blob: de593c72ee18da67835ab7230ebd81a2835a0802 [file] [log] [blame]
Brian Silverman8d3816a2017-07-03 18:52:15 -07001#include "motors/peripheral/can.h"
2
3#include <stddef.h>
4#include <string.h>
5
6#include "motors/core/kinetis.h"
7#include "motors/util.h"
8
9#include <stdio.h>
10#include <inttypes.h>
11
12// General note: this peripheral is really weird about accessing its memory. It
13// goes much farther than normal memory-mapped device semantics. In particular,
14// it "locks" various regions of memory under complicated conditions. Because of
15// this, all the code in here touching the device memory is fairly paranoid
16// about how it does that.
17
18// The number of message buffers we're actually going to use. The chip only has
19// 16. Using fewer means less for the CAN module (and CPU) to go through looking
20// for actual data.
Brian Silvermana3a172b2018-03-24 03:53:32 -040021// 0 and 1 are for receiving.
22// 2-7 are for sending.
23#define NUMBER_MESSAGE_BUFFERS 8
Brian Silverman8d3816a2017-07-03 18:52:15 -070024
25#if NUMBER_MESSAGE_BUFFERS > 16
26#error Only have 16 message buffers on this part.
27#endif
28
29// TODO(Brian): Do something about CAN errors and warnings (enable interrupts?).
30
Brian Silverman54dd2fe2018-03-16 23:44:31 -070031static uint32_t prio_id_for_id(uint32_t can_id) {
32 if (can_id & CAN_EFF_FLAG) {
33 return can_id & ~CAN_EFF_FLAG;
34 } else {
35 return can_id << 18;
36 }
37}
Brian Silverman8d3816a2017-07-03 18:52:15 -070038
Brian Silverman54dd2fe2018-03-16 23:44:31 -070039void can_init(uint32_t id0, uint32_t id1) {
Brian Silverman8d3816a2017-07-03 18:52:15 -070040 SIM_SCGC6 |= SIM_SCGC6_FLEXCAN0;
41
42 // Put it into freeze mode and wait for it to actually do that.
43 // Don't OR these bits in because it starts in module-disable mode, which
44 // isn't what we want. It will ignore the attempt to change some of the bits
45 // because it's not in freeze mode, but whatever.
46 CAN0_MCR = CAN_MCR_FRZ | CAN_MCR_HALT;
47 while (!(CAN0_MCR & CAN_MCR_FRZACK)) {}
48
49 // Initializing this before touching the mailboxes because the reference
50 // manual slightly implies you have to, and the registers and RAM on this
51 // thing are weird (get locked sometimes) so it actually might matter.
52 CAN0_MCR =
53 CAN_MCR_FRZ | CAN_MCR_HALT /* Stay in freeze mode. */ |
54 CAN_MCR_SRXDIS /* Don't want to see our own frames at all. */ |
55 CAN_MCR_IRMQ /* Use individual masks for each filter. */ |
56 CAN_MCR_LPRIOEN /* Let us prioritize TX mailboxes. */ |
Brian Silvermana3a172b2018-03-24 03:53:32 -040057 (0 << 12) /* !AEN to avoid complicated abort semantics. */ |
Brian Silverman8d3816a2017-07-03 18:52:15 -070058 (0 << 8) /* No need to pack IDs tightly, so it's easier not to. */ |
59 (NUMBER_MESSAGE_BUFFERS - 1);
60
61 // Initialize all the buffers and RX filters we're enabling.
62
Brian Silvermana3a172b2018-03-24 03:53:32 -040063 for (int i = 2; i < 8; ++i) {
64 // Just in case this does anything...
65 CAN0_RXIMRS[i] = 0;
66 CAN0_MESSAGES[i].prio_id = 0;
67 CAN0_MESSAGES[i].control_timestamp =
68 CAN_MB_CONTROL_INSERT_CODE(CAN_MB_CODE_TX_INACTIVE);
69 }
Brian Silverman7c7170e2018-01-13 17:41:21 -080070
71 CAN0_RXIMRS[0] = (1 << 31) /* Want to filter out RTRs. */ |
72 (0 << 30) /* Want to only get standard frames. */ |
73 (0x1FFC0000) /* Filter on the id. */;
Brian Silverman54dd2fe2018-03-16 23:44:31 -070074 CAN0_MESSAGES[0].prio_id = prio_id_for_id(id0);
Brian Silverman8d3816a2017-07-03 18:52:15 -070075 CAN0_MESSAGES[0].control_timestamp =
Brian Silverman7c7170e2018-01-13 17:41:21 -080076 CAN_MB_CONTROL_INSERT_CODE(CAN_MB_CODE_RX_EMPTY);
Brian Silverman8d3816a2017-07-03 18:52:15 -070077
78 CAN0_RXIMRS[1] = (1 << 31) /* Want to filter out RTRs. */ |
Brian Silverman7c7170e2018-01-13 17:41:21 -080079 (0 << 30) /* Want to only get standard frames. */ |
80 (0x1FFC0000) /* Filter on the id. */;
Brian Silverman54dd2fe2018-03-16 23:44:31 -070081 CAN0_MESSAGES[1].prio_id = prio_id_for_id(id1);
Brian Silverman8d3816a2017-07-03 18:52:15 -070082 CAN0_MESSAGES[1].control_timestamp =
Brian Silverman7c7170e2018-01-13 17:41:21 -080083 CAN_MB_CONTROL_INSERT_CODE(CAN_MB_CODE_RX_EMPTY);
Brian Silverman8d3816a2017-07-03 18:52:15 -070084
85 // Using the oscillator clock directly because it's a reasonable frequency and
86 // more stable than the PLL-based peripheral clock, which matters.
87 // We're going with a sample point fraction of 0.875 because that's what
88 // SocketCAN defaults to.
Brian Silvermanb6570e32019-03-21 20:58:32 -070089 // This results in a baud rate of 500 kHz.
Brian Silverman8d3816a2017-07-03 18:52:15 -070090 CAN0_CTRL1 = CAN_CTRL1_PRESDIV(
91 1) /* Divide the crystal frequency by 2 to get 8 MHz. */ |
92 CAN_CTRL1_RJW(0) /* RJW/SJW of 1, which is most common. */ |
93 CAN_CTRL1_PSEG1(7) /* 8 time quanta before sampling. */ |
94 CAN_CTRL1_PSEG2(1) /* 2 time quanta after sampling. */ |
95 CAN_CTRL1_SMP /* Use triple sampling. */ |
96 CAN_CTRL1_PROPSEG(4) /* 5 time quanta before sampling. */;
Brian Silvermanfb1af122018-03-25 20:58:58 -040097 // TASD calculation:
98 // 25 - (fcanclk * (maxmb + 3 - (rfen * 8) - (rfen * rffn * 2)) * 2) /
99 // (fsys * (1 + (pseg1 + 1) + (pseg2 + 1) + (propseg + 1)) * (presdiv + 1))
100 // fcanclk = 8000000
101 // maxmb = NUMBER_MESSAGE_BUFFERS-1 = 3
102 // Answer is still 25 with maxmb = 15.
103 // rfen = 0
104 // rffn = whatever
105 // fsys = 60000000
106 // pseg1 = 7
107 // pseg2 = 1
108 // propseg = 4
109 // presdiv = 1
110 // answer = 25
111 // The TRM off-handedly mentions 24. In practice, using 25 results in weird
112 // and broken behavior, so just use 24. Linux looks like it just leaves this
113 // at 0.
114 CAN0_CTRL2 = CAN_CTRL2_TASD(24) | CAN_CTRL2_EACEN /* Match on IDE and RTR. */;
Brian Silverman8d3816a2017-07-03 18:52:15 -0700115
Brian Silverman8d3816a2017-07-03 18:52:15 -0700116 // Now take it out of freeze mode.
117 CAN0_MCR &= ~CAN_MCR_HALT;
Brian Silverman8d3816a2017-07-03 18:52:15 -0700118}
119
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700120static void can_process_rx(volatile CanMessageBuffer *buffer,
121 unsigned char *data_out, int *length_out) {
Brian Silverman8d3816a2017-07-03 18:52:15 -0700122 // Wait until the buffer is marked as not being busy. The reference manual
123 // says to do this, although it's unclear how we could get an interrupt
124 // asserted while it's still busy. Maybe if the interrupt was slow and now
125 // it's being overwritten?
126 uint32_t control_timestamp;
127 do {
128 control_timestamp = buffer->control_timestamp;
129 } while (control_timestamp & CAN_MB_CONTROL_CODE_BUSY_MASK);
130 // The message buffer is now locked, so it won't be modified by the hardware.
131
132 const uint32_t prio_id = buffer->prio_id;
133 // Making sure to access the data 32 bits at a time, copy it out. It's
134 // ambiguous whether you're allowed to access the individual bytes, and this
135 // memory is weird enough to not make sense risking it. Also, it's only 2
136 // cycles, which is pretty hard to beat by doing anything with the length...
137 // Also, surprise!: the hardware stores the data big-endian.
138 uint32_t data[2];
139 data[0] = __builtin_bswap32(buffer->data[0]);
140 data[1] = __builtin_bswap32(buffer->data[1]);
141
142 // Yes, it might actually matter that we clear the interrupt flag before
143 // unlocking it...
144 CAN0_IFLAG1 = 1 << (buffer - CAN0_MESSAGES);
145
146 // Now read the timer to unlock the message buffer. Want to do this ASAP
147 // rather than waiting until we get to processing the next buffer, plus we
148 // might want to write to the next one, which results in weird, bad things.
149 {
150 uint16_t dummy = CAN0_TIMER;
151 (void)dummy;
152 }
153
154 // The message buffer is now unlocked and "serviced", but its control word
155 // code is still CAN_MB_CODE_RX_FULL. However, said code will stay
156 // CAN_MB_CODE_RX_FULL the next time a message is received into it (the code
157 // won't change to CAN_MB_CODE_RX_OVERRUN because it has been "serviced").
158 // Yes, really...
159
160 memcpy(data_out, data, 8);
161 *length_out = CAN_MB_CONTROL_EXTRACT_DLC(control_timestamp);
162 (void)prio_id;
163}
164
Brian Silverman110205a2018-01-15 14:33:50 -0800165int can_send(uint32_t can_id, const unsigned char *data, unsigned int length,
166 unsigned int mailbox) {
167 volatile CanMessageBuffer *const message_buffer = &CAN0_MESSAGES[mailbox];
Brian Silverman8d3816a2017-07-03 18:52:15 -0700168
Brian Silverman110205a2018-01-15 14:33:50 -0800169 // Just inactivate the mailbox to start with. Checking if it's done being
170 // transmitted doesn't seem to work like the reference manual describes, so
171 // just take the brute force approach.
Brian Silvermana3a172b2018-03-24 03:53:32 -0400172 // The reference manual says this will either transmit the frame or not, but
173 // there's no way to tell which happened, which is fine for what we're doing.
Brian Silverman110205a2018-01-15 14:33:50 -0800174 message_buffer->control_timestamp =
175 CAN_MB_CONTROL_INSERT_CODE(CAN_MB_CODE_TX_INACTIVE);
Brian Silverman8d3816a2017-07-03 18:52:15 -0700176
177 // Yes, it might actually matter that we clear the interrupt flag before
178 // doing stuff...
Brian Silverman110205a2018-01-15 14:33:50 -0800179 CAN0_IFLAG1 = 1 << mailbox;
180
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700181 message_buffer->prio_id = prio_id_for_id(can_id);
Brian Silverman8d3816a2017-07-03 18:52:15 -0700182 // Copy only the bytes from data that we're supposed to onto the stack, and
183 // then move it into the message buffer 32 bits at a time (because it might
184 // get unhappy about writing individual bytes). Plus, we have to byte-swap
185 // each 32-bit word because this hardware is weird...
186 {
187 uint32_t data_words[2] = {0, 0};
188 for (uint8_t *dest = (uint8_t *)&data_words[0];
189 dest - (uint8_t *)&data_words[0] < (ptrdiff_t)length; ++dest) {
190 *dest = *data;
191 ++data;
192 }
193 message_buffer->data[0] = __builtin_bswap32(data_words[0]);
194 message_buffer->data[1] = __builtin_bswap32(data_words[1]);
195 }
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700196 uint32_t control_timestamp = CAN_MB_CONTROL_INSERT_DLC(length) |
197 CAN_MB_CONTROL_INSERT_CODE(CAN_MB_CODE_TX_DATA);
198 if (can_id & CAN_EFF_FLAG) {
199 control_timestamp |= CAN_MB_CONTROL_IDE | CAN_MB_CONTROL_SRR;
200 }
201 message_buffer->control_timestamp = control_timestamp;
Brian Silverman8d3816a2017-07-03 18:52:15 -0700202 return 0;
203}
204
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700205void can_receive(unsigned char *data, int *length, int mailbox) {
Brian Silverman8d3816a2017-07-03 18:52:15 -0700206 if (0) {
207 static int i = 0;
Brian Silverman19ea60f2018-01-03 21:43:15 -0800208 if (i++ == 10000) {
Brian Silverman8d3816a2017-07-03 18:52:15 -0700209 printf("IFLAG1=%" PRIx32 " ESR=%" PRIx32 " ESR1=%" PRIx32 "\n",
210 CAN0_IFLAG1, CAN0_ECR, CAN0_ESR1);
211 i = 0;
212 }
213 }
Brian Silverman7c7170e2018-01-13 17:41:21 -0800214 if ((CAN0_IFLAG1 & (1 << mailbox)) == 0) {
Brian Silverman8d3816a2017-07-03 18:52:15 -0700215 *length = -1;
216 return;
217 }
Brian Silverman54dd2fe2018-03-16 23:44:31 -0700218 can_process_rx(&CAN0_MESSAGES[mailbox], data, length);
Brian Silverman8d3816a2017-07-03 18:52:15 -0700219}