blob: 743e494073953200c76a5394ade3011f6c0914fd [file] [log] [blame]
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -08001#ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_
2#define FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_
3
4#include <chrono>
5
James Kuszmaul651fc3f2019-05-15 21:14:25 -07006#include "Eigen/Dense"
Philipp Schrader790cb542023-07-05 21:06:52 -07007
James Kuszmaul3c5b4d32020-02-11 17:22:14 -08008#include "aos/commonmath.h"
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -08009#include "aos/containers/priority_queue.h"
James Kuszmaulfedc4612019-03-10 11:24:51 -070010#include "aos/util/math.h"
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080011#include "frc971/control_loops/c2d.h"
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080012#include "frc971/control_loops/drivetrain/drivetrain_config.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -070013#include "frc971/control_loops/runge_kutta.h"
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080014
James Kuszmaul1057ce82019-02-09 17:58:24 -080015namespace y2019 {
16namespace control_loops {
17namespace testing {
18class ParameterizedLocalizerTest;
19} // namespace testing
20} // namespace control_loops
21} // namespace y2019
22
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080023namespace frc971 {
24namespace control_loops {
25namespace drivetrain {
26
27namespace testing {
28class HybridEkfTest;
29}
30
31// HybridEkf is an EKF for use in robot localization. It is currently
32// coded for use with drivetrains in particular, and so the states and inputs
33// are chosen as such.
34// The "Hybrid" part of the name refers to the fact that it can take in
35// measurements with variable time-steps.
36// measurements can also have been taken in the past and we maintain a buffer
37// so that we can replay the kalman filter whenever we get an old measurement.
38// Currently, this class provides the necessary utilities for doing
39// measurement updates with an encoder/gyro as well as a more generic
40// update function that can be used for arbitrary nonlinear updates (presumably
41// a camera update).
James Kuszmaul3c5b4d32020-02-11 17:22:14 -080042//
43// Discussion of the model:
44// In the current model, we try to rely primarily on IMU measurements for
45// estimating robot state--we also need additional information (some combination
46// of output voltages, encoders, and camera data) to help eliminate the biases
47// that can accumulate due to integration of IMU data.
48// We use IMU measurements as inputs rather than measurement outputs because
49// that seemed to be easier to implement. I tried initially running with
50// the IMU as a measurement, but it seemed to blow up the complexity of the
51// model.
52//
53// On each prediction update, we take in inputs of the left/right voltages and
54// the current measured longitudinal/lateral accelerations. In the current
55// setup, the accelerometer readings will be used for estimating how the
56// evolution of the longitudinal/lateral velocities. The voltages (and voltage
57// errors) will solely be used for estimating the current rotational velocity of
58// the robot (I do this because currently I suspect that the accelerometer is a
59// much better indicator of current robot state than the voltages). We also
60// deliberately decay all of the velocity estimates towards zero to help address
61// potential accelerometer biases. We use two separate decay models:
62// -The longitudinal velocity is modelled as decaying at a constant rate (see
63// the documentation on the VelocityAccel() method)--this needs a more
64// complex model because the robot will, under normal circumstances, be
65// travelling at non-zero velocities.
66// -The lateral velocity is modelled as exponentially decaying towards zero.
67// This is simpler to model and should be reasonably valid, since we will
68// not *normally* be travelling sideways consistently (this assumption may
69// need to be revisited).
70// -The "longitudinal velocity offset" (described below) also uses an
71// exponential decay, albeit with a different time constant. A future
72// improvement may remove the decay modelling on the longitudinal velocity
73// itself and instead use that decay model on the longitudinal velocity offset.
74// This would place a bit more trust in the encoder measurements but also
75// more correctly model situations where the robot is legitimately moving at
76// a certain velocity.
77//
78// For modelling how the drivetrain encoders evolve, and to help prevent the
79// aforementioned decay functions from affecting legitimate high-velocity
80// maneuvers too much, we have a "longitudinal velocity offset" term. This term
81// models the difference between the actual longitudinal velocity of the robot
82// (estimated by the average of the left/right velocities) and the velocity
83// experienced by the wheels (which can be observed from the encoders more
84// directly). Because we model this velocity offset as decaying towards zero,
85// what this will do is allow the encoders to be a constant velocity off from
86// the accelerometer updates for short periods of time but then gradually
87// pull the "actual" longitudinal velocity offset towards that of the encoders,
88// helping to reduce constant biases.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080089template <typename Scalar = double>
90class HybridEkf {
91 public:
92 // An enum specifying what each index in the state vector is for.
93 enum StateIdx {
James Kuszmaul3c5b4d32020-02-11 17:22:14 -080094 // Current X/Y position, in meters, of the robot.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080095 kX = 0,
96 kY = 1,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -080097 // Current heading of the robot.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -080098 kTheta = 2,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -080099 // Current estimated encoder reading of the left wheels, in meters.
100 // Rezeroed once on startup.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800101 kLeftEncoder = 3,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800102 // Current estimated actual velocity of the left side of the robot, in m/s.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800103 kLeftVelocity = 4,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800104 // Same variables, for the right side of the robot.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800105 kRightEncoder = 5,
106 kRightVelocity = 6,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800107 // Estimated offset to input voltage. Used as a generic error term, Volts.
James Kuszmaul074429e2019-03-23 16:01:49 -0700108 kLeftVoltageError = 7,
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700109 kRightVoltageError = 8,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800110 // These error terms are used to estimate the difference between the actual
111 // movement of the drivetrain and that implied by the wheel odometry.
112 // Angular error effectively estimates a constant angular rate offset of the
113 // encoders relative to the actual rotation of the robot.
114 // Semi-arbitrary units (we don't bother accounting for robot radius in
115 // this).
James Kuszmaul074429e2019-03-23 16:01:49 -0700116 kAngularError = 9,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800117 // Estimate of slip between the drivetrain wheels and the actual
118 // forwards/backwards velocity of the robot, in m/s.
119 // I.e., (left velocity + right velocity) / 2.0 = (left wheel velocity +
120 // right wheel velocity) / 2.0 + longitudinal velocity offset
121 kLongitudinalVelocityOffset = 10,
122 // Current estimate of the lateral velocity of the robot, in m/s.
123 // Positive implies the robot is moving to its left.
124 kLateralVelocity = 11,
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800125 };
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800126 static constexpr int kNStates = 12;
127 enum InputIdx {
128 // Left/right drivetrain voltages.
129 kLeftVoltage = 0,
130 kRightVoltage = 1,
131 // Current accelerometer readings, in m/s/s, along the longitudinal and
132 // lateral axes of the robot. Should be projected onto the X/Y plane, to
133 // compensate for tilt of the robot before being passed to this filter. The
134 // HybridEkf has no knowledge of the current pitch/roll of the robot, and so
135 // can't do anything to compensate for it.
136 kLongitudinalAccel = 2,
137 kLateralAccel = 3,
138 };
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800139
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800140 static constexpr int kNInputs = 4;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800141 // Number of previous samples to save.
Austin Schuh6e660592021-10-17 17:37:33 -0700142 static constexpr int kSaveSamples = 200;
James Kuszmaul06257f42020-05-09 15:40:09 -0700143 // Whether we should completely rerun the entire stored history of
144 // kSaveSamples on every correction. Enabling this will increase overall CPU
145 // usage substantially; however, leaving it disabled makes it so that we are
146 // less likely to notice if processing camera frames is causing delays in the
147 // drivetrain.
148 // If we are having CPU issues, we have three easy avenues to improve things:
149 // (1) Reduce kSaveSamples (e.g., if all camera frames arive within
150 // 100 ms, then we can reduce kSaveSamples to be 25 (125 ms of samples)).
151 // (2) Don't actually rely on the ability to insert corrections into the
152 // timeline.
153 // (3) Set this to false.
154 static constexpr bool kFullRewindOnEverySample = false;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800155 // Assume that all correction steps will have kNOutputs
156 // dimensions.
157 // TODO(james): Relax this assumption; relaxing it requires
158 // figuring out how to deal with storing variable size
159 // observation matrices, though.
160 static constexpr int kNOutputs = 3;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800161 // Time constant to use for estimating how the longitudinal/lateral velocity
162 // offsets decay, in seconds.
James Kuszmaul5f6d1d42020-03-01 18:10:07 -0800163 static constexpr double kVelocityOffsetTimeConstant = 1.0;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800164 static constexpr double kLateralVelocityTimeConstant = 1.0;
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800165
James Kuszmaulf3950362020-10-11 18:29:15 -0700166 // The maximum allowable timestep--we use this to check for situations where
167 // measurement updates come in too infrequently and this might cause the
168 // integrator and discretization in the prediction step to be overly
169 // aggressive.
170 static constexpr std::chrono::milliseconds kMaxTimestep{20};
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800171 // Inputs are [left_volts, right_volts]
172 typedef Eigen::Matrix<Scalar, kNInputs, 1> Input;
173 // Outputs are either:
174 // [left_encoder, right_encoder, gyro_vel]; or [heading, distance, skew] to
175 // some target. This makes it so we don't have to figure out how we store
176 // variable-size measurement updates.
177 typedef Eigen::Matrix<Scalar, kNOutputs, 1> Output;
178 typedef Eigen::Matrix<Scalar, kNStates, kNStates> StateSquare;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800179 // State contains the states defined by the StateIdx enum. See comments there.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800180 typedef Eigen::Matrix<Scalar, kNStates, 1> State;
181
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800182 // The following classes exist to allow us to support doing corections in the
183 // past by rewinding the EKF, calling the appropriate H and dhdx functions,
184 // and then playing everything back. Originally, this simply used
185 // std::function's, but doing so causes us to perform dynamic memory
186 // allocation in the core of the drivetrain control loop.
187 //
188 // The ExpectedObservationFunctor class serves to provide an interface for the
189 // actual H and dH/dX that the EKF itself needs. Most implementations end up
190 // just using this; in the degenerate case, ExpectedObservationFunctor could
191 // be implemented as a class that simply stores two std::functions and calls
192 // them when H() and DHDX() are called.
193 //
194 // The ObserveDeletion() and deleted() methods exist for sanity checking--we
195 // don't rely on them to do any work, but in order to ensure that memory is
196 // being managed correctly, we have the HybridEkf call ObserveDeletion() when
197 // it no longer needs an instance of the object.
198 class ExpectedObservationFunctor {
199 public:
200 virtual ~ExpectedObservationFunctor() = default;
201 // Return the expected measurement of the system for a given state and plant
202 // input.
203 virtual Output H(const State &state, const Input &input) = 0;
204 // Return the derivative of H() with respect to the state, given the current
205 // state.
206 virtual Eigen::Matrix<Scalar, kNOutputs, kNStates> DHDX(
207 const State &state) = 0;
208 virtual void ObserveDeletion() {
209 CHECK(!deleted_);
210 deleted_ = true;
211 }
212 bool deleted() const { return deleted_; }
213
214 private:
215 bool deleted_ = false;
216 };
217
218 // The ExpectedObservationBuilder creates a new ExpectedObservationFunctor.
219 // This is used for situations where in order to know what the correction
220 // methods even are we need to know the state at some time in the past. This
221 // is only used in the y2019 code and we've generally stopped using this
222 // pattern.
223 class ExpectedObservationBuilder {
224 public:
225 virtual ~ExpectedObservationBuilder() = default;
226 // The lifetime of the returned object should last at least until
227 // ObserveDeletion() is called on said object.
228 virtual ExpectedObservationFunctor *MakeExpectedObservations(
229 const State &state, const StateSquare &P) = 0;
230 void ObserveDeletion() {
231 CHECK(!deleted_);
232 deleted_ = true;
233 }
234 bool deleted() const { return deleted_; }
235
236 private:
237 bool deleted_ = false;
238 };
239
240 // The ExpectedObservationAllocator provides a utility class which manages the
241 // memory for a single type of correction step for a given localizer.
242 // Using the knowledge that at most kSaveSamples ExpectedObservation* objects
243 // can be referenced by the HybridEkf at any given time, this keeps an
244 // internal queue that more than mirrors the HybridEkf's internal queue, using
245 // the oldest spots in the queue to construct new ExpectedObservation*'s.
246 // This can be used with T as either a ExpectedObservationBuilder or
247 // ExpectedObservationFunctor. The appropriate Correct function will then be
248 // called in place of calling HybridEkf::Correct directly. Note that unless T
249 // implements both the Builder and Functor (which is generally discouraged),
250 // only one of the Correct* functions will build.
251 template <typename T>
252 class ExpectedObservationAllocator {
253 public:
254 ExpectedObservationAllocator(HybridEkf *ekf) : ekf_(ekf) {}
255 void CorrectKnownH(const Output &z, const Input *U, T H,
256 const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R,
257 aos::monotonic_clock::time_point t) {
258 if (functors_.full()) {
259 CHECK(functors_.begin()->functor->deleted());
260 }
261 auto pushed = functors_.PushFromBottom(Pair{t, std::move(H)});
262 if (pushed == functors_.end()) {
263 VLOG(1) << "Observation dropped off bottom of queue.";
264 return;
265 }
266 ekf_->Correct(z, U, nullptr, &pushed->functor.value(), R, t);
267 }
268 void CorrectKnownHBuilder(
269 const Output &z, const Input *U, T builder,
270 const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R,
271 aos::monotonic_clock::time_point t) {
272 if (functors_.full()) {
273 CHECK(functors_.begin()->functor->deleted());
274 }
275 auto pushed = functors_.PushFromBottom(Pair{t, std::move(builder)});
276 if (pushed == functors_.end()) {
277 VLOG(1) << "Observation dropped off bottom of queue.";
278 return;
279 }
280 ekf_->Correct(z, U, &pushed->functor.value(), nullptr, R, t);
281 }
282
283 private:
284 struct Pair {
285 aos::monotonic_clock::time_point t;
286 std::optional<T> functor;
287 friend bool operator<(const Pair &l, const Pair &r) { return l.t < r.t; }
288 };
289
290 HybridEkf *const ekf_;
291 aos::PriorityQueue<Pair, kSaveSamples + 1, std::less<Pair>> functors_;
292 };
293
294 // A simple implementation of ExpectedObservationFunctor for an LTI correction
295 // step. Does not store any external references, so overrides
296 // ObserveDeletion() to do nothing.
297 class LinearH : public ExpectedObservationFunctor {
298 public:
299 LinearH(const Eigen::Matrix<Scalar, kNOutputs, kNStates> &H) : H_(H) {}
300 virtual ~LinearH() = default;
301 Output H(const State &state, const Input &) final { return H_ * state; }
302 Eigen::Matrix<Scalar, kNOutputs, kNStates> DHDX(const State &) final {
303 return H_;
304 }
305 void ObserveDeletion() {}
306
307 private:
308 const Eigen::Matrix<Scalar, kNOutputs, kNStates> H_;
309 };
310
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800311 // Constructs a HybridEkf for a particular drivetrain.
312 // Currently, we use the drivetrain config for modelling constants
313 // (continuous time A and B matrices) and for the noise matrices for the
314 // encoders/gyro.
James Kuszmauld478f872020-03-16 20:54:27 -0700315 HybridEkf(const DrivetrainConfig<double> &dt_config)
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800316 : dt_config_(dt_config),
317 velocity_drivetrain_coefficients_(
318 dt_config.make_hybrid_drivetrain_velocity_loop()
319 .plant()
320 .coefficients()) {
321 InitializeMatrices();
322 }
323
324 // Set the initial guess of the state. Can only be called once, and before
325 // any measurement updates have occured.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800326 void ResetInitialState(::aos::monotonic_clock::time_point t,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800327 const State &state, const StateSquare &P) {
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800328 observations_.clear();
329 X_hat_ = state;
James Kuszmaul074429e2019-03-23 16:01:49 -0700330 have_zeroed_encoders_ = true;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800331 P_ = P;
James Kuszmaul06257f42020-05-09 15:40:09 -0700332 observations_.PushFromBottom({
333 t,
334 t,
335 X_hat_,
336 P_,
337 Input::Zero(),
338 Output::Zero(),
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800339 nullptr,
340 &H_encoders_and_gyro_.value(),
James Kuszmaul06257f42020-05-09 15:40:09 -0700341 Eigen::Matrix<Scalar, kNOutputs, kNOutputs>::Identity(),
342 StateSquare::Identity(),
343 StateSquare::Zero(),
344 std::chrono::seconds(0),
345 State::Zero(),
346 });
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800347 }
348
349 // Correct with:
350 // A measurement z at time t with z = h(X_hat, U) + v where v has noise
351 // covariance R.
352 // Input U is applied from the previous timestep until time t.
353 // If t is later than any previous measurements, then U must be provided.
354 // If the measurement falls between two previous measurements, then U
355 // can be provided or not; if U is not provided, then it is filled in based
356 // on an assumption that the voltage was held constant between the time steps.
357 // TODO(james): Is it necessary to explicitly to provide a version with H as a
358 // matrix for linear cases?
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800359 void Correct(const Output &z, const Input *U,
360 ExpectedObservationBuilder *observation_builder,
361 ExpectedObservationFunctor *expected_observations,
362 const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R,
363 aos::monotonic_clock::time_point t);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800364
365 // A utility function for specifically updating with encoder and gyro
366 // measurements.
367 void UpdateEncodersAndGyro(const Scalar left_encoder,
368 const Scalar right_encoder, const Scalar gyro_rate,
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800369 const Eigen::Matrix<Scalar, 2, 1> &voltage,
370 const Eigen::Matrix<Scalar, 3, 1> &accel,
371 aos::monotonic_clock::time_point t) {
372 Input U;
373 U.template block<2, 1>(0, 0) = voltage;
374 U.template block<2, 1>(kLongitudinalAccel, 0) =
375 accel.template block<2, 1>(0, 0);
376 RawUpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate, U, t);
377 }
378 // Version of UpdateEncodersAndGyro that takes a input matrix rather than
379 // taking in a voltage/acceleration separately.
380 void RawUpdateEncodersAndGyro(const Scalar left_encoder,
381 const Scalar right_encoder,
382 const Scalar gyro_rate, const Input &U,
383 aos::monotonic_clock::time_point t) {
James Kuszmaul074429e2019-03-23 16:01:49 -0700384 // Because the check below for have_zeroed_encoders_ will add an
385 // Observation, do a check here to ensure that initialization has been
386 // performed and so there is at least one observation.
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800387 CHECK(!observations_.empty());
James Kuszmaul074429e2019-03-23 16:01:49 -0700388 if (!have_zeroed_encoders_) {
389 // This logic handles ensuring that on the first encoder reading, we
390 // update the internal state for the encoders to match the reading.
391 // Otherwise, if we restart the drivetrain without restarting
392 // wpilib_interface, then we can get some obnoxious initial corrections
393 // that mess up the localization.
394 State newstate = X_hat_;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800395 newstate(kLeftEncoder) = left_encoder;
396 newstate(kRightEncoder) = right_encoder;
397 newstate(kLeftVoltageError) = 0.0;
398 newstate(kRightVoltageError) = 0.0;
399 newstate(kAngularError) = 0.0;
400 newstate(kLongitudinalVelocityOffset) = 0.0;
401 newstate(kLateralVelocity) = 0.0;
James Kuszmaul074429e2019-03-23 16:01:49 -0700402 ResetInitialState(t, newstate, P_);
403 // We need to set have_zeroed_encoders_ after ResetInitialPosition because
404 // the reset clears have_zeroed_encoders_...
405 have_zeroed_encoders_ = true;
406 }
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800407
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800408 Output z(left_encoder, right_encoder, gyro_rate);
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800409
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800410 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R;
411 R.setZero();
412 R.diagonal() << encoder_noise_, encoder_noise_, gyro_noise_;
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800413 CHECK(H_encoders_and_gyro_.has_value());
414 Correct(z, &U, nullptr, &H_encoders_and_gyro_.value(), R, t);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800415 }
416
417 // Sundry accessor:
418 State X_hat() const { return X_hat_; }
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800419 Scalar X_hat(long i) const { return X_hat_(i); }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800420 StateSquare P() const { return P_; }
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800421 aos::monotonic_clock::time_point latest_t() const {
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800422 return observations_.top().t;
423 }
424
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800425 static Scalar CalcLongitudinalVelocity(const State &X) {
426 return (X(kLeftVelocity) + X(kRightVelocity)) / 2.0;
427 }
428
429 Scalar CalcYawRate(const State &X) const {
430 return (X(kRightVelocity) - X(kLeftVelocity)) / 2.0 /
431 dt_config_.robot_radius;
432 }
433
James Kuszmaul06257f42020-05-09 15:40:09 -0700434 // Returns the last state before the specified time.
435 // Returns nullopt if time is older than the oldest measurement.
436 std::optional<State> LastStateBeforeTime(
437 aos::monotonic_clock::time_point time) {
438 if (observations_.empty() || observations_.begin()->t > time) {
439 return std::nullopt;
440 }
441 for (const auto &observation : observations_) {
442 if (observation.t > time) {
443 // Note that observation.X_hat actually references the _previous_ X_hat.
444 return observation.X_hat;
445 }
446 }
447 return X_hat();
448 }
James Kuszmaulba59dc92022-03-12 10:46:54 -0800449 std::optional<State> OldestState() {
450 if (observations_.empty()) {
451 return std::nullopt;
452 }
453 return observations_.begin()->X_hat;
454 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700455
456 // Returns the most recent input vector.
457 Input MostRecentInput() {
458 CHECK(!observations_.empty());
459 Input U = observations_.top().U;
460 return U;
461 }
462
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800463 void set_ignore_accel(bool ignore_accel) { ignore_accel_ = ignore_accel; }
464
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800465 private:
466 struct Observation {
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800467 Observation(aos::monotonic_clock::time_point t,
468 aos::monotonic_clock::time_point prev_t, State X_hat,
469 StateSquare P, Input U, Output z,
470 ExpectedObservationBuilder *make_h,
471 ExpectedObservationFunctor *h,
472 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R, StateSquare A_d,
473 StateSquare Q_d,
474 aos::monotonic_clock::duration discretization_time,
475 State predict_update)
476 : t(t),
477 prev_t(prev_t),
478 X_hat(X_hat),
479 P(P),
480 U(U),
481 z(z),
482 make_h(make_h),
483 h(h),
484 R(R),
485 A_d(A_d),
486 Q_d(Q_d),
487 discretization_time(discretization_time),
488 predict_update(predict_update) {}
489 Observation(const Observation &) = delete;
490 Observation &operator=(const Observation &) = delete;
491 // Move-construct an observation by copying over the contents of the struct
492 // and then clearing the old Observation's pointers so that it doesn't try
493 // to clean things up.
494 Observation(Observation &&o)
495 : Observation(o.t, o.prev_t, o.X_hat, o.P, o.U, o.z, o.make_h, o.h, o.R,
496 o.A_d, o.Q_d, o.discretization_time, o.predict_update) {
497 o.make_h = nullptr;
498 o.h = nullptr;
499 }
500 Observation &operator=(Observation &&observation) = delete;
501 ~Observation() {
502 // Observe h being deleted first, since make_h may own its memory.
503 // Shouldn't actually matter, though.
504 if (h != nullptr) {
505 h->ObserveDeletion();
506 }
507 if (make_h != nullptr) {
508 make_h->ObserveDeletion();
509 }
510 }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800511 // Time when the observation was taken.
512 aos::monotonic_clock::time_point t;
513 // Time that the previous observation was taken:
514 aos::monotonic_clock::time_point prev_t;
515 // Estimate of state at previous observation time t, after accounting for
516 // the previous observation.
517 State X_hat;
518 // Noise matrix corresponding to X_hat_.
519 StateSquare P;
520 // The input applied from previous observation until time t.
521 Input U;
522 // Measurement taken at that time.
523 Output z;
524 // A function to create h and dhdx from a given position/covariance
525 // estimate. This is used by the camera to make it so that we only have to
526 // match targets once.
527 // Only called if h and dhdx are empty.
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800528 ExpectedObservationBuilder *make_h = nullptr;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800529 // A function to calculate the expected output at a given state/input.
530 // TODO(james): For encoders/gyro, it is linear and the function call may
531 // be expensive. Potential source of optimization.
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800532 ExpectedObservationFunctor *h = nullptr;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800533 // The measurement noise matrix.
534 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R;
535
James Kuszmaul06257f42020-05-09 15:40:09 -0700536 // Discretized A and Q to use on this update step. These will only be
537 // recalculated if the timestep changes.
538 StateSquare A_d;
539 StateSquare Q_d;
540 aos::monotonic_clock::duration discretization_time;
541
542 // A cached value indicating how much we change X_hat in the prediction step
543 // of this Observation.
544 State predict_update;
545
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800546 // In order to sort the observations in the PriorityQueue object, we
547 // need a comparison function.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700548 friend bool operator<(const Observation &l, const Observation &r) {
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800549 return l.t < r.t;
550 }
551 };
552
553 void InitializeMatrices();
554
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800555 // These constants and functions define how the longitudinal velocity
556 // (the average of the left and right velocities) decays. We model it as
557 // decaying at a constant rate, except very near zero where the decay rate is
558 // exponential (this is more numerically stable than just using a constant
559 // rate the whole time). We use this model rather than a simpler exponential
560 // decay because an exponential decay will result in the robot's velocity
561 // estimate consistently being far too low when at high velocities, and since
562 // the acceleromater-based estimate of the velocity will only drift at a
563 // relatively slow rate and doesn't get worse at higher velocities, we can
564 // safely decay pretty slowly.
565 static constexpr double kMaxVelocityAccel = 0.005;
566 static constexpr double kMaxVelocityGain = 1.0;
567 static Scalar VelocityAccel(Scalar velocity) {
568 return -std::clamp(kMaxVelocityGain * velocity, -kMaxVelocityAccel,
569 kMaxVelocityAccel);
570 }
571
572 static Scalar VelocityAccelDiff(Scalar velocity) {
573 return (std::abs(kMaxVelocityGain * velocity) > kMaxVelocityAccel)
574 ? 0.0
575 : -kMaxVelocityGain;
576 }
577
578 // Returns the "A" matrix for a given state. See DiffEq for discussion of
579 // ignore_accel.
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800580 StateSquare AForState(const State &X, bool ignore_accel) const {
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800581 // Calculate the A matrix for a given state. Note that A = partial Xdot /
582 // partial X. This is distinct from saying that Xdot = A * X. This is
583 // particularly relevant for the (kX, kTheta) members which otherwise seem
584 // odd.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800585 StateSquare A_continuous = A_continuous_;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800586 const Scalar theta = X(kTheta);
587 const Scalar stheta = std::sin(theta);
588 const Scalar ctheta = std::cos(theta);
589 const Scalar lng_vel = CalcLongitudinalVelocity(X);
590 const Scalar lat_vel = X(kLateralVelocity);
591 const Scalar diameter = 2.0 * dt_config_.robot_radius;
592 const Scalar yaw_rate = CalcYawRate(X);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800593 // X and Y derivatives
Austin Schuhd749d932020-12-30 21:38:40 -0800594 A_continuous(kX, kTheta) = -stheta * lng_vel - ctheta * lat_vel;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800595 A_continuous(kX, kLeftVelocity) = ctheta / 2.0;
596 A_continuous(kX, kRightVelocity) = ctheta / 2.0;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800597 A_continuous(kX, kLateralVelocity) = -stheta;
598 A_continuous(kY, kTheta) = ctheta * lng_vel - stheta * lat_vel;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800599 A_continuous(kY, kLeftVelocity) = stheta / 2.0;
600 A_continuous(kY, kRightVelocity) = stheta / 2.0;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800601 A_continuous(kY, kLateralVelocity) = ctheta;
602
603 if (!ignore_accel) {
604 const Eigen::Matrix<Scalar, 1, kNStates> lng_vel_row =
605 (A_continuous.row(kLeftVelocity) + A_continuous.row(kRightVelocity)) /
606 2.0;
607 A_continuous.row(kLeftVelocity) -= lng_vel_row;
608 A_continuous.row(kRightVelocity) -= lng_vel_row;
609 // Terms to account for centripetal accelerations.
610 // lateral centripetal accel = -yaw_rate * lng_vel
611 A_continuous(kLateralVelocity, kLeftVelocity) +=
612 X(kLeftVelocity) / diameter;
613 A_continuous(kLateralVelocity, kRightVelocity) +=
614 -X(kRightVelocity) / diameter;
615 A_continuous(kRightVelocity, kLateralVelocity) += yaw_rate;
616 A_continuous(kLeftVelocity, kLateralVelocity) += yaw_rate;
617 const Scalar dlng_accel_dwheel_vel = X(kLateralVelocity) / diameter;
618 A_continuous(kRightVelocity, kRightVelocity) += dlng_accel_dwheel_vel;
619 A_continuous(kLeftVelocity, kRightVelocity) += dlng_accel_dwheel_vel;
620 A_continuous(kRightVelocity, kLeftVelocity) += -dlng_accel_dwheel_vel;
621 A_continuous(kLeftVelocity, kLeftVelocity) += -dlng_accel_dwheel_vel;
622
623 A_continuous(kRightVelocity, kRightVelocity) +=
624 VelocityAccelDiff(lng_vel) / 2.0;
625 A_continuous(kRightVelocity, kLeftVelocity) +=
626 VelocityAccelDiff(lng_vel) / 2.0;
627 A_continuous(kLeftVelocity, kRightVelocity) +=
628 VelocityAccelDiff(lng_vel) / 2.0;
629 A_continuous(kLeftVelocity, kLeftVelocity) +=
630 VelocityAccelDiff(lng_vel) / 2.0;
631 }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800632 return A_continuous;
633 }
634
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800635 // Returns dX / dt given X and U. If ignore_accel is set, then we ignore the
636 // accelerometer-based components of U (this is solely used in testing).
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800637 State DiffEq(const State &X, const Input &U, bool ignore_accel) const {
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800638 State Xdot = A_continuous_ * X + B_continuous_ * U;
639 // And then we need to add on the terms for the x/y change:
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800640 const Scalar theta = X(kTheta);
641 const Scalar lng_vel = CalcLongitudinalVelocity(X);
642 const Scalar lat_vel = X(kLateralVelocity);
643 const Scalar stheta = std::sin(theta);
644 const Scalar ctheta = std::cos(theta);
645 Xdot(kX) = ctheta * lng_vel - stheta * lat_vel;
646 Xdot(kY) = stheta * lng_vel + ctheta * lat_vel;
647
648 const Scalar yaw_rate = CalcYawRate(X);
649 const Scalar expected_lat_accel = lng_vel * yaw_rate;
650 const Scalar expected_lng_accel =
651 CalcLongitudinalVelocity(Xdot) - yaw_rate * lat_vel;
Austin Schuhd749d932020-12-30 21:38:40 -0800652 const Scalar lng_accel_offset = U(kLongitudinalAccel) - expected_lng_accel;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800653 constexpr double kAccelWeight = 1.0;
654 if (!ignore_accel) {
655 Xdot(kLeftVelocity) += kAccelWeight * lng_accel_offset;
656 Xdot(kRightVelocity) += kAccelWeight * lng_accel_offset;
657 Xdot(kLateralVelocity) += U(kLateralAccel) - expected_lat_accel;
658
659 Xdot(kRightVelocity) += VelocityAccel(lng_vel);
660 Xdot(kLeftVelocity) += VelocityAccel(lng_vel);
661 }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800662 return Xdot;
663 }
664
James Kuszmaul06257f42020-05-09 15:40:09 -0700665 void PredictImpl(Observation *obs, std::chrono::nanoseconds dt, State *state,
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800666 StateSquare *P) {
James Kuszmaul06257f42020-05-09 15:40:09 -0700667 // Only recalculate the discretization if the timestep has changed.
668 // Technically, this isn't quite correct, since the discretization will
669 // change depending on the current state. However, the slight loss of
670 // precision seems acceptable for the sake of significantly reducing CPU
671 // usage.
672 if (obs->discretization_time != dt) {
673 // TODO(james): By far the biggest CPU sink in the localization appears to
674 // be this discretization--it's possible the spline code spikes higher,
675 // but it doesn't create anywhere near the same sustained load. There
676 // are a few potential options for optimizing this code, but none of
677 // them are entirely trivial, e.g. we could:
678 // -Reduce the number of states (this function grows at O(kNStates^3))
679 // -Adjust the discretization function itself (there're a few things we
680 // can tune there).
681 // -Try to come up with some sort of lookup table or other way of
682 // pre-calculating A_d and Q_d.
683 // I also have to figure out how much we care about the precision of
684 // some of these values--I don't think we care much, but we probably
685 // do want to maintain some of the structure of the matrices.
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800686 const StateSquare A_c = AForState(*state, ignore_accel_);
James Kuszmaul06257f42020-05-09 15:40:09 -0700687 controls::DiscretizeQAFast(Q_continuous_, A_c, dt, &obs->Q_d, &obs->A_d);
688 obs->discretization_time = dt;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800689
James Kuszmaul06257f42020-05-09 15:40:09 -0700690 obs->predict_update =
691 RungeKuttaU(
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800692 [this](const State &X, const Input &U) {
693 return DiffEq(X, U, ignore_accel_);
694 },
James Kuszmaul06257f42020-05-09 15:40:09 -0700695 *state, obs->U, aos::time::DurationInSeconds(dt)) -
696 *state;
697 }
James Kuszmaulb2a2f352019-03-02 16:59:34 -0800698
James Kuszmaul06257f42020-05-09 15:40:09 -0700699 *state += obs->predict_update;
700
701 StateSquare Ptemp = obs->A_d * *P * obs->A_d.transpose() + obs->Q_d;
James Kuszmaulb2a2f352019-03-02 16:59:34 -0800702 *P = Ptemp;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800703 }
704
James Kuszmaul06257f42020-05-09 15:40:09 -0700705 void CorrectImpl(Observation *obs, State *state, StateSquare *P) {
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800706 const Eigen::Matrix<Scalar, kNOutputs, kNStates> H = obs->h->DHDX(*state);
James Kuszmaul06257f42020-05-09 15:40:09 -0700707 // Note: Technically, this does calculate P * H.transpose() twice. However,
708 // when I was mucking around with some things, I found that in practice
709 // putting everything into one expression and letting Eigen optimize it
710 // directly actually improved performance relative to precalculating P *
711 // H.transpose().
712 const Eigen::Matrix<Scalar, kNStates, kNOutputs> K =
713 *P * H.transpose() * (H * *P * H.transpose() + obs->R).inverse();
714 const StateSquare Ptemp = (StateSquare::Identity() - K * H) * *P;
James Kuszmaulb2a2f352019-03-02 16:59:34 -0800715 *P = Ptemp;
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800716 *state += K * (obs->z - obs->h->H(*state, obs->U));
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800717 }
718
719 void ProcessObservation(Observation *obs, const std::chrono::nanoseconds dt,
720 State *state, StateSquare *P) {
721 *state = obs->X_hat;
722 *P = obs->P;
James Kuszmaulf3950362020-10-11 18:29:15 -0700723 if (dt.count() != 0 && dt < kMaxTimestep) {
James Kuszmaul06257f42020-05-09 15:40:09 -0700724 PredictImpl(obs, dt, state, P);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800725 }
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800726 if (obs->h == nullptr) {
727 CHECK(obs->make_h != nullptr);
728 obs->h = CHECK_NOTNULL(obs->make_h->MakeExpectedObservations(*state, *P));
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800729 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700730 CorrectImpl(obs, state, P);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800731 }
732
James Kuszmauld478f872020-03-16 20:54:27 -0700733 DrivetrainConfig<double> dt_config_;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800734 State X_hat_;
James Kuszmauld478f872020-03-16 20:54:27 -0700735 StateFeedbackHybridPlantCoefficients<2, 2, 2, double>
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800736 velocity_drivetrain_coefficients_;
737 StateSquare A_continuous_;
738 StateSquare Q_continuous_;
739 StateSquare P_;
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800740 std::optional<LinearH> H_encoders_and_gyro_;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800741 Scalar encoder_noise_, gyro_noise_;
742 Eigen::Matrix<Scalar, kNStates, kNInputs> B_continuous_;
743
James Kuszmaul074429e2019-03-23 16:01:49 -0700744 bool have_zeroed_encoders_ = false;
745
James Kuszmaul91aa0cf2021-02-13 13:15:06 -0800746 // Whether to pay attention to accelerometer readings to compensate for wheel
747 // slip.
748 bool ignore_accel_ = false;
749
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800750 aos::PriorityQueue<Observation, kSaveSamples, std::less<Observation>>
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800751 observations_;
752
753 friend class testing::HybridEkfTest;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800754 friend class y2019::control_loops::testing::ParameterizedLocalizerTest;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800755}; // class HybridEkf
756
757template <typename Scalar>
758void HybridEkf<Scalar>::Correct(
759 const Output &z, const Input *U,
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800760 ExpectedObservationBuilder *observation_builder,
761 ExpectedObservationFunctor *expected_observations,
Austin Schuhd749d932020-12-30 21:38:40 -0800762 const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R,
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800763 aos::monotonic_clock::time_point t) {
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800764 CHECK(!observations_.empty());
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800765 if (!observations_.full() && t < observations_.begin()->t) {
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800766 LOG(ERROR) << "Dropped an observation that was received before we "
767 "initialized.\n";
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800768 return;
769 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700770 auto cur_it = observations_.PushFromBottom(
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800771 {t, t, State::Zero(), StateSquare::Zero(), Input::Zero(), z,
772 observation_builder, expected_observations, R, StateSquare::Identity(),
773 StateSquare::Zero(), std::chrono::seconds(0), State::Zero()});
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800774 if (cur_it == observations_.end()) {
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800775 VLOG(1) << "Camera dropped off of end with time of "
776 << aos::time::DurationInSeconds(t.time_since_epoch())
777 << "s; earliest observation in "
778 "queue has time of "
779 << aos::time::DurationInSeconds(
780 observations_.begin()->t.time_since_epoch())
781 << "s.\n";
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800782 return;
783 }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800784 // Now we populate any state information that depends on where the
785 // observation was inserted into the queue. X_hat and P must be populated
786 // from the values present in the observation *following* this one in
787 // the queue (note that the X_hat and P that we store in each observation
788 // is the values that they held after accounting for the previous
789 // measurement and before accounting for the time between the previous and
790 // current measurement). If we appended to the end of the queue, then
791 // we need to pull from X_hat_ and P_ specifically.
792 // Furthermore, for U:
793 // -If the observation was inserted at the end, then the user must've
794 // provided U and we use it.
795 // -Otherwise, only grab U if necessary.
796 auto next_it = cur_it;
797 ++next_it;
798 if (next_it == observations_.end()) {
799 cur_it->X_hat = X_hat_;
800 cur_it->P = P_;
801 // Note that if next_it == observations_.end(), then because we already
802 // checked for !observations_.empty(), we are guaranteed to have
803 // valid prev_it.
804 auto prev_it = cur_it;
805 --prev_it;
806 cur_it->prev_t = prev_it->t;
807 // TODO(james): Figure out a saner way of handling this.
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800808 CHECK(U != nullptr);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800809 cur_it->U = *U;
810 } else {
811 cur_it->X_hat = next_it->X_hat;
812 cur_it->P = next_it->P;
813 cur_it->prev_t = next_it->prev_t;
814 next_it->prev_t = cur_it->t;
815 cur_it->U = (U == nullptr) ? next_it->U : *U;
816 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700817
818 if (kFullRewindOnEverySample) {
819 next_it = observations_.begin();
820 cur_it = next_it++;
821 }
822
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800823 // Now we need to rerun the predict step from the previous to the new
824 // observation as well as every following correct/predict up to the current
825 // time.
826 while (true) {
827 // We use X_hat_ and P_ to store the intermediate states, and then
828 // once we reach the end they will all be up-to-date.
829 ProcessObservation(&*cur_it, cur_it->t - cur_it->prev_t, &X_hat_, &P_);
James Kuszmaul891f4f12020-10-31 17:13:23 -0700830 // TOOD(james): Note that this can be triggered when there are extremely
831 // small values in P_. This is particularly likely if Scalar is just float
832 // and we are performing zero-time updates where the predict step never
833 // runs.
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800834 CHECK(X_hat_.allFinite());
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800835 if (next_it != observations_.end()) {
836 next_it->X_hat = X_hat_;
837 next_it->P = P_;
838 } else {
839 break;
840 }
841 ++cur_it;
842 ++next_it;
843 }
844}
845
846template <typename Scalar>
847void HybridEkf<Scalar>::InitializeMatrices() {
848 A_continuous_.setZero();
849 const Scalar diameter = 2.0 * dt_config_.robot_radius;
850 // Theta derivative
851 A_continuous_(kTheta, kLeftVelocity) = -1.0 / diameter;
852 A_continuous_(kTheta, kRightVelocity) = 1.0 / diameter;
853
854 // Encoder derivatives
855 A_continuous_(kLeftEncoder, kLeftVelocity) = 1.0;
James Kuszmaul074429e2019-03-23 16:01:49 -0700856 A_continuous_(kLeftEncoder, kAngularError) = 1.0;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800857 A_continuous_(kLeftEncoder, kLongitudinalVelocityOffset) = -1.0;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800858 A_continuous_(kRightEncoder, kRightVelocity) = 1.0;
James Kuszmaul074429e2019-03-23 16:01:49 -0700859 A_continuous_(kRightEncoder, kAngularError) = -1.0;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800860 A_continuous_(kRightEncoder, kLongitudinalVelocityOffset) = -1.0;
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800861
862 // Pull velocity derivatives from velocity matrices.
863 // Note that this looks really awkward (doesn't use
864 // Eigen blocks) because someone decided that the full
James Kuszmaulbcd96fc2020-10-12 20:29:32 -0700865 // drivetrain Kalman Filter should have a weird convention.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800866 // TODO(james): Support shifting drivetrains with changing A_continuous
867 const auto &vel_coefs = velocity_drivetrain_coefficients_;
868 A_continuous_(kLeftVelocity, kLeftVelocity) = vel_coefs.A_continuous(0, 0);
869 A_continuous_(kLeftVelocity, kRightVelocity) = vel_coefs.A_continuous(0, 1);
870 A_continuous_(kRightVelocity, kLeftVelocity) = vel_coefs.A_continuous(1, 0);
871 A_continuous_(kRightVelocity, kRightVelocity) = vel_coefs.A_continuous(1, 1);
872
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800873 A_continuous_(kLongitudinalVelocityOffset, kLongitudinalVelocityOffset) =
874 -1.0 / kVelocityOffsetTimeConstant;
875 A_continuous_(kLateralVelocity, kLateralVelocity) =
876 -1.0 / kLateralVelocityTimeConstant;
877
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800878 // TODO(james): Decide what to do about these terms. They don't really matter
879 // too much when we have accelerometer readings available.
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800880 B_continuous_.setZero();
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800881 B_continuous_.template block<1, 2>(kLeftVelocity, kLeftVoltage) =
James Kuszmauld478f872020-03-16 20:54:27 -0700882 vel_coefs.B_continuous.row(0).template cast<Scalar>();
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800883 B_continuous_.template block<1, 2>(kRightVelocity, kLeftVoltage) =
James Kuszmauld478f872020-03-16 20:54:27 -0700884 vel_coefs.B_continuous.row(1).template cast<Scalar>();
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800885 A_continuous_.template block<kNStates, 2>(0, kLeftVoltageError) =
886 B_continuous_.template block<kNStates, 2>(0, kLeftVoltage);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800887
888 Q_continuous_.setZero();
889 // TODO(james): Improve estimates of process noise--e.g., X/Y noise can
James Kuszmaul1057ce82019-02-09 17:58:24 -0800890 // probably be reduced when we are stopped because you rarely jump randomly.
891 // Or maybe it's more appropriate to scale wheelspeed noise with wheelspeed,
892 // since the wheels aren't likely to slip much stopped.
James Kuszmaula5632fe2019-03-23 20:28:33 -0700893 Q_continuous_(kX, kX) = 0.002;
894 Q_continuous_(kY, kY) = 0.002;
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700895 Q_continuous_(kTheta, kTheta) = 0.0001;
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800896 Q_continuous_(kLeftEncoder, kLeftEncoder) = std::pow(0.15, 2.0);
897 Q_continuous_(kRightEncoder, kRightEncoder) = std::pow(0.15, 2.0);
898 Q_continuous_(kLeftVelocity, kLeftVelocity) = std::pow(0.5, 2.0);
899 Q_continuous_(kRightVelocity, kRightVelocity) = std::pow(0.5, 2.0);
900 Q_continuous_(kLeftVoltageError, kLeftVoltageError) = std::pow(10.0, 2.0);
901 Q_continuous_(kRightVoltageError, kRightVoltageError) = std::pow(10.0, 2.0);
902 Q_continuous_(kAngularError, kAngularError) = std::pow(2.0, 2.0);
903 // This noise value largely governs whether we will trust the encoders or
904 // accelerometer more for estimating the robot position.
James Kuszmaul5398fae2020-02-17 16:44:03 -0800905 // Note that this also affects how we interpret camera measurements,
906 // particularly when using a heading/distance/skew measurement--if the
907 // noise on these numbers is particularly high, then we can end up with weird
908 // dynamics where a camera update both shifts our X/Y position and adjusts our
909 // velocity estimates substantially, causing the camera updates to create
Austin Schuhd749d932020-12-30 21:38:40 -0800910 // "momentum" and if we don't trust the encoders enough, then we have no way
911 // of determining that the velocity updates are bogus. This also interacts
912 // with kVelocityOffsetTimeConstant.
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800913 Q_continuous_(kLongitudinalVelocityOffset, kLongitudinalVelocityOffset) =
914 std::pow(1.1, 2.0);
915 Q_continuous_(kLateralVelocity, kLateralVelocity) = std::pow(0.1, 2.0);
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800916
James Kuszmaul2971b5a2023-01-29 15:49:32 -0800917 {
918 Eigen::Matrix<Scalar, kNOutputs, kNStates> H_encoders_and_gyro;
919 H_encoders_and_gyro.setZero();
920 // Encoders are stored directly in the state matrix, so are a minor
921 // transform away.
922 H_encoders_and_gyro(0, kLeftEncoder) = 1.0;
923 H_encoders_and_gyro(1, kRightEncoder) = 1.0;
924 // Gyro rate is just the difference between right/left side speeds:
925 H_encoders_and_gyro(2, kLeftVelocity) = -1.0 / diameter;
926 H_encoders_and_gyro(2, kRightVelocity) = 1.0 / diameter;
927 H_encoders_and_gyro_.emplace(H_encoders_and_gyro);
928 }
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800929
James Kuszmaul3c5b4d32020-02-11 17:22:14 -0800930 encoder_noise_ = 5e-9;
931 gyro_noise_ = 1e-13;
Austin Schuh9fe68f72019-08-10 19:32:03 -0700932
933 X_hat_.setZero();
934 P_.setZero();
James Kuszmaul2ed7b3c2019-02-09 18:26:19 -0800935}
936
937} // namespace drivetrain
938} // namespace control_loops
939} // namespace frc971
940
941#endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_