blob: 45ae714fa1d7cd19fa39dbe1d4f558ef3a8aa682 [file] [log] [blame]
James Kuszmaul1057ce82019-02-09 17:58:24 -08001#include "y2019/control_loops/drivetrain/localizer.h"
2
3#include <random>
4#include <queue>
5
6#include "aos/testing/random_seed.h"
7#include "aos/testing/test_shm.h"
8#include "frc971/control_loops/drivetrain/trajectory.h"
9#include "frc971/control_loops/drivetrain/splinedrivetrain.h"
10#include "gflags/gflags.h"
11#if defined(SUPPORT_PLOT)
12#include "third_party/matplotlib-cpp/matplotlibcpp.h"
13#endif
14#include "gtest/gtest.h"
15#include "y2019/control_loops/drivetrain/drivetrain_base.h"
16#include "y2019/constants.h"
17
18DEFINE_bool(plot, false, "If true, plot");
19
20namespace y2019 {
21namespace control_loops {
22namespace testing {
23
24using ::y2019::constants::Field;
25
26constexpr size_t kNumCameras = 4;
27constexpr size_t kNumTargetsPerFrame = 3;
28
29typedef TypedLocalizer<kNumCameras, Field::kNumTargets, Field::kNumObstacles,
30 kNumTargetsPerFrame, double> TestLocalizer;
31typedef typename TestLocalizer::Camera TestCamera;
32typedef typename TestCamera::Pose Pose;
33typedef typename TestCamera::LineSegment Obstacle;
34
35typedef TestLocalizer::StateIdx StateIdx;
36
37using ::frc971::control_loops::drivetrain::DrivetrainConfig;
38
39// When placing the cameras on the robot, set them all kCameraOffset out from
40// the center, to test that we really can handle cameras that aren't at the
41// center-of-mass.
42constexpr double kCameraOffset = 0.1;
43
44#if defined(SUPPORT_PLOT)
45// Plots a line from a vector of Pose's.
46void PlotPlotPts(const ::std::vector<Pose> &poses,
47 const ::std::map<::std::string, ::std::string> &kwargs) {
48 ::std::vector<double> x;
49 ::std::vector<double> y;
50 for (const Pose & p : poses) {
51 x.push_back(p.abs_pos().x());
52 y.push_back(p.abs_pos().y());
53 }
54 matplotlibcpp::plot(x, y, kwargs);
55}
56#endif
57
58struct LocalizerTestParams {
59 // Control points for the spline to make the robot follow.
60 ::std::array<float, 6> control_pts_x;
61 ::std::array<float, 6> control_pts_y;
62 // The actual state to start the robot at. By setting voltage errors and the
63 // such you can introduce persistent disturbances.
64 TestLocalizer::State true_start_state;
65 // The initial state of the estimator.
66 TestLocalizer::State known_start_state;
67 // Whether or not to add Gaussian noise to the sensors and cameras.
68 bool noisify;
69 // Whether or not to add unmodelled disturbances.
70 bool disturb;
71 // The tolerances for the estimator and for the trajectory following at
72 // the end of the spline:
73 double estimate_tolerance;
74 double goal_tolerance;
75};
76
77class ParameterizedLocalizerTest
78 : public ::testing::TestWithParam<LocalizerTestParams> {
79 public:
80 ::aos::testing::TestSharedMemory shm_;
81
82 // Set up three targets in a row, at (-1, 0), (0, 0), and (1, 0).
83 // Make the right-most target (1, 0) be facing away from the camera, and give
84 // the middle target some skew.
85 // Place one camera facing forward, the other facing backward, and set the
86 // robot at (0, -5) with the cameras each 0.1m from the center.
87 // Place one obstacle in a place where it can block the left-most target (-1,
88 // 0).
89 ParameterizedLocalizerTest()
90 : field_(),
91 targets_(field_.targets()),
92 modeled_obstacles_(field_.obstacles()),
93 true_obstacles_(field_.obstacles()),
94 dt_config_(drivetrain::GetDrivetrainConfig()),
95 // Pull the noise for the encoders/gyros from the R matrix:
96 encoder_noise_(::std::sqrt(
97 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
98 0, 0))),
99 gyro_noise_(::std::sqrt(
100 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
101 2, 2))),
102 // As per the comments in localizer.h, we set the field of view and
103 // noise parameters on the robot_cameras_ so that they see a bit more
104 // than the true_cameras_. The robot_cameras_ are what is passed to the
105 // localizer and used to generate "expected" targets. The true_cameras_
106 // are what we actually use to generate targets to pass to the
107 // localizer.
108 robot_cameras_{
109 {TestCamera({&robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
110 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
111 modeled_obstacles_),
112 TestCamera({&robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
113 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
114 modeled_obstacles_),
115 TestCamera({&robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
116 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
117 modeled_obstacles_),
118 TestCamera({&robot_pose_, {0.0, -kCameraOffset, 0.0}, -M_PI_2},
119 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
120 modeled_obstacles_)}},
121 true_cameras_{
122 {TestCamera({&true_robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
123 M_PI_2 * 0.9, true_noise_parameters_, targets_,
124 true_obstacles_),
125 TestCamera({&true_robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
126 M_PI_2 * 0.9, true_noise_parameters_, targets_,
127 true_obstacles_),
128 TestCamera({&true_robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
129 M_PI_2 * 0.9, true_noise_parameters_, targets_,
130 true_obstacles_),
131 TestCamera(
132 {&true_robot_pose_, {-0.0, -kCameraOffset, 0.0}, -M_PI_2},
133 M_PI_2 * 0.9, true_noise_parameters_, targets_,
134 true_obstacles_)}},
135 localizer_(dt_config_, &robot_pose_),
136 spline_drivetrain_(dt_config_) {
137 // We use the default P() for initialization.
138 localizer_.ResetInitialState(t0_, GetParam().known_start_state,
139 localizer_.P());
140 }
141
142 void SetUp() {
143 ::frc971::control_loops::DrivetrainQueue::Goal goal;
144 goal.controller_type = 2;
145 goal.spline.spline_idx = 1;
146 goal.spline.spline_count = 1;
147 goal.spline_handle = 1;
148 ::std::copy(GetParam().control_pts_x.begin(),
149 GetParam().control_pts_x.end(), goal.spline.spline_x.begin());
150 ::std::copy(GetParam().control_pts_y.begin(),
151 GetParam().control_pts_y.end(), goal.spline.spline_y.begin());
152 spline_drivetrain_.SetGoal(goal);
153 }
154
155 void TearDown() {
156 printf("Each iteration of the simulation took on average %f seconds.\n",
157 avg_time_.count());
158#if defined(SUPPORT_PLOT)
159 if (FLAGS_plot) {
160 matplotlibcpp::figure();
161 matplotlibcpp::plot(simulation_t_, simulation_vl_, {{"label", "Vl"}});
162 matplotlibcpp::plot(simulation_t_, simulation_vr_, {{"label", "Vr"}});
163 matplotlibcpp::legend();
164
165 matplotlibcpp::figure();
166 matplotlibcpp::plot(spline_x_, spline_y_, {{"label", "spline"}});
167 matplotlibcpp::plot(simulation_x_, simulation_y_, {{"label", "robot"}});
168 matplotlibcpp::plot(estimated_x_, estimated_y_,
169 {{"label", "estimation"}});
170 for (const Target & target : targets_) {
171 PlotPlotPts(target.PlotPoints(), {{"c", "g"}});
172 }
173 for (const Obstacle &obstacle : true_obstacles_) {
174 PlotPlotPts(obstacle.PlotPoints(), {{"c", "k"}});
175 }
176 // Go through and plot true/expected camera targets for a few select
177 // time-steps.
178 ::std::vector<const char *> colors{"m", "y", "c"};
179 int jj = 0;
180 for (size_t ii = 0; ii < simulation_x_.size(); ii += 400) {
181 *true_robot_pose_.mutable_pos() << simulation_x_[ii], simulation_y_[ii],
182 0.0;
183 true_robot_pose_.set_theta(simulation_theta_[ii]);
184 for (const TestCamera &camera : true_cameras_) {
185 for (const auto &plot_pts : camera.PlotPoints()) {
186 PlotPlotPts(plot_pts, {{"c", colors[jj]}});
187 }
188 }
189 for (const TestCamera &camera : robot_cameras_) {
190 *robot_pose_.mutable_pos() << estimated_x_[ii], estimated_y_[ii], 0.0;
191 robot_pose_.set_theta(estimated_theta_[ii]);
192 const auto &all_plot_pts = camera.PlotPoints();
193 *robot_pose_.mutable_pos() = true_robot_pose_.rel_pos();
194 robot_pose_.set_theta(true_robot_pose_.rel_theta());
195 for (const auto &plot_pts : all_plot_pts) {
196 PlotPlotPts(plot_pts, {{"c", colors[jj]}, {"ls", "--"}});
197 }
198 }
199 jj = (jj + 1) % colors.size();
200 }
201 matplotlibcpp::legend();
202
203 matplotlibcpp::figure();
204 matplotlibcpp::plot(
205 simulation_t_, spline_x_,
206 {{"label", "spline x"}, {"c", "g"}, {"ls", ""}, {"marker", "o"}});
207 matplotlibcpp::plot(simulation_t_, simulation_x_,
208 {{"label", "simulated x"}, {"c", "g"}});
209 matplotlibcpp::plot(simulation_t_, estimated_x_,
210 {{"label", "estimated x"}, {"c", "g"}, {"ls", "--"}});
211
212 matplotlibcpp::plot(
213 simulation_t_, spline_y_,
214 {{"label", "spline y"}, {"c", "b"}, {"ls", ""}, {"marker", "o"}});
215 matplotlibcpp::plot(simulation_t_, simulation_y_,
216 {{"label", "simulated y"}, {"c", "b"}});
217 matplotlibcpp::plot(simulation_t_, estimated_y_,
218 {{"label", "estimated y"}, {"c", "b"}, {"ls", "--"}});
219
220 matplotlibcpp::plot(simulation_t_, simulation_theta_,
221 {{"label", "simulated theta"}, {"c", "r"}});
222 matplotlibcpp::plot(
223 simulation_t_, estimated_theta_,
224 {{"label", "estimated theta"}, {"c", "r"}, {"ls", "--"}});
225 matplotlibcpp::legend();
226
227 matplotlibcpp::show();
228 }
229#endif
230 }
231
232 protected:
233 // Returns a random number with a gaussian distribution with a mean of zero
234 // and a standard deviation of std, if noisify = true.
235 // If noisify is false, then returns 0.0.
236 double Normal(double std) {
237 if (GetParam().noisify) {
238 return normal_(gen_) * std;
239 }
240 return 0.0;
241 }
242 // Adds random noise to the given target view.
243 void Noisify(TestCamera::TargetView *view) {
244 view->reading.heading += Normal(view->noise.heading);
245 view->reading.distance += Normal(view->noise.distance);
246 view->reading.height += Normal(view->noise.height);
247 view->reading.skew += Normal(view->noise.skew);
248 }
249 // The differential equation for the dynamics of the system.
250 TestLocalizer::State DiffEq(const TestLocalizer::State &X,
251 const TestLocalizer::Input &U) {
252 return localizer_.DiffEq(X, U);
253 }
254
255 Field field_;
256 ::std::array<Target, Field::kNumTargets> targets_;
257 // The obstacles that are passed to the camera objects for the localizer.
258 ::std::array<Obstacle, Field::kNumObstacles> modeled_obstacles_;
259 // The obstacles that are used for actually simulating the cameras.
260 ::std::array<Obstacle, Field::kNumObstacles> true_obstacles_;
261
262 DrivetrainConfig<double> dt_config_;
263
264 // Noise information for the actual simulated cameras (true_*) and the
265 // parameters that the localizer should use for modelling the cameras. Note
266 // how the max_viewable_distance is larger for the localizer, so that if
267 // there is any error in the estimation, it still thinks that it can see
268 // any targets that might actually be in range.
269 TestCamera::NoiseParameters true_noise_parameters_ = {
270 .max_viewable_distance = 10.0,
271 .heading_noise = 0.02,
272 .nominal_distance_noise = 0.06,
273 .nominal_skew_noise = 0.1,
274 .nominal_height_noise = 0.01};
275 TestCamera::NoiseParameters robot_noise_parameters_ = {
276 .max_viewable_distance = 11.0,
277 .heading_noise = 0.02,
278 .nominal_distance_noise = 0.06,
279 .nominal_skew_noise = 0.1,
280 .nominal_height_noise = 0.01};
281
282 // Standard deviations of the noise for the encoders/gyro.
283 double encoder_noise_, gyro_noise_;
284
285 Pose robot_pose_;
286 ::std::array<TestCamera, 4> robot_cameras_;
287 Pose true_robot_pose_;
288 ::std::array<TestCamera, 4> true_cameras_;
289
290 TestLocalizer localizer_;
291
292 ::frc971::control_loops::drivetrain::SplineDrivetrain spline_drivetrain_;
293
294 // All the data we want to end up plotting.
295 ::std::vector<double> simulation_t_;
296
297 ::std::vector<double> spline_x_;
298 ::std::vector<double> spline_y_;
299 ::std::vector<double> estimated_x_;
300 ::std::vector<double> estimated_y_;
301 ::std::vector<double> estimated_theta_;
302 ::std::vector<double> simulation_x_;
303 ::std::vector<double> simulation_y_;
304 ::std::vector<double> simulation_theta_;
305
306 ::std::vector<double> simulation_vl_;
307 ::std::vector<double> simulation_vr_;
308
309 // Simulation start time
310 ::aos::monotonic_clock::time_point t0_;
311
312 // Average duration of each iteration; used for debugging and getting a
313 // sanity-check on what performance looks like--uses a real system clock.
314 ::std::chrono::duration<double> avg_time_;
315
316 ::std::mt19937 gen_{static_cast<uint32_t>(::aos::testing::RandomSeed())};
317 ::std::normal_distribution<> normal_;
318};
319
320// Tests that, when we attempt to follow a spline and use the localizer to
321// perform the state estimation, we end up roughly where we should and that
322// the localizer has a valid position estimate.
323TEST_P(ParameterizedLocalizerTest, SplineTest) {
324 // state stores the true state of the robot throughout the simulation.
325 TestLocalizer::State state = GetParam().true_start_state;
326
327 ::aos::monotonic_clock::time_point t = t0_;
328
329 // The period with which we should take frames from the cameras. Currently,
330 // we just trigger all the cameras at once, rather than offsetting them or
331 // anything.
332 const int camera_period = 5; // cycles
333 // The amount of time to delay the camera images from when they are taken.
334 const ::std::chrono::milliseconds camera_latency(50);
335
336 // A queue of camera frames so that we can add a time delay to the data
337 // coming from the cameras.
338 ::std::queue<::std::tuple<
339 ::aos::monotonic_clock::time_point, const TestCamera *,
340 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>>>
341 camera_queue;
342
343 // Start time, for debugging.
344 const auto begin = ::std::chrono::steady_clock::now();
345
346 size_t i;
347 for (i = 0; !spline_drivetrain_.IsAtEnd(); ++i) {
348 // Get the current state estimate into a matrix that works for the
349 // trajectory code.
350 ::Eigen::Matrix<double, 5, 1> known_state;
351 TestLocalizer::State X_hat = localizer_.X_hat();
352 known_state << X_hat(StateIdx::kX, 0), X_hat(StateIdx::kY, 0),
353 X_hat(StateIdx::kTheta, 0), X_hat(StateIdx::kLeftVelocity, 0),
354 X_hat(StateIdx::kRightVelocity, 0);
355
356 spline_drivetrain_.Update(true, known_state);
357
358 ::frc971::control_loops::DrivetrainQueue::Output output;
359 output.left_voltage = 0;
360 output.right_voltage = 0;
361 spline_drivetrain_.SetOutput(&output);
362 TestLocalizer::Input U(output.left_voltage, output.right_voltage);
363
364 const ::Eigen::Matrix<double, 5, 1> goal_state =
365 spline_drivetrain_.CurrentGoalState();
366 simulation_t_.push_back(
367 ::std::chrono::duration_cast<::std::chrono::duration<double>>(
368 t.time_since_epoch())
369 .count());
370 spline_x_.push_back(goal_state(0, 0));
371 spline_y_.push_back(goal_state(1, 0));
372 simulation_x_.push_back(state(StateIdx::kX, 0));
373 simulation_y_.push_back(state(StateIdx::kY, 0));
374 simulation_theta_.push_back(state(StateIdx::kTheta, 0));
375 estimated_x_.push_back(known_state(0, 0));
376 estimated_y_.push_back(known_state(1, 0));
377 estimated_theta_.push_back(known_state(StateIdx::kTheta, 0));
378
379 simulation_vl_.push_back(U(0));
380 simulation_vr_.push_back(U(1));
381 U(0, 0) = ::std::max(::std::min(U(0, 0), 12.0), -12.0);
382 U(1, 0) = ::std::max(::std::min(U(1, 0), 12.0), -12.0);
383
384 state = ::frc971::control_loops::RungeKuttaU(
385 [this](const ::Eigen::Matrix<double, 10, 1> &X,
386 const ::Eigen::Matrix<double, 2, 1> &U) { return DiffEq(X, U); },
387 state, U,
388 ::std::chrono::duration_cast<::std::chrono::duration<double>>(
389 dt_config_.dt)
390 .count());
391
392 // Add arbitrary disturbances at some arbitrary interval. The main points of
393 // interest here are that we (a) stop adding disturbances at the very end of
394 // the trajectory, to allow us to actually converge to the goal, and (b)
395 // scale disturbances by the corruent velocity.
396 if (GetParam().disturb && i % 50 == 0) {
397 // Scale the disturbance so that when we have near-zero velocity we don't
398 // have much disturbance.
399 double disturbance_scale = ::std::min(
400 1.0, ::std::sqrt(::std::pow(state(StateIdx::kLeftVelocity, 0), 2) +
401 ::std::pow(state(StateIdx::kRightVelocity, 0), 2)) /
402 3.0);
403 TestLocalizer::State disturbance;
404 disturbance << 0.02, 0.02, 0.001, 0.03, 0.02, 0.0, 0.0, 0.0, 0.0, 0.0;
405 disturbance *= disturbance_scale;
406 state += disturbance;
407 }
408
409 t += dt_config_.dt;
410 *true_robot_pose_.mutable_pos() << state(StateIdx::kX, 0),
411 state(StateIdx::kY, 0), 0.0;
412 true_robot_pose_.set_theta(state(StateIdx::kTheta, 0));
413 const double left_enc = state(StateIdx::kLeftEncoder, 0);
414 const double right_enc = state(StateIdx::kRightEncoder, 0);
415
416 const double gyro = (state(StateIdx::kRightVelocity, 0) -
417 state(StateIdx::kLeftVelocity, 0)) /
418 dt_config_.robot_radius / 2.0;
419
420 localizer_.UpdateEncodersAndGyro(left_enc + Normal(encoder_noise_),
421 right_enc + Normal(encoder_noise_),
422 gyro + Normal(gyro_noise_), U, t);
423
424 // Clear out the camera frames that we are ready to pass to the localizer.
425 while (!camera_queue.empty() &&
426 ::std::get<0>(camera_queue.front()) < t - camera_latency) {
427 const auto tuple = camera_queue.front();
428 camera_queue.pop();
429 ::aos::monotonic_clock::time_point t_obs = ::std::get<0>(tuple);
430 const TestCamera *camera = ::std::get<1>(tuple);
431 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame> views =
432 ::std::get<2>(tuple);
433 localizer_.UpdateTargets(*camera, views, t_obs);
434 }
435
436 // Actually take all the images and store them in the queue.
437 if (i % camera_period == 0) {
438 for (size_t jj = 0; jj < true_cameras_.size(); ++jj) {
439 const auto target_views = true_cameras_[jj].target_views();
440 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>
441 pass_views;
442 for (size_t ii = 0;
443 ii < ::std::min(kNumTargetsPerFrame, target_views.size()); ++ii) {
444 TestCamera::TargetView view = target_views[ii];
445 Noisify(&view);
446 pass_views.push_back(view);
447 }
448 camera_queue.emplace(t, &robot_cameras_[jj], pass_views);
449 }
450 }
451
452 }
453
454 const auto end = ::std::chrono::steady_clock::now();
455 avg_time_ = (end - begin) / i;
456 TestLocalizer::State estimate_err = state - localizer_.X_hat();
457 EXPECT_LT(estimate_err.template topRows<7>().norm(),
458 GetParam().estimate_tolerance);
459 // Check that none of the states that we actually care about (x/y/theta, and
460 // wheel positions/speeds) are too far off, individually:
461 EXPECT_LT(estimate_err.template topRows<7>().cwiseAbs().maxCoeff(),
462 GetParam().estimate_tolerance / 3.0)
463 << "Estimate error: " << estimate_err.transpose();
464 Eigen::Matrix<double, 5, 1> final_trajectory_state;
465 final_trajectory_state << state(StateIdx::kX, 0), state(StateIdx::kY, 0),
466 state(StateIdx::kTheta, 0), state(StateIdx::kLeftVelocity, 0),
467 state(StateIdx::kRightVelocity, 0);
468 const Eigen::Matrix<double, 5, 1> final_trajectory_state_err =
469 final_trajectory_state - spline_drivetrain_.CurrentGoalState();
470 EXPECT_LT(final_trajectory_state_err.norm(), GetParam().goal_tolerance)
471 << "Goal error: " << final_trajectory_state_err.transpose();
472}
473
474INSTANTIATE_TEST_CASE_P(
475 LocalizerTest, ParameterizedLocalizerTest,
476 ::testing::Values(
477 // Checks a "perfect" scenario, where we should track perfectly.
478 LocalizerTestParams({
479 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
480 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
481 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
482 0.0, 0.0)
483 .finished(),
484 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
485 0.0, 0.0)
486 .finished(),
487 /*noisify=*/false,
488 /*disturb=*/false,
489 /*estimate_tolerance=*/1e-5,
490 /*goal_tolerance=*/2e-2,
491 }),
492 // Checks "perfect" estimation, but start off the spline and check
493 // that we can still follow it.
494 LocalizerTestParams({
495 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
496 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
497 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
498 0.0, 0.0)
499 .finished(),
500 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
501 0.0, 0.0)
502 .finished(),
503 /*noisify=*/false,
504 /*disturb=*/false,
505 /*estimate_tolerance=*/1e-5,
506 /*goal_tolerance=*/2e-2,
507 }),
508 // Repeats perfect scenario, but add sensor noise.
509 LocalizerTestParams({
510 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
511 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
512 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
513 0.0, 0.0)
514 .finished(),
515 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
516 0.0, 0.0)
517 .finished(),
518 /*noisify=*/true,
519 /*disturb=*/false,
520 /*estimate_tolerance=*/0.2,
521 /*goal_tolerance=*/0.2,
522 }),
523 // Repeats perfect scenario, but add initial estimator error.
524 LocalizerTestParams({
525 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
526 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
527 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
528 0.0, 0.0)
529 .finished(),
530 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
531 0.0, 0.0, 0.0)
532 .finished(),
533 /*noisify=*/false,
534 /*disturb=*/false,
535 /*estimate_tolerance=*/1e-4,
536 /*goal_tolerance=*/2e-2,
537 }),
538 // Repeats perfect scenario, but add voltage + angular errors:
539 LocalizerTestParams({
540 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
541 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
542 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
543 0.5, 0.02)
544 .finished(),
545 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
546 0.0, 0.0, 0.0)
547 .finished(),
548 /*noisify=*/false,
549 /*disturb=*/false,
550 /*estimate_tolerance=*/1e-4,
551 /*goal_tolerance=*/2e-2,
552 }),
553 // Add disturbances while we are driving:
554 LocalizerTestParams({
555 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
556 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
557 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
558 0.0, 0.0)
559 .finished(),
560 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
561 0.0, 0.0)
562 .finished(),
563 /*noisify=*/false,
564 /*disturb=*/true,
565 /*estimate_tolerance=*/2e-2,
566 /*goal_tolerance=*/0.15,
567 }),
568 // Add noise and some initial error in addition:
569 LocalizerTestParams({
570 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
571 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
572 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
573 0.0, 0.0)
574 .finished(),
575 (TestLocalizer::State() << 0.1, -5.1, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0,
576 0.0, 0.0)
577 .finished(),
578 /*noisify=*/true,
579 /*disturb=*/true,
580 /*estimate_tolerance=*/0.15,
581 /*goal_tolerance=*/0.5,
582 }),
583 // Try another spline, just in case the one I was using is special for
584 // some reason; this path will also go straight up to a target, to
585 // better simulate what might happen when trying to score:
586 LocalizerTestParams({
587 /*control_pts_x=*/{{0.5, 3.5, 4.0, 8.0, 11.0, 10.2}},
588 /*control_pts_y=*/{{1.0, 1.0, -3.0, -2.0, -3.5, -3.65}},
589 (TestLocalizer::State() << 0.6, 1.01, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0,
590 0.0, 0.0)
591 .finished(),
592 (TestLocalizer::State() << 0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
593 0.0, 0.0)
594 .finished(),
595 /*noisify=*/true,
596 /*disturb=*/false,
597 /*estimate_tolerance=*/0.1,
598 /*goal_tolerance=*/0.5,
599 })));
600
601} // namespace testing
602} // namespace control_loops
603} // namespace y2019