blob: fbce275f717980f4e10ddf0f305c510adf06c3c4 [file] [log] [blame]
James Kuszmaul1057ce82019-02-09 17:58:24 -08001#include "y2019/control_loops/drivetrain/localizer.h"
2
James Kuszmaul1057ce82019-02-09 17:58:24 -08003#include <queue>
James Kuszmaul651fc3f2019-05-15 21:14:25 -07004#include <random>
James Kuszmaul1057ce82019-02-09 17:58:24 -08005
6#include "aos/testing/random_seed.h"
7#include "aos/testing/test_shm.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -08008#include "frc971/control_loops/drivetrain/splinedrivetrain.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -07009#include "frc971/control_loops/drivetrain/trajectory.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080010#include "gflags/gflags.h"
11#if defined(SUPPORT_PLOT)
12#include "third_party/matplotlib-cpp/matplotlibcpp.h"
13#endif
14#include "gtest/gtest.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080015#include "y2019/constants.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -070016#include "y2019/control_loops/drivetrain/drivetrain_base.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080017
18DEFINE_bool(plot, false, "If true, plot");
19
20namespace y2019 {
21namespace control_loops {
22namespace testing {
23
24using ::y2019::constants::Field;
25
26constexpr size_t kNumCameras = 4;
27constexpr size_t kNumTargetsPerFrame = 3;
28
29typedef TypedLocalizer<kNumCameras, Field::kNumTargets, Field::kNumObstacles,
James Kuszmaul651fc3f2019-05-15 21:14:25 -070030 kNumTargetsPerFrame, double>
31 TestLocalizer;
James Kuszmaul1057ce82019-02-09 17:58:24 -080032typedef typename TestLocalizer::Camera TestCamera;
33typedef typename TestCamera::Pose Pose;
34typedef typename TestCamera::LineSegment Obstacle;
35
36typedef TestLocalizer::StateIdx StateIdx;
37
38using ::frc971::control_loops::drivetrain::DrivetrainConfig;
39
40// When placing the cameras on the robot, set them all kCameraOffset out from
41// the center, to test that we really can handle cameras that aren't at the
42// center-of-mass.
43constexpr double kCameraOffset = 0.1;
44
45#if defined(SUPPORT_PLOT)
46// Plots a line from a vector of Pose's.
47void PlotPlotPts(const ::std::vector<Pose> &poses,
48 const ::std::map<::std::string, ::std::string> &kwargs) {
49 ::std::vector<double> x;
50 ::std::vector<double> y;
James Kuszmaul651fc3f2019-05-15 21:14:25 -070051 for (const Pose &p : poses) {
James Kuszmaul1057ce82019-02-09 17:58:24 -080052 x.push_back(p.abs_pos().x());
53 y.push_back(p.abs_pos().y());
54 }
55 matplotlibcpp::plot(x, y, kwargs);
56}
57#endif
58
59struct LocalizerTestParams {
60 // Control points for the spline to make the robot follow.
61 ::std::array<float, 6> control_pts_x;
62 ::std::array<float, 6> control_pts_y;
63 // The actual state to start the robot at. By setting voltage errors and the
64 // such you can introduce persistent disturbances.
65 TestLocalizer::State true_start_state;
66 // The initial state of the estimator.
67 TestLocalizer::State known_start_state;
68 // Whether or not to add Gaussian noise to the sensors and cameras.
69 bool noisify;
70 // Whether or not to add unmodelled disturbances.
71 bool disturb;
72 // The tolerances for the estimator and for the trajectory following at
73 // the end of the spline:
74 double estimate_tolerance;
75 double goal_tolerance;
76};
77
78class ParameterizedLocalizerTest
79 : public ::testing::TestWithParam<LocalizerTestParams> {
80 public:
81 ::aos::testing::TestSharedMemory shm_;
82
83 // Set up three targets in a row, at (-1, 0), (0, 0), and (1, 0).
84 // Make the right-most target (1, 0) be facing away from the camera, and give
85 // the middle target some skew.
86 // Place one camera facing forward, the other facing backward, and set the
87 // robot at (0, -5) with the cameras each 0.1m from the center.
88 // Place one obstacle in a place where it can block the left-most target (-1,
89 // 0).
90 ParameterizedLocalizerTest()
91 : field_(),
92 targets_(field_.targets()),
93 modeled_obstacles_(field_.obstacles()),
94 true_obstacles_(field_.obstacles()),
95 dt_config_(drivetrain::GetDrivetrainConfig()),
96 // Pull the noise for the encoders/gyros from the R matrix:
97 encoder_noise_(::std::sqrt(
98 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
99 0, 0))),
100 gyro_noise_(::std::sqrt(
101 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
102 2, 2))),
103 // As per the comments in localizer.h, we set the field of view and
104 // noise parameters on the robot_cameras_ so that they see a bit more
105 // than the true_cameras_. The robot_cameras_ are what is passed to the
106 // localizer and used to generate "expected" targets. The true_cameras_
107 // are what we actually use to generate targets to pass to the
108 // localizer.
109 robot_cameras_{
110 {TestCamera({&robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
111 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
112 modeled_obstacles_),
113 TestCamera({&robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
114 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
115 modeled_obstacles_),
116 TestCamera({&robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
117 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
118 modeled_obstacles_),
119 TestCamera({&robot_pose_, {0.0, -kCameraOffset, 0.0}, -M_PI_2},
120 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
121 modeled_obstacles_)}},
122 true_cameras_{
123 {TestCamera({&true_robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
124 M_PI_2 * 0.9, true_noise_parameters_, targets_,
125 true_obstacles_),
126 TestCamera({&true_robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
127 M_PI_2 * 0.9, true_noise_parameters_, targets_,
128 true_obstacles_),
129 TestCamera({&true_robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
130 M_PI_2 * 0.9, true_noise_parameters_, targets_,
131 true_obstacles_),
132 TestCamera(
133 {&true_robot_pose_, {-0.0, -kCameraOffset, 0.0}, -M_PI_2},
134 M_PI_2 * 0.9, true_noise_parameters_, targets_,
135 true_obstacles_)}},
136 localizer_(dt_config_, &robot_pose_),
137 spline_drivetrain_(dt_config_) {
138 // We use the default P() for initialization.
139 localizer_.ResetInitialState(t0_, GetParam().known_start_state,
140 localizer_.P());
141 }
142
143 void SetUp() {
Austin Schuhb574fe42019-12-06 23:51:47 -0800144 // Turn on -v 1
145 FLAGS_v = std::max(FLAGS_v, 1);
146
Alex Perrycb7da4b2019-08-28 19:35:56 -0700147 flatbuffers::DetachedBuffer goal_buffer;
148 {
149 flatbuffers::FlatBufferBuilder fbb;
150
151 flatbuffers::Offset<flatbuffers::Vector<float>> spline_x_offset =
152 fbb.CreateVector<float>(GetParam().control_pts_x.begin(),
153 GetParam().control_pts_x.size());
154
155 flatbuffers::Offset<flatbuffers::Vector<float>> spline_y_offset =
156 fbb.CreateVector<float>(GetParam().control_pts_y.begin(),
157 GetParam().control_pts_y.size());
158
159 frc971::MultiSpline::Builder multispline_builder(fbb);
160
161 multispline_builder.add_spline_count(1);
162 multispline_builder.add_spline_x(spline_x_offset);
163 multispline_builder.add_spline_y(spline_y_offset);
164
165 flatbuffers::Offset<frc971::MultiSpline> multispline_offset =
166 multispline_builder.Finish();
167
168 frc971::control_loops::drivetrain::SplineGoal::Builder spline_builder(
169 fbb);
170
171 spline_builder.add_spline_idx(1);
172 spline_builder.add_spline(multispline_offset);
173
174 flatbuffers::Offset<frc971::control_loops::drivetrain::SplineGoal>
175 spline_offset = spline_builder.Finish();
176
177 frc971::control_loops::drivetrain::Goal::Builder goal_builder(fbb);
178
179 goal_builder.add_spline(spline_offset);
180 goal_builder.add_controller_type(
181 frc971::control_loops::drivetrain::ControllerType_SPLINE_FOLLOWER);
182 goal_builder.add_spline_handle(1);
183
184 fbb.Finish(goal_builder.Finish());
185
186 goal_buffer = fbb.Release();
187 }
188 aos::FlatbufferDetachedBuffer<frc971::control_loops::drivetrain::Goal> goal(
189 std::move(goal_buffer));
190
Alex Perrycc3ee4c2019-02-09 21:20:41 -0800191 // Let the spline drivetrain compute the spline.
Alex Perrycb7da4b2019-08-28 19:35:56 -0700192 while (true) {
Austin Schuhb574fe42019-12-06 23:51:47 -0800193 // We need to keep sending the goal. There are conditions when the
194 // trajectory lock isn't grabbed the first time, and we want to keep
195 // banging on it to keep trying. Otherwise we deadlock.
196 spline_drivetrain_.SetGoal(&goal.message());
197
Alex Perrycc3ee4c2019-02-09 21:20:41 -0800198 ::std::this_thread::sleep_for(::std::chrono::milliseconds(5));
Alex Perrycb7da4b2019-08-28 19:35:56 -0700199
200 flatbuffers::FlatBufferBuilder fbb;
201
202 flatbuffers::Offset<frc971::control_loops::drivetrain::TrajectoryLogging>
203 trajectory_logging_offset =
204 spline_drivetrain_.MakeTrajectoryLogging(&fbb);
205
206 ::frc971::control_loops::drivetrain::Status::Builder status_builder(fbb);
207 status_builder.add_trajectory_logging(trajectory_logging_offset);
208 spline_drivetrain_.PopulateStatus(&status_builder);
209 fbb.Finish(status_builder.Finish());
210 aos::FlatbufferDetachedBuffer<::frc971::control_loops::drivetrain::Status>
211 status(fbb.Release());
212
213 if (status.message().trajectory_logging()->planning_state() ==
214 ::frc971::control_loops::drivetrain::PlanningState_PLANNED) {
215 break;
216 }
217 }
218 spline_drivetrain_.SetGoal(&goal.message());
James Kuszmaul1057ce82019-02-09 17:58:24 -0800219 }
220
221 void TearDown() {
222 printf("Each iteration of the simulation took on average %f seconds.\n",
223 avg_time_.count());
224#if defined(SUPPORT_PLOT)
225 if (FLAGS_plot) {
226 matplotlibcpp::figure();
227 matplotlibcpp::plot(simulation_t_, simulation_vl_, {{"label", "Vl"}});
228 matplotlibcpp::plot(simulation_t_, simulation_vr_, {{"label", "Vr"}});
229 matplotlibcpp::legend();
230
231 matplotlibcpp::figure();
232 matplotlibcpp::plot(spline_x_, spline_y_, {{"label", "spline"}});
233 matplotlibcpp::plot(simulation_x_, simulation_y_, {{"label", "robot"}});
234 matplotlibcpp::plot(estimated_x_, estimated_y_,
235 {{"label", "estimation"}});
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700236 for (const Target &target : targets_) {
James Kuszmaul1057ce82019-02-09 17:58:24 -0800237 PlotPlotPts(target.PlotPoints(), {{"c", "g"}});
238 }
239 for (const Obstacle &obstacle : true_obstacles_) {
240 PlotPlotPts(obstacle.PlotPoints(), {{"c", "k"}});
241 }
242 // Go through and plot true/expected camera targets for a few select
243 // time-steps.
244 ::std::vector<const char *> colors{"m", "y", "c"};
245 int jj = 0;
246 for (size_t ii = 0; ii < simulation_x_.size(); ii += 400) {
247 *true_robot_pose_.mutable_pos() << simulation_x_[ii], simulation_y_[ii],
248 0.0;
249 true_robot_pose_.set_theta(simulation_theta_[ii]);
250 for (const TestCamera &camera : true_cameras_) {
251 for (const auto &plot_pts : camera.PlotPoints()) {
252 PlotPlotPts(plot_pts, {{"c", colors[jj]}});
253 }
254 }
255 for (const TestCamera &camera : robot_cameras_) {
256 *robot_pose_.mutable_pos() << estimated_x_[ii], estimated_y_[ii], 0.0;
257 robot_pose_.set_theta(estimated_theta_[ii]);
258 const auto &all_plot_pts = camera.PlotPoints();
259 *robot_pose_.mutable_pos() = true_robot_pose_.rel_pos();
260 robot_pose_.set_theta(true_robot_pose_.rel_theta());
261 for (const auto &plot_pts : all_plot_pts) {
262 PlotPlotPts(plot_pts, {{"c", colors[jj]}, {"ls", "--"}});
263 }
264 }
265 jj = (jj + 1) % colors.size();
266 }
267 matplotlibcpp::legend();
268
269 matplotlibcpp::figure();
270 matplotlibcpp::plot(
271 simulation_t_, spline_x_,
272 {{"label", "spline x"}, {"c", "g"}, {"ls", ""}, {"marker", "o"}});
273 matplotlibcpp::plot(simulation_t_, simulation_x_,
274 {{"label", "simulated x"}, {"c", "g"}});
275 matplotlibcpp::plot(simulation_t_, estimated_x_,
276 {{"label", "estimated x"}, {"c", "g"}, {"ls", "--"}});
277
278 matplotlibcpp::plot(
279 simulation_t_, spline_y_,
280 {{"label", "spline y"}, {"c", "b"}, {"ls", ""}, {"marker", "o"}});
281 matplotlibcpp::plot(simulation_t_, simulation_y_,
282 {{"label", "simulated y"}, {"c", "b"}});
283 matplotlibcpp::plot(simulation_t_, estimated_y_,
284 {{"label", "estimated y"}, {"c", "b"}, {"ls", "--"}});
285
286 matplotlibcpp::plot(simulation_t_, simulation_theta_,
287 {{"label", "simulated theta"}, {"c", "r"}});
288 matplotlibcpp::plot(
289 simulation_t_, estimated_theta_,
290 {{"label", "estimated theta"}, {"c", "r"}, {"ls", "--"}});
291 matplotlibcpp::legend();
292
293 matplotlibcpp::show();
294 }
295#endif
296 }
297
298 protected:
299 // Returns a random number with a gaussian distribution with a mean of zero
300 // and a standard deviation of std, if noisify = true.
301 // If noisify is false, then returns 0.0.
302 double Normal(double std) {
303 if (GetParam().noisify) {
304 return normal_(gen_) * std;
305 }
306 return 0.0;
307 }
308 // Adds random noise to the given target view.
309 void Noisify(TestCamera::TargetView *view) {
310 view->reading.heading += Normal(view->noise.heading);
311 view->reading.distance += Normal(view->noise.distance);
312 view->reading.height += Normal(view->noise.height);
313 view->reading.skew += Normal(view->noise.skew);
314 }
315 // The differential equation for the dynamics of the system.
316 TestLocalizer::State DiffEq(const TestLocalizer::State &X,
317 const TestLocalizer::Input &U) {
318 return localizer_.DiffEq(X, U);
319 }
320
321 Field field_;
322 ::std::array<Target, Field::kNumTargets> targets_;
323 // The obstacles that are passed to the camera objects for the localizer.
324 ::std::array<Obstacle, Field::kNumObstacles> modeled_obstacles_;
325 // The obstacles that are used for actually simulating the cameras.
326 ::std::array<Obstacle, Field::kNumObstacles> true_obstacles_;
327
328 DrivetrainConfig<double> dt_config_;
329
330 // Noise information for the actual simulated cameras (true_*) and the
331 // parameters that the localizer should use for modelling the cameras. Note
332 // how the max_viewable_distance is larger for the localizer, so that if
333 // there is any error in the estimation, it still thinks that it can see
334 // any targets that might actually be in range.
335 TestCamera::NoiseParameters true_noise_parameters_ = {
336 .max_viewable_distance = 10.0,
337 .heading_noise = 0.02,
338 .nominal_distance_noise = 0.06,
339 .nominal_skew_noise = 0.1,
340 .nominal_height_noise = 0.01};
341 TestCamera::NoiseParameters robot_noise_parameters_ = {
342 .max_viewable_distance = 11.0,
343 .heading_noise = 0.02,
344 .nominal_distance_noise = 0.06,
345 .nominal_skew_noise = 0.1,
346 .nominal_height_noise = 0.01};
347
348 // Standard deviations of the noise for the encoders/gyro.
349 double encoder_noise_, gyro_noise_;
350
351 Pose robot_pose_;
352 ::std::array<TestCamera, 4> robot_cameras_;
353 Pose true_robot_pose_;
354 ::std::array<TestCamera, 4> true_cameras_;
355
356 TestLocalizer localizer_;
357
358 ::frc971::control_loops::drivetrain::SplineDrivetrain spline_drivetrain_;
359
360 // All the data we want to end up plotting.
361 ::std::vector<double> simulation_t_;
362
363 ::std::vector<double> spline_x_;
364 ::std::vector<double> spline_y_;
365 ::std::vector<double> estimated_x_;
366 ::std::vector<double> estimated_y_;
367 ::std::vector<double> estimated_theta_;
368 ::std::vector<double> simulation_x_;
369 ::std::vector<double> simulation_y_;
370 ::std::vector<double> simulation_theta_;
371
372 ::std::vector<double> simulation_vl_;
373 ::std::vector<double> simulation_vr_;
374
375 // Simulation start time
376 ::aos::monotonic_clock::time_point t0_;
377
378 // Average duration of each iteration; used for debugging and getting a
379 // sanity-check on what performance looks like--uses a real system clock.
380 ::std::chrono::duration<double> avg_time_;
381
382 ::std::mt19937 gen_{static_cast<uint32_t>(::aos::testing::RandomSeed())};
383 ::std::normal_distribution<> normal_;
384};
385
James Kuszmaul6f941b72019-03-08 18:12:25 -0800386using ::std::chrono::milliseconds;
387
James Kuszmaul1057ce82019-02-09 17:58:24 -0800388// Tests that, when we attempt to follow a spline and use the localizer to
389// perform the state estimation, we end up roughly where we should and that
390// the localizer has a valid position estimate.
391TEST_P(ParameterizedLocalizerTest, SplineTest) {
392 // state stores the true state of the robot throughout the simulation.
393 TestLocalizer::State state = GetParam().true_start_state;
394
395 ::aos::monotonic_clock::time_point t = t0_;
396
397 // The period with which we should take frames from the cameras. Currently,
398 // we just trigger all the cameras at once, rather than offsetting them or
399 // anything.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700400 const int camera_period = 5; // cycles
James Kuszmaul6f941b72019-03-08 18:12:25 -0800401 // The amount of time to delay the camera images from when they are taken, for
402 // each camera.
403 const ::std::array<milliseconds, 4> camera_latencies{
404 {milliseconds(45), milliseconds(50), milliseconds(55),
405 milliseconds(100)}};
James Kuszmaul1057ce82019-02-09 17:58:24 -0800406
James Kuszmaul6f941b72019-03-08 18:12:25 -0800407 // A queue of camera frames for each camera so that we can add a time delay to
408 // the data coming from the cameras.
409 ::std::array<
410 ::std::queue<::std::tuple<
411 ::aos::monotonic_clock::time_point, const TestCamera *,
412 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>>>,
413 4>
414 camera_queues;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800415
416 // Start time, for debugging.
417 const auto begin = ::std::chrono::steady_clock::now();
418
419 size_t i;
420 for (i = 0; !spline_drivetrain_.IsAtEnd(); ++i) {
421 // Get the current state estimate into a matrix that works for the
422 // trajectory code.
423 ::Eigen::Matrix<double, 5, 1> known_state;
424 TestLocalizer::State X_hat = localizer_.X_hat();
425 known_state << X_hat(StateIdx::kX, 0), X_hat(StateIdx::kY, 0),
426 X_hat(StateIdx::kTheta, 0), X_hat(StateIdx::kLeftVelocity, 0),
427 X_hat(StateIdx::kRightVelocity, 0);
428
429 spline_drivetrain_.Update(true, known_state);
430
Alex Perrycb7da4b2019-08-28 19:35:56 -0700431 ::frc971::control_loops::drivetrain::OutputT output;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800432 output.left_voltage = 0;
433 output.right_voltage = 0;
434 spline_drivetrain_.SetOutput(&output);
435 TestLocalizer::Input U(output.left_voltage, output.right_voltage);
436
437 const ::Eigen::Matrix<double, 5, 1> goal_state =
438 spline_drivetrain_.CurrentGoalState();
439 simulation_t_.push_back(
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700440 ::aos::time::DurationInSeconds(t.time_since_epoch()));
James Kuszmaul1057ce82019-02-09 17:58:24 -0800441 spline_x_.push_back(goal_state(0, 0));
442 spline_y_.push_back(goal_state(1, 0));
443 simulation_x_.push_back(state(StateIdx::kX, 0));
444 simulation_y_.push_back(state(StateIdx::kY, 0));
445 simulation_theta_.push_back(state(StateIdx::kTheta, 0));
446 estimated_x_.push_back(known_state(0, 0));
447 estimated_y_.push_back(known_state(1, 0));
448 estimated_theta_.push_back(known_state(StateIdx::kTheta, 0));
449
450 simulation_vl_.push_back(U(0));
451 simulation_vr_.push_back(U(1));
452 U(0, 0) = ::std::max(::std::min(U(0, 0), 12.0), -12.0);
453 U(1, 0) = ::std::max(::std::min(U(1, 0), 12.0), -12.0);
454
455 state = ::frc971::control_loops::RungeKuttaU(
James Kuszmaul074429e2019-03-23 16:01:49 -0700456 [this](const ::Eigen::Matrix<double, 10, 1> &X,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800457 const ::Eigen::Matrix<double, 2, 1> &U) { return DiffEq(X, U); },
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700458 state, U, ::aos::time::DurationInSeconds(dt_config_.dt));
James Kuszmaul1057ce82019-02-09 17:58:24 -0800459
460 // Add arbitrary disturbances at some arbitrary interval. The main points of
461 // interest here are that we (a) stop adding disturbances at the very end of
462 // the trajectory, to allow us to actually converge to the goal, and (b)
463 // scale disturbances by the corruent velocity.
James Kuszmaulc73bb222019-04-07 12:15:35 -0700464 if (GetParam().disturb && i % 75 == 0) {
James Kuszmaul1057ce82019-02-09 17:58:24 -0800465 // Scale the disturbance so that when we have near-zero velocity we don't
466 // have much disturbance.
467 double disturbance_scale = ::std::min(
468 1.0, ::std::sqrt(::std::pow(state(StateIdx::kLeftVelocity, 0), 2) +
469 ::std::pow(state(StateIdx::kRightVelocity, 0), 2)) /
470 3.0);
471 TestLocalizer::State disturbance;
James Kuszmaul074429e2019-03-23 16:01:49 -0700472 disturbance << 0.02, 0.02, 0.001, 0.03, 0.02, 0.0, 0.0, 0.0, 0.0, 0.0;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800473 disturbance *= disturbance_scale;
474 state += disturbance;
475 }
476
477 t += dt_config_.dt;
478 *true_robot_pose_.mutable_pos() << state(StateIdx::kX, 0),
479 state(StateIdx::kY, 0), 0.0;
480 true_robot_pose_.set_theta(state(StateIdx::kTheta, 0));
481 const double left_enc = state(StateIdx::kLeftEncoder, 0);
482 const double right_enc = state(StateIdx::kRightEncoder, 0);
483
484 const double gyro = (state(StateIdx::kRightVelocity, 0) -
485 state(StateIdx::kLeftVelocity, 0)) /
486 dt_config_.robot_radius / 2.0;
487
488 localizer_.UpdateEncodersAndGyro(left_enc + Normal(encoder_noise_),
489 right_enc + Normal(encoder_noise_),
490 gyro + Normal(gyro_noise_), U, t);
491
James Kuszmaul6f941b72019-03-08 18:12:25 -0800492 for (size_t cam_idx = 0; cam_idx < camera_queues.size(); ++cam_idx) {
493 auto &camera_queue = camera_queues[cam_idx];
494 // Clear out the camera frames that we are ready to pass to the localizer.
495 while (!camera_queue.empty() && ::std::get<0>(camera_queue.front()) <
496 t - camera_latencies[cam_idx]) {
497 const auto tuple = camera_queue.front();
498 camera_queue.pop();
499 ::aos::monotonic_clock::time_point t_obs = ::std::get<0>(tuple);
500 const TestCamera *camera = ::std::get<1>(tuple);
501 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame> views =
502 ::std::get<2>(tuple);
503 localizer_.UpdateTargets(*camera, views, t_obs);
504 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800505
James Kuszmaul6f941b72019-03-08 18:12:25 -0800506 // Actually take all the images and store them in the queue.
507 if (i % camera_period == 0) {
508 for (size_t jj = 0; jj < true_cameras_.size(); ++jj) {
509 const auto target_views = true_cameras_[jj].target_views();
510 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>
511 pass_views;
512 for (size_t ii = 0;
513 ii < ::std::min(kNumTargetsPerFrame, target_views.size());
514 ++ii) {
515 TestCamera::TargetView view = target_views[ii];
516 Noisify(&view);
517 pass_views.push_back(view);
518 }
519 camera_queue.emplace(t, &robot_cameras_[jj], pass_views);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800520 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800521 }
522 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800523 }
524
525 const auto end = ::std::chrono::steady_clock::now();
526 avg_time_ = (end - begin) / i;
527 TestLocalizer::State estimate_err = state - localizer_.X_hat();
528 EXPECT_LT(estimate_err.template topRows<7>().norm(),
529 GetParam().estimate_tolerance);
530 // Check that none of the states that we actually care about (x/y/theta, and
531 // wheel positions/speeds) are too far off, individually:
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700532 EXPECT_LT(estimate_err.template topRows<3>().cwiseAbs().maxCoeff(),
James Kuszmaul1057ce82019-02-09 17:58:24 -0800533 GetParam().estimate_tolerance / 3.0)
534 << "Estimate error: " << estimate_err.transpose();
535 Eigen::Matrix<double, 5, 1> final_trajectory_state;
536 final_trajectory_state << state(StateIdx::kX, 0), state(StateIdx::kY, 0),
537 state(StateIdx::kTheta, 0), state(StateIdx::kLeftVelocity, 0),
538 state(StateIdx::kRightVelocity, 0);
539 const Eigen::Matrix<double, 5, 1> final_trajectory_state_err =
540 final_trajectory_state - spline_drivetrain_.CurrentGoalState();
541 EXPECT_LT(final_trajectory_state_err.norm(), GetParam().goal_tolerance)
542 << "Goal error: " << final_trajectory_state_err.transpose();
543}
544
545INSTANTIATE_TEST_CASE_P(
546 LocalizerTest, ParameterizedLocalizerTest,
547 ::testing::Values(
548 // Checks a "perfect" scenario, where we should track perfectly.
549 LocalizerTestParams({
550 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
551 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700552 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
553 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800554 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700555 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
556 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800557 .finished(),
558 /*noisify=*/false,
559 /*disturb=*/false,
560 /*estimate_tolerance=*/1e-5,
561 /*goal_tolerance=*/2e-2,
562 }),
563 // Checks "perfect" estimation, but start off the spline and check
564 // that we can still follow it.
565 LocalizerTestParams({
566 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
567 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700568 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
569 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800570 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700571 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
572 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800573 .finished(),
574 /*noisify=*/false,
575 /*disturb=*/false,
576 /*estimate_tolerance=*/1e-5,
577 /*goal_tolerance=*/2e-2,
578 }),
579 // Repeats perfect scenario, but add sensor noise.
580 LocalizerTestParams({
581 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
582 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700583 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
584 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800585 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700586 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
587 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800588 .finished(),
589 /*noisify=*/true,
590 /*disturb=*/false,
James Kuszmaulea314d92019-02-18 19:45:06 -0800591 /*estimate_tolerance=*/0.4,
James Kuszmaula5632fe2019-03-23 20:28:33 -0700592 /*goal_tolerance=*/0.4,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800593 }),
594 // Repeats perfect scenario, but add initial estimator error.
595 LocalizerTestParams({
596 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
597 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700598 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
599 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800600 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700601 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
602 0.0, 0.0, 0.0)
603 .finished(),
604 /*noisify=*/false,
605 /*disturb=*/false,
606 /*estimate_tolerance=*/1e-4,
607 /*goal_tolerance=*/2e-2,
608 }),
609 // Repeats perfect scenario, but add voltage + angular errors:
610 LocalizerTestParams({
611 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
612 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
613 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
614 0.5, 0.02)
615 .finished(),
616 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
617 0.0, 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800618 .finished(),
619 /*noisify=*/false,
620 /*disturb=*/false,
621 /*estimate_tolerance=*/1e-4,
622 /*goal_tolerance=*/2e-2,
623 }),
624 // Add disturbances while we are driving:
625 LocalizerTestParams({
626 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
627 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700628 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
629 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800630 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700631 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
632 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800633 .finished(),
634 /*noisify=*/false,
635 /*disturb=*/true,
James Kuszmaulea314d92019-02-18 19:45:06 -0800636 /*estimate_tolerance=*/3e-2,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800637 /*goal_tolerance=*/0.15,
638 }),
639 // Add noise and some initial error in addition:
640 LocalizerTestParams({
641 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
642 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700643 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
644 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800645 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700646 (TestLocalizer::State() << 0.1, -5.1, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0,
647 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800648 .finished(),
649 /*noisify=*/true,
650 /*disturb=*/true,
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700651 /*estimate_tolerance=*/0.2,
James Kuszmaul074429e2019-03-23 16:01:49 -0700652 /*goal_tolerance=*/0.5,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800653 }),
654 // Try another spline, just in case the one I was using is special for
655 // some reason; this path will also go straight up to a target, to
656 // better simulate what might happen when trying to score:
657 LocalizerTestParams({
658 /*control_pts_x=*/{{0.5, 3.5, 4.0, 8.0, 11.0, 10.2}},
659 /*control_pts_y=*/{{1.0, 1.0, -3.0, -2.0, -3.5, -3.65}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700660 (TestLocalizer::State() << 0.6, 1.01, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0,
661 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800662 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700663 (TestLocalizer::State() << 0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
664 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800665 .finished(),
666 /*noisify=*/true,
667 /*disturb=*/false,
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700668 // TODO(james): Improve tests so that we aren't constantly
669 // readjusting the tolerances up.
James Kuszmaulc40c26e2019-03-24 16:26:43 -0700670 /*estimate_tolerance=*/0.3,
James Kuszmaul074429e2019-03-23 16:01:49 -0700671 /*goal_tolerance=*/0.7,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800672 })));
673
674} // namespace testing
675} // namespace control_loops
676} // namespace y2019