1> K2inv =
282 K2(spline().DTheta(x)).cwiseInverse();
James Kuszmaulea314d92019-02-18 19:45:06 -0800283 // Store the accelerations of the robot corresponding to each wheel being at
284 // the max/min acceleration. The first coefficient in each vector
285 // corresponds to the left wheel, the second to the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800286 const Eigen::Matrix<double, 2, 1> accels1 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800287 K2inv.array() * (-K1v2.array() + max_wheel_lng_accel);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800288 const Eigen::Matrix<double, 2, 1> accels2 =
James Kuszmaulea314d92019-02-18 19:45:06 -0800289 K2inv.array() * (-K1v2.array() - max_wheel_lng_accel);
290
291 // If either term is non-finite, that suggests that a term of K2 is zero
292 // (which is physically possible when turning such that one wheel is
293 // stationary), so just ignore that side of the drivetrain.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800294 if (std::isfinite(accels1(0))) {
James Kuszmaulea314d92019-02-18 19:45:06 -0800295 // The inner max/min in this case determines which of the two cases (+ or
296 // - acceleration on the left wheel) we care about--in a sufficiently
297 // tight turning radius, the left hweel may be accelerating backwards when
298 // the robot as a whole accelerates forwards. We then use that
299 // acceleration to bound the min/max accel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800300 *min_accel = std::max(*min_accel, std::min(accels1(0), accels2(0)));
301 *max_accel = std::min(*max_accel, std::max(accels1(0), accels2(0)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800302 }
303 // Same logic as previous if-statement, but for the right wheel.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800304 if (std::isfinite(accels1(1))) {
305 *min_accel = std::max(*min_accel, std::min(accels1(1), accels2(1)));
306 *max_accel = std::min(*max_accel, std::max(accels1(1), accels2(1)));
James Kuszmaulea314d92019-02-18 19:45:06 -0800307 }
308}
309
310double Trajectory::VoltageVelocityLimit(
311 double distance, VoltageLimit limit_type,
312 Eigen::Matrix<double, 2, 1> *constraint_voltages) const {
313 // To sketch an outline of the math going on here, we start with the basic
314 // dynamics of the robot along the spline:
315 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U
316 // We need to determine the maximum v_robot given constrained U and free
317 // v_robot'.
318 // Similarly to the friction constraints, we accomplish this by first
319 // multiplying by a K2prime term to eliminate the v_robot' term.
320 // As with the friction constraints, we also know that the limits will occur
321 // when both sides of the drivetrain are driven at their max magnitude
322 // voltages, although they may be driven at different signs.
323 // Once we determine whether the voltages match signs, we still have to
324 // consider both possible pairings (technically we could probably
325 // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't
326 // need to).
327 //
328 // For each pairing, we then get to solve a quadratic formula for the robot
329 // velocity at those voltages. This gives us up to 4 solutions, of which
330 // up to 3 will give us positive velocities; each solution velocity
331 // corresponds to a transition from feasibility to infeasibility, where a
332 // velocity of zero is always feasible, and there will always be 0, 1, or 3
333 // positive solutions. Among the positive solutions, we take both the min
334 // and the max--the min will be the highest velocity such that all
335 // velocities between zero and that velocity are valid; the max will be
336 // the highest feasible velocity. Which we return depends on what the
337 // limit_type is.
338 //
339 // Sketching the actual math:
340 // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max
341 // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max)
342 // a v_robot^2 + b v_robot +/- c = 0
James Kuszmaul75a18c52021-03-10 22:02:07 -0800343 const Eigen::Matrix<double, 2, 2> B =
344 velocity_drivetrain().plant().coefficients().B_continuous;
345 const double dtheta = spline().DTheta(distance);
346 const Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta);
James Kuszmaulea314d92019-02-18 19:45:06 -0800347 // Because voltages can actually impact *both* wheels, in order to determine
348 // whether the voltages will have opposite signs, we need to use B^-1 * K2.
349 const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800350 const Eigen::Matrix<double, 1, 2> K2prime =
James Kuszmaulea314d92019-02-18 19:45:06 -0800351 K2(dtheta).transpose() *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800352 (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
353 const double a = K2prime * K1(spline().DDTheta(distance));
James Kuszmaulea314d92019-02-18 19:45:06 -0800354 const double b = -K2prime *
James Kuszmaul75a18c52021-03-10 22:02:07 -0800355 velocity_drivetrain().plant().coefficients().A_continuous *
James Kuszmaulea314d92019-02-18 19:45:06 -0800356 K2(dtheta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800357 const Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B;
James Kuszmaulea314d92019-02-18 19:45:06 -0800358 // Calculate the "positive" version of the voltage limits we will use.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800359 const Eigen::Matrix<double, 2, 1> abs_volts =
360 max_voltage() *
361 (Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0))
James Kuszmaulea314d92019-02-18 19:45:06 -0800362 .finished();
363
James Kuszmaul75a18c52021-03-10 22:02:07 -0800364 double min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800365 if (limit_type == VoltageLimit::kAggressive) {
366 min_valid_vel = 0.0;
367 }
368 // Iterate over both possibilites for +/- voltage, and solve the quadratic
369 // formula. For every positive solution, adjust the velocity limit
370 // appropriately.
371 for (const double sign : {1.0, -1.0}) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800372 const Eigen::Matrix<double, 2, 1> U = sign * abs_volts;
James Kuszmaulea314d92019-02-18 19:45:06 -0800373 const double prev_vel = min_valid_vel;
374 const double c = c_coeff * U;
375 const double determinant = b * b - 4 * a * c;
376 if (a == 0) {
377 // If a == 0, that implies we are on a constant curvature path, in which
378 // case we just have b * v + c = 0.
379 // Note that if -b * c > 0.0, then vel will be greater than zero and b
380 // will be non-zero.
381 if (-b * c > 0.0) {
382 const double vel = -c / b;
383 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800384 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800385 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800386 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800387 }
388 } else if (b == 0) {
389 // If a and b are zero, then we are travelling in a straight line and
390 // have no voltage-based velocity constraints.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800391 min_valid_vel = std::numeric_limits<double>::infinity();
James Kuszmaulea314d92019-02-18 19:45:06 -0800392 }
393 } else if (determinant > 0) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800394 const double sqrt_determinant = std::sqrt(determinant);
James Kuszmaulea314d92019-02-18 19:45:06 -0800395 const double high_vel = (-b + sqrt_determinant) / (2.0 * a);
396 const double low_vel = (-b - sqrt_determinant) / (2.0 * a);
397 if (low_vel > 0) {
398 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800399 min_valid_vel = std::min(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800400 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800401 min_valid_vel = std::max(min_valid_vel, low_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800402 }
403 }
404 if (high_vel > 0) {
405 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800406 min_valid_vel = std::min(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800407 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800408 min_valid_vel = std::max(min_valid_vel, high_vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800409 }
410 }
411 } else if (determinant == 0 && -b * a > 0) {
412 const double vel = -b / (2.0 * a);
413 if (vel > 0.0) {
414 if (limit_type == VoltageLimit::kConservative) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800415 min_valid_vel = std::min(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800416 } else {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800417 min_valid_vel = std::max(min_valid_vel, vel);
James Kuszmaulea314d92019-02-18 19:45:06 -0800418 }
419 }
420 }
421 if (constraint_voltages != nullptr && prev_vel != min_valid_vel) {
422 *constraint_voltages = U;
423 }
424 }
425 return min_valid_vel;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100426}
427
428void Trajectory::ForwardPass() {
429 plan_[0] = 0.0;
430 const double delta_distance = Distance(1) - Distance(0);
431 for (size_t i = 0; i < plan_.size() - 1; ++i) {
432 const double distance = Distance(i);
433
434 // Integrate our acceleration forward one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800435 const double new_plan_velocity = IntegrateAccelForDistance(
436 [this](double x, double v) { return ForwardAcceleration(x, v); },
437 plan_[i], distance, delta_distance);
438
James Kuszmaulea314d92019-02-18 19:45:06 -0800439 if (new_plan_velocity <= plan_[i + 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800440 plan_[i + 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800441 plan_segment_type_[i] = fb::SegmentConstraint::ACCELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800442 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100443 }
444}
445
Austin Schuhec7f06d2019-01-04 07:47:15 +1100446void Trajectory::BackwardPass() {
447 const double delta_distance = Distance(0) - Distance(1);
448 plan_.back() = 0.0;
449 for (size_t i = plan_.size() - 1; i > 0; --i) {
450 const double distance = Distance(i);
451
452 // Integrate our deceleration back one step.
Austin Schuhe73a9052019-01-07 12:16:17 -0800453 const double new_plan_velocity = IntegrateAccelForDistance(
454 [this](double x, double v) { return BackwardAcceleration(x, v); },
455 plan_[i], distance, delta_distance);
456
James Kuszmaulea314d92019-02-18 19:45:06 -0800457 if (new_plan_velocity <= plan_[i - 1]) {
Austin Schuhe73a9052019-01-07 12:16:17 -0800458 plan_[i - 1] = new_plan_velocity;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800459 plan_segment_type_[i - 1] = fb::SegmentConstraint::DECELERATION_LIMITED;
Austin Schuhe73a9052019-01-07 12:16:17 -0800460 }
Austin Schuhec7f06d2019-01-04 07:47:15 +1100461 }
462}
463
James Kuszmaul75a18c52021-03-10 22:02:07 -0800464Eigen::Matrix<double, 3, 1> BaseTrajectory::FFAcceleration(
465 double distance) const {
Austin Schuhe73a9052019-01-07 12:16:17 -0800466 if (distance < 0.0) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100467 // Make sure we don't end up off the beginning of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800468 distance = 0.0;
469 } else if (distance > length()) {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100470 // Make sure we don't end up off the end of the curve.
Austin Schuhe73a9052019-01-07 12:16:17 -0800471 distance = length();
Austin Schuhec7f06d2019-01-04 07:47:15 +1100472 }
Austin Schuhe73a9052019-01-07 12:16:17 -0800473 const size_t before_index = DistanceToSegment(distance);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800474 const size_t after_index =
475 std::min(before_index + 1, distance_plan_size() - 1);
Austin Schuhe73a9052019-01-07 12:16:17 -0800476
Austin Schuhec7f06d2019-01-04 07:47:15 +1100477 const double before_distance = Distance(before_index);
478 const double after_distance = Distance(after_index);
479
Austin Schuhec7f06d2019-01-04 07:47:15 +1100480 // And then also make sure we aren't curvature limited.
481 const double vcurvature = LateralVelocityCurvature(distance);
482
483 double acceleration;
484 double velocity;
James Kuszmaulea314d92019-02-18 19:45:06 -0800485 // TODO(james): While technically correct for sufficiently small segment
486 // steps, this method of switching between limits has a tendency to produce
487 // sudden jumps in acceelrations, which is undesirable.
James Kuszmaul75a18c52021-03-10 22:02:07 -0800488 switch (plan_constraint(DistanceToSegment(distance))) {
489 case fb::SegmentConstraint::VELOCITY_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800490 acceleration = 0.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800491 velocity =
492 (plan_velocity(before_index) + plan_velocity(after_index)) / 2.0;
Austin Schuhe73a9052019-01-07 12:16:17 -0800493 // TODO(austin): Accelerate or decelerate until we hit the limit in the
494 // time slice. Otherwise our acceleration will be lying for this slice.
495 // Do note, we've got small slices so the effect will be small.
496 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800497 case fb::SegmentConstraint::CURVATURE_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800498 velocity = vcurvature;
James Kuszmaulea314d92019-02-18 19:45:06 -0800499 FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration);
500 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800501 case fb::SegmentConstraint::VOLTAGE_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800502 // Normally, we expect that voltage limited plans will all get dominated
503 // by the acceleration/deceleration limits. This may not always be true;
504 // if we ever encounter this error, we just need to back out what the
505 // accelerations would be in this case.
Austin Schuhd749d932020-12-30 21:38:40 -0800506 LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan.";
Austin Schuhe73a9052019-01-07 12:16:17 -0800507 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800508 case fb::SegmentConstraint::ACCELERATION_LIMITED:
James Kuszmaulea314d92019-02-18 19:45:06 -0800509 // TODO(james): The integration done here and in the DECELERATION_LIMITED
510 // can technically cause us to violate friction constraints. We currently
511 // don't do anything about it to avoid causing sudden jumps in voltage,
512 // but we probably *should* at some point.
Austin Schuhe73a9052019-01-07 12:16:17 -0800513 velocity = IntegrateAccelForDistance(
514 [this](double x, double v) { return ForwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800515 plan_velocity(before_index), before_distance,
516 distance - before_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800517 acceleration = ForwardAcceleration(distance, velocity);
518 break;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800519 case fb::SegmentConstraint::DECELERATION_LIMITED:
Austin Schuhe73a9052019-01-07 12:16:17 -0800520 velocity = IntegrateAccelForDistance(
521 [this](double x, double v) { return BackwardAcceleration(x, v); },
James Kuszmaul75a18c52021-03-10 22:02:07 -0800522 plan_velocity(after_index), after_distance,
523 distance - after_distance);
Austin Schuhe73a9052019-01-07 12:16:17 -0800524 acceleration = BackwardAcceleration(distance, velocity);
525 break;
526 default:
James Kuszmaul75a18c52021-03-10 22:02:07 -0800527 AOS_LOG(FATAL, "Unknown segment type %d\n",
528 static_cast<int>(plan_constraint(DistanceToSegment(distance))));
Austin Schuhe73a9052019-01-07 12:16:17 -0800529 break;
530 }
531
James Kuszmaul75a18c52021-03-10 22:02:07 -0800532 return (Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration)
Austin Schuhec7f06d2019-01-04 07:47:15 +1100533 .finished();
534}
535
James Kuszmaul75a18c52021-03-10 22:02:07 -0800536size_t FinishedTrajectory::distance_plan_size() const {
537 return trajectory().has_distance_based_plan()
538 ? trajectory().distance_based_plan()->size()
539 : 0u;
540}
541
542fb::SegmentConstraint FinishedTrajectory::plan_constraint(size_t index) const {
543 CHECK_LT(index, distance_plan_size());
544 return trajectory().distance_based_plan()->Get(index)->segment_constraint();
545}
546
547float FinishedTrajectory::plan_velocity(size_t index) const {
548 CHECK_LT(index, distance_plan_size());
549 return trajectory().distance_based_plan()->Get(index)->velocity();
550}
551
552Eigen::Matrix<double, 2, 1> BaseTrajectory::FFVoltage(double distance) const {
Austin Schuhec7f06d2019-01-04 07:47:15 +1100553 const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance);
554 const double velocity = xva(1);
555 const double acceleration = xva(2);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100556
James Kuszmaul75a18c52021-03-10 22:02:07 -0800557 Eigen::Matrix<double, 2, 1> K3;
558 Eigen::Matrix<double, 2, 1> K4;
559 Eigen::Matrix<double, 2, 1> K5;
Austin Schuhe73a9052019-01-07 12:16:17 -0800560 K345(distance, &K3, &K4, &K5);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100561
562 return K5 * acceleration + K3 * velocity * velocity + K4 * velocity;
563}
564
James Kuszmaul75a18c52021-03-10 22:02:07 -0800565const std::vector<double> Trajectory::Distances() const {
566 std::vector<double> d;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100567 d.reserve(plan_.size());
568 for (size_t i = 0; i < plan_.size(); ++i) {
569 d.push_back(Distance(i));
570 }
571 return d;
572}
573
James Kuszmaul75a18c52021-03-10 22:02:07 -0800574Eigen::Matrix<double, 3, 1> BaseTrajectory::GetNextXVA(
575 std::chrono::nanoseconds dt, Eigen::Matrix<double, 2, 1> *state) const {
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700576 double dt_float = ::aos::time::DurationInSeconds(dt);
Austin Schuhec7f06d2019-01-04 07:47:15 +1100577
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800578 const double last_distance = (*state)(0);
Alex Perry4ae2fd72019-02-03 15:55:57 -0800579 // TODO(austin): This feels like something that should be pulled out into
580 // a library for re-use.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700581 *state = RungeKutta(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800582 [this](const Eigen::Matrix<double, 2, 1> x) {
583 Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0));
584 return (Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished();
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700585 },
586 *state, dt_float);
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800587 // Force the distance to move forwards, to guarantee that we actually finish
588 // the planning.
589 constexpr double kMinDistanceIncrease = 1e-7;
590 if ((*state)(0) < last_distance + kMinDistanceIncrease) {
591 (*state)(0) = last_distance + kMinDistanceIncrease;
592 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800593
James Kuszmaul75a18c52021-03-10 22:02:07 -0800594 Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0));
Alex Perry4ae2fd72019-02-03 15:55:57 -0800595 (*state)(1) = result(1);
596 return result;
597}
598
James Kuszmaul75a18c52021-03-10 22:02:07 -0800599std::vector<Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA(
600 std::chrono::nanoseconds dt) {
601 Eigen::Matrix<double, 2, 1> state = Eigen::Matrix<double, 2, 1>::Zero();
602 std::vector<Eigen::Matrix<double, 3, 1>> result;
Austin Schuhec7f06d2019-01-04 07:47:15 +1100603 result.emplace_back(FFAcceleration(0));
604 result.back()(1) = 0.0;
605
Alex Perry4ae2fd72019-02-03 15:55:57 -0800606 while (!is_at_end(state)) {
James Kuszmaul4d3c2642020-03-05 07:32:39 -0800607 if (state_is_faulted(state)) {
608 LOG(WARNING)
609 << "Found invalid state in generating spline and aborting. This is "
610 "likely due to a spline with extremely high jerk/changes in "
611 "curvature with an insufficiently small step size.";
612 return {};
613 }
Alex Perry4ae2fd72019-02-03 15:55:57 -0800614 result.emplace_back(GetNextXVA(dt, &state));
Austin Schuhec7f06d2019-01-04 07:47:15 +1100615 }
616 return result;
617}
618
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800619void Trajectory::LimitVelocity(double starting_distance, double ending_distance,
620 const double max_velocity) {
621 const double segment_length = ending_distance - starting_distance;
622
623 const double min_length = length() / static_cast<double>(plan_.size() - 1);
624 if (starting_distance > ending_distance) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700625 AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance,
626 ending_distance);
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800627 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800628 starting_distance = std::min(length(), std::max(0.0, starting_distance));
629 ending_distance = std::min(length(), std::max(0.0, ending_distance));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800630 if (segment_length < min_length) {
631 const size_t plan_index = static_cast<size_t>(
James Kuszmaul75a18c52021-03-10 22:02:07 -0800632 std::round((starting_distance + ending_distance) / 2.0 / min_length));
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800633 if (max_velocity < plan_[plan_index]) {
634 plan_[plan_index] = max_velocity;
635 }
636 } else {
637 for (size_t i = DistanceToSegment(starting_distance) + 1;
638 i < DistanceToSegment(ending_distance) + 1; ++i) {
639 if (max_velocity < plan_[i]) {
640 plan_[i] = max_velocity;
641 if (i < DistanceToSegment(ending_distance)) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800642 plan_segment_type_[i] = fb::SegmentConstraint::VELOCITY_LIMITED;
Austin Schuh5b9e9c22019-01-07 15:44:06 -0800643 }
644 }
645 }
646 }
647}
648
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700649void Trajectory::PathRelativeContinuousSystem(double distance,
650 Eigen::Matrix<double, 5, 5> *A,
651 Eigen::Matrix<double, 5, 2> *B) {
652 const double nominal_velocity = FFAcceleration(distance)(1);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800653 const double dtheta_dt = spline().DThetaDt(distance, nominal_velocity);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700654 // Calculate the "path-relative" coordinates, which are:
655 // [[distance along the path],
656 // [lateral position along path],
657 // [theta],
658 // [left wheel velocity],
659 // [right wheel velocity]]
660 Eigen::Matrix<double, 5, 1> nominal_X;
661 nominal_X << distance, 0.0, 0.0,
James Kuszmaul75a18c52021-03-10 22:02:07 -0800662 nominal_velocity - dtheta_dt * robot_radius_l(),
663 nominal_velocity + dtheta_dt * robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700664 PathRelativeContinuousSystem(nominal_X, A, B);
665}
666
667void Trajectory::PathRelativeContinuousSystem(
668 const Eigen::Matrix<double, 5, 1> &X, Eigen::Matrix<double, 5, 5> *A,
669 Eigen::Matrix<double, 5, 2> *B) {
670 A->setZero();
671 B->setZero();
672 const double theta = X(2);
673 const double ctheta = std::cos(theta);
674 const double stheta = std::sin(theta);
James Kuszmaul75a18c52021-03-10 22:02:07 -0800675 const double curvature = spline().DTheta(X(0));
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700676 const double longitudinal_velocity = (X(3) + X(4)) / 2.0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800677 const double diameter = robot_radius_l() + robot_radius_r();
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700678 // d_dpath / dt = (v_left + v_right) / 2.0 * cos(theta)
679 // (d_dpath / dt) / dv_left = cos(theta) / 2.0
680 (*A)(0, 3) = ctheta / 2.0;
681 // (d_dpath / dt) / dv_right = cos(theta) / 2.0
682 (*A)(0, 4) = ctheta / 2.0;
683 // (d_dpath / dt) / dtheta = -(v_left + v_right) / 2.0 * sin(theta)
684 (*A)(0, 2) = -longitudinal_velocity * stheta;
685 // d_dlat / dt = (v_left + v_right) / 2.0 * sin(theta)
686 // (d_dlat / dt) / dv_left = sin(theta) / 2.0
687 (*A)(1, 3) = stheta / 2.0;
688 // (d_dlat / dt) / dv_right = sin(theta) / 2.0
689 (*A)(1, 4) = stheta / 2.0;
690 // (d_dlat / dt) / dtheta = (v_left + v_right) / 2.0 * cos(theta)
691 (*A)(1, 2) = longitudinal_velocity * ctheta;
692 // dtheta / dt = (v_right - v_left) / diameter - curvature * (v_left +
693 // v_right) / 2.0
694 // (dtheta / dt) / dv_left = -1.0 / diameter - curvature / 2.0
695 (*A)(2, 3) = -1.0 / diameter - curvature / 2.0;
696 // (dtheta / dt) / dv_right = 1.0 / diameter - curvature / 2.0
697 (*A)(2, 4) = 1.0 / diameter - curvature / 2.0;
698 // v_{left,right} / dt = the normal LTI system.
699 A->block<2, 2>(3, 3) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800700 velocity_drivetrain().plant().coefficients().A_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700701 B->block<2, 2>(3, 0) =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800702 velocity_drivetrain().plant().coefficients().B_continuous;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700703}
704
705double Trajectory::EstimateDistanceAlongPath(
706 double nominal_distance, const Eigen::Matrix<double, 5, 1> &state) {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800707 const double nominal_theta = spline().Theta(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700708 const Eigen::Matrix<double, 2, 1> xy_err =
James Kuszmaul75a18c52021-03-10 22:02:07 -0800709 state.block<2, 1>(0, 0) - spline().XY(nominal_distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700710 return nominal_distance + xy_err.x() * std::cos(nominal_theta) +
711 xy_err.y() * std::sin(nominal_theta);
712}
713
James Kuszmaul75a18c52021-03-10 22:02:07 -0800714Eigen::Matrix<double, 5, 1> FinishedTrajectory::StateToPathRelativeState(
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700715 double distance, const Eigen::Matrix<double, 5, 1> &state,
716 bool drive_backwards) const {
James Kuszmaul75a18c52021-03-10 22:02:07 -0800717 const double nominal_theta = spline().Theta(distance);
718 const Eigen::Matrix<double, 2, 1> nominal_xy = spline().XY(distance);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700719 const Eigen::Matrix<double, 2, 1> xy_err =
720 state.block<2, 1>(0, 0) - nominal_xy;
721 const double ctheta = std::cos(nominal_theta);
722 const double stheta = std::sin(nominal_theta);
723 Eigen::Matrix<double, 5, 1> path_state;
724 path_state(0) = distance + xy_err.x() * ctheta + xy_err.y() * stheta;
725 path_state(1) = -xy_err.x() * stheta + xy_err.y() * ctheta;
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700726 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta +
727 (drive_backwards ? M_PI : 0.0));
728 path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta);
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700729 path_state(3) = state(3);
730 path_state(4) = state(4);
James Kuszmaul5e8ce312021-03-27 14:59:17 -0700731 if (drive_backwards) {
732 std::swap(path_state(3), path_state(4));
733 path_state(3) *= -1.0;
734 path_state(4) *= -1.0;
735 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700736 return path_state;
737}
738
739// Path-relative controller method:
740// For the path relative controller, we use a non-standard version of LQR to
741// perform the control. Essentially, we first transform the system into
742// a set of path-relative coordinates (where the reference that we use is the
743// desired path reference). This gives us a system that is linear and
744// time-varying, i.e. the system is a set of A_k, B_k matrices for each
745// timestep k.
746// In order to control this, we use a discrete-time finite-horizon LQR, using
747// the appropraite [AB]_k for the given timestep. Note that the finite-horizon
748// LQR requires choosing a terminal cost (i.e., what the cost should be
749// for if we have not precisely reached the goal at the end of the time-period).
750// For this, I approximate the infinite-horizon LQR solution by extending the
751// finite-horizon much longer (albeit with the extension just using the
752// linearization for the infal point).
753void Trajectory::CalculatePathGains() {
754 const std::vector<Eigen::Matrix<double, 3, 1>> xva_plan = PlanXVA(config_.dt);
James Kuszmaulc3eaa472021-03-03 19:43:45 -0800755 if (xva_plan.empty()) {
756 LOG(ERROR) << "Plan is empty--unable to plan trajectory.";
757 return;
758 }
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700759 plan_gains_.resize(xva_plan.size());
760
761 // Set up reasonable gain matrices. Current choices of gains are arbitrary
762 // and just setup to work well enough for the simulation tests.
763 // TODO(james): Tune this on a real robot.
764 // TODO(james): Pull these out into a config.
765 Eigen::Matrix<double, 5, 5> Q;
766 Q.setIdentity();
James Kuszmaul49c93202023-03-23 20:44:03 -0700767 Q.diagonal() << 30.0, 30.0, 20.0, 15.0, 15.0;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700768 Q *= 2.0;
769 Q = (Q * Q).eval();
770
771 Eigen::Matrix<double, 2, 2> R;
772 R.setIdentity();
773 R *= 5.0;
774
775 Eigen::Matrix<double, 5, 5> P = Q;
776
777 CHECK_LT(0u, xva_plan.size());
778 const int max_index = static_cast<int>(xva_plan.size()) - 1;
779 for (int i = max_index; i >= 0; --i) {
780 const double distance = xva_plan[i](0);
781 Eigen::Matrix<double, 5, 5> A_continuous;
782 Eigen::Matrix<double, 5, 2> B_continuous;
783 PathRelativeContinuousSystem(distance, &A_continuous, &B_continuous);
784 Eigen::Matrix<double, 5, 5> A_discrete;
785 Eigen::Matrix<double, 5, 2> B_discrete;
786 controls::C2D(A_continuous, B_continuous, config_.dt, &A_discrete,
787 &B_discrete);
788
789 if (i == max_index) {
790 // At the final timestep, approximate P by iterating a bunch of times.
791 // This is terminal cost mentioned in function-level comments.
792 // This does a very loose job of solving the DARE. Ideally, we would
793 // actually use a DARE solver directly, but based on some initial testing,
794 // this method is a bit more robust (or, at least, it is a bit more robust
795 // if we don't want to spend more time handling the potential error
796 // cases the DARE solver can encounter).
797 constexpr int kExtraIters = 100;
798 for (int jj = 0; jj < kExtraIters; ++jj) {
799 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
800 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
801 const Eigen::Matrix<double, 2, 2> RBPBinv =
802 (R + B_discrete.transpose() * P * B_discrete).inverse();
803 P = AP * A_discrete - APB * RBPBinv * APB.transpose() + Q;
804 }
805 }
806
807 const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P;
808 const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete;
809 const Eigen::Matrix<double, 2, 2> RBPBinv =
810 (R + B_discrete.transpose() * P * B_discrete).inverse();
811 plan_gains_[i].first = distance;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800812 const Eigen::Matrix<double, 2, 5> K = RBPBinv * APB.transpose();
813 plan_gains_[i].second = K.cast<float>();
814 P = AP * A_discrete - APB * K + Q;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700815 }
816}
817
James Kuszmaul75a18c52021-03-10 22:02:07 -0800818Eigen::Matrix<double, 2, 5> FinishedTrajectory::GainForDistance(
819 double distance) const {
820 const flatbuffers::Vector<flatbuffers::Offset<fb::GainPoint>> &gains =
821 *CHECK_NOTNULL(trajectory().gains());
822 CHECK_LT(0u, gains.size());
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700823 size_t index = 0;
James Kuszmaul75a18c52021-03-10 22:02:07 -0800824 for (index = 0; index < gains.size() - 1; ++index) {
825 if (gains[index + 1]->distance() > distance) {
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700826 break;
827 }
828 }
James Kuszmaul75a18c52021-03-10 22:02:07 -0800829 // ColMajor is the default storage order, but call it out explicitly here.
830 return Eigen::Matrix<float, 2, 5, Eigen::ColMajor>{
831 gains[index]->gains()->data()}
832 .cast<double>();
833}
834
835namespace {
836flatbuffers::Offset<Constraint> MakeWholeLengthConstraint(
837 flatbuffers::FlatBufferBuilder *fbb, ConstraintType constraint_type,
838 float value) {
839 Constraint::Builder builder(*fbb);
840 builder.add_constraint_type(constraint_type);
841 builder.add_value(value);
842 return builder.Finish();
843}
844} // namespace
845
846flatbuffers::Offset<fb::Trajectory> Trajectory::Serialize(
847 flatbuffers::FlatBufferBuilder *fbb) const {
848 std::array<flatbuffers::Offset<Constraint>, 3> constraints_offsets = {
849 MakeWholeLengthConstraint(fbb, ConstraintType::LONGITUDINAL_ACCELERATION,
850 max_longitudinal_accel()),
851 MakeWholeLengthConstraint(fbb, ConstraintType::LATERAL_ACCELERATION,
852 max_lateral_accel()),
853 MakeWholeLengthConstraint(fbb, ConstraintType::VOLTAGE, max_voltage())};
854 const auto constraints = fbb->CreateVector<Constraint>(
855 constraints_offsets.data(), constraints_offsets.size());
856 const flatbuffers::Offset<fb::DistanceSpline> spline_offset =
857 spline().Serialize(fbb, constraints);
858
859 std::vector<flatbuffers::Offset<fb::PlanPoint>> plan_points;
860 for (size_t ii = 0; ii < distance_plan_size(); ++ii) {
861 plan_points.push_back(fb::CreatePlanPoint(
862 *fbb, Distance(ii), plan_velocity(ii), plan_constraint(ii)));
863 }
864
865 // TODO(james): What is an appropriate cap?
866 CHECK_LT(plan_gains_.size(), 5000u);
867 CHECK_LT(0u, plan_gains_.size());
868 std::vector<flatbuffers::Offset<fb::GainPoint>> gain_points;
869 const size_t matrix_size = plan_gains_[0].second.size();
870 for (size_t ii = 0; ii < plan_gains_.size(); ++ii) {
871 gain_points.push_back(fb::CreateGainPoint(
872 *fbb, plan_gains_[ii].first,
873 fbb->CreateVector(plan_gains_[ii].second.data(), matrix_size)));
874 }
875
876 return fb::CreateTrajectory(*fbb, spline_idx_, fbb->CreateVector(plan_points),
877 fbb->CreateVector(gain_points), spline_offset,
878 drive_spline_backwards_);
879}
880
881float BaseTrajectory::ConstraintValue(
882 const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints,
883 ConstraintType type) {
884 if (constraints != nullptr) {
885 for (const Constraint *constraint : *constraints) {
886 if (constraint->constraint_type() == type) {
887 return constraint->value();
888 }
889 }
890 }
891 return DefaultConstraint(type);
892}
893
894const Eigen::Matrix<double, 5, 1> BaseTrajectory::GoalState(
895 double distance, double velocity) const {
896 Eigen::Matrix<double, 5, 1> result;
897 result.block<2, 1>(0, 0) = spline().XY(distance);
898 result(2, 0) = spline().Theta(distance);
899
900 result.block<2, 1>(3, 0) =
901 config_.Tla_to_lr() * (Eigen::Matrix<double, 2, 1>() << velocity,
902 spline().DThetaDt(distance, velocity))
903 .finished();
904 return result;
James Kuszmaulaa2499d2020-06-02 21:31:19 -0700905}
906
Stephan Pleinesf63bde82024-01-13 15:59:33 -0800907} // namespace frc971::control_loops::drivetrain