James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame^] | 1 | #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| 2 | #define FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| 3 | |
| 4 | #include <chrono> |
| 5 | |
| 6 | #include "aos/containers/priority_queue.h" |
| 7 | #include "frc971/control_loops/c2d.h" |
| 8 | #include "frc971/control_loops/runge_kutta.h" |
| 9 | #include "Eigen/Dense" |
| 10 | #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| 11 | |
| 12 | namespace frc971 { |
| 13 | namespace control_loops { |
| 14 | namespace drivetrain { |
| 15 | |
| 16 | namespace testing { |
| 17 | class HybridEkfTest; |
| 18 | } |
| 19 | |
| 20 | // HybridEkf is an EKF for use in robot localization. It is currently |
| 21 | // coded for use with drivetrains in particular, and so the states and inputs |
| 22 | // are chosen as such. |
| 23 | // The "Hybrid" part of the name refers to the fact that it can take in |
| 24 | // measurements with variable time-steps. |
| 25 | // measurements can also have been taken in the past and we maintain a buffer |
| 26 | // so that we can replay the kalman filter whenever we get an old measurement. |
| 27 | // Currently, this class provides the necessary utilities for doing |
| 28 | // measurement updates with an encoder/gyro as well as a more generic |
| 29 | // update function that can be used for arbitrary nonlinear updates (presumably |
| 30 | // a camera update). |
| 31 | template <typename Scalar = double> |
| 32 | class HybridEkf { |
| 33 | public: |
| 34 | // An enum specifying what each index in the state vector is for. |
| 35 | enum StateIdx { |
| 36 | kX = 0, |
| 37 | kY = 1, |
| 38 | kTheta = 2, |
| 39 | kLeftEncoder = 3, |
| 40 | kLeftVelocity = 4, |
| 41 | kRightEncoder = 5, |
| 42 | kRightVelocity = 6, |
| 43 | kLeftVoltageError = 7, |
| 44 | kRightVoltageError = 8 , |
| 45 | kAngularError = 9, |
| 46 | }; |
| 47 | static constexpr int kNStates = 10; |
| 48 | static constexpr int kNInputs = 2; |
| 49 | // Number of previous samples to save. |
| 50 | static constexpr int kSaveSamples = 50; |
| 51 | // Assume that all correction steps will have kNOutputs |
| 52 | // dimensions. |
| 53 | // TODO(james): Relax this assumption; relaxing it requires |
| 54 | // figuring out how to deal with storing variable size |
| 55 | // observation matrices, though. |
| 56 | static constexpr int kNOutputs = 3; |
| 57 | // Inputs are [left_volts, right_volts] |
| 58 | typedef Eigen::Matrix<Scalar, kNInputs, 1> Input; |
| 59 | // Outputs are either: |
| 60 | // [left_encoder, right_encoder, gyro_vel]; or [heading, distance, skew] to |
| 61 | // some target. This makes it so we don't have to figure out how we store |
| 62 | // variable-size measurement updates. |
| 63 | typedef Eigen::Matrix<Scalar, kNOutputs, 1> Output; |
| 64 | typedef Eigen::Matrix<Scalar, kNStates, kNStates> StateSquare; |
| 65 | // State is [x_position, y_position, theta, Kalman States], where |
| 66 | // Kalman States are the states from the standard drivetrain Kalman Filter, |
| 67 | // which is: [left encoder, left ground vel, right encoder, right ground vel, |
| 68 | // left voltage error, right voltage error, angular_error], where: |
| 69 | // left/right encoder should correspond directly to encoder readings |
| 70 | // left/right velocities are the velocity of the left/right sides over the |
| 71 | // ground (i.e., corrected for angular_error). |
| 72 | // voltage errors are the difference between commanded and effective voltage, |
| 73 | // used to estimate consistent modelling errors (e.g., friction). |
| 74 | // angular error is the difference between the angular velocity as estimated |
| 75 | // by the encoders vs. estimated by the gyro, such as might be caused by |
| 76 | // wheels on one side of the drivetrain being too small or one side's |
| 77 | // wheels slipping more than the other. |
| 78 | typedef Eigen::Matrix<Scalar, kNStates, 1> State; |
| 79 | |
| 80 | // Constructs a HybridEkf for a particular drivetrain. |
| 81 | // Currently, we use the drivetrain config for modelling constants |
| 82 | // (continuous time A and B matrices) and for the noise matrices for the |
| 83 | // encoders/gyro. |
| 84 | HybridEkf(const DrivetrainConfig<Scalar> &dt_config) |
| 85 | : dt_config_(dt_config), |
| 86 | velocity_drivetrain_coefficients_( |
| 87 | dt_config.make_hybrid_drivetrain_velocity_loop() |
| 88 | .plant() |
| 89 | .coefficients()) { |
| 90 | InitializeMatrices(); |
| 91 | } |
| 92 | |
| 93 | // Set the initial guess of the state. Can only be called once, and before |
| 94 | // any measurement updates have occured. |
| 95 | // TODO(james): We may want to actually re-initialize and reset things on |
| 96 | // the field. Create some sort of Reset() function. |
| 97 | void ResetInitialState(::aos::monotonic_clock::time_point t, |
| 98 | const State &state) { |
| 99 | observations_.clear(); |
| 100 | X_hat_ = state; |
| 101 | observations_.PushFromBottom( |
| 102 | {t, |
| 103 | t, |
| 104 | X_hat_, |
| 105 | P_, |
| 106 | Input::Zero(), |
| 107 | Output::Zero(), |
| 108 | {}, |
| 109 | [](const State &, const Input &) { return Output::Zero(); }, |
| 110 | [](const State &) { |
| 111 | return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero(); |
| 112 | }, |
| 113 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs>::Identity()}); |
| 114 | } |
| 115 | |
| 116 | // Correct with: |
| 117 | // A measurement z at time t with z = h(X_hat, U) + v where v has noise |
| 118 | // covariance R. |
| 119 | // Input U is applied from the previous timestep until time t. |
| 120 | // If t is later than any previous measurements, then U must be provided. |
| 121 | // If the measurement falls between two previous measurements, then U |
| 122 | // can be provided or not; if U is not provided, then it is filled in based |
| 123 | // on an assumption that the voltage was held constant between the time steps. |
| 124 | // TODO(james): Is it necessary to explicitly to provide a version with H as a |
| 125 | // matrix for linear cases? |
| 126 | void Correct( |
| 127 | const Output &z, const Input *U, |
| 128 | ::std::function< |
| 129 | void(const State &, const StateSquare &, |
| 130 | ::std::function<Output(const State &, const Input &)> *, |
| 131 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 132 | const State &)> *)> make_h, |
| 133 | ::std::function<Output(const State &, const Input &)> h, |
| 134 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| 135 | dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 136 | aos::monotonic_clock::time_point t); |
| 137 | |
| 138 | // A utility function for specifically updating with encoder and gyro |
| 139 | // measurements. |
| 140 | void UpdateEncodersAndGyro(const Scalar left_encoder, |
| 141 | const Scalar right_encoder, const Scalar gyro_rate, |
| 142 | const Input &U, |
| 143 | ::aos::monotonic_clock::time_point t) { |
| 144 | Output z(left_encoder, right_encoder, gyro_rate); |
| 145 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| 146 | R.setZero(); |
| 147 | R.diagonal() << encoder_noise_, encoder_noise_, gyro_noise_; |
| 148 | Correct(z, &U, {}, [this](const State &X, const Input &) { |
| 149 | return H_encoders_and_gyro_ * X; |
| 150 | }, |
| 151 | [this](const State &) { return H_encoders_and_gyro_; }, R, t); |
| 152 | } |
| 153 | |
| 154 | // Sundry accessor: |
| 155 | State X_hat() const { return X_hat_; } |
| 156 | Scalar X_hat(long i) const { return X_hat_(i, 0); } |
| 157 | StateSquare P() const { return P_; } |
| 158 | ::aos::monotonic_clock::time_point latest_t() const { |
| 159 | return observations_.top().t; |
| 160 | } |
| 161 | |
| 162 | private: |
| 163 | struct Observation { |
| 164 | // Time when the observation was taken. |
| 165 | aos::monotonic_clock::time_point t; |
| 166 | // Time that the previous observation was taken: |
| 167 | aos::monotonic_clock::time_point prev_t; |
| 168 | // Estimate of state at previous observation time t, after accounting for |
| 169 | // the previous observation. |
| 170 | State X_hat; |
| 171 | // Noise matrix corresponding to X_hat_. |
| 172 | StateSquare P; |
| 173 | // The input applied from previous observation until time t. |
| 174 | Input U; |
| 175 | // Measurement taken at that time. |
| 176 | Output z; |
| 177 | // A function to create h and dhdx from a given position/covariance |
| 178 | // estimate. This is used by the camera to make it so that we only have to |
| 179 | // match targets once. |
| 180 | // Only called if h and dhdx are empty. |
| 181 | ::std::function< |
| 182 | void(const State &, const StateSquare &, |
| 183 | ::std::function<Output(const State &, const Input &)> *, |
| 184 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 185 | const State &)> *)> make_h; |
| 186 | // A function to calculate the expected output at a given state/input. |
| 187 | // TODO(james): For encoders/gyro, it is linear and the function call may |
| 188 | // be expensive. Potential source of optimization. |
| 189 | ::std::function<Output(const State &, const Input &)> h; |
| 190 | // The Jacobian of h with respect to x. |
| 191 | // We assume that U has no impact on the Jacobian. |
| 192 | // TODO(james): Currently, none of the users of this actually make use of |
| 193 | // the ability to have dynamic dhdx (technically, the camera code should |
| 194 | // recalculate it to be strictly correct, but I was both too lazy to do |
| 195 | // so and it seemed unnecessary). This is a potential source for future |
| 196 | // optimizations if function calls are being expensive. |
| 197 | ::std::function< |
| 198 | Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> dhdx; |
| 199 | // The measurement noise matrix. |
| 200 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| 201 | |
| 202 | // In order to sort the observations in the PriorityQueue object, we |
| 203 | // need a comparison function. |
| 204 | friend bool operator <(const Observation &l, const Observation &r) { |
| 205 | return l.t < r.t; |
| 206 | } |
| 207 | }; |
| 208 | |
| 209 | void InitializeMatrices(); |
| 210 | |
| 211 | StateSquare AForState(const State &X) const { |
| 212 | StateSquare A_continuous = A_continuous_; |
| 213 | const Scalar theta = X(kTheta, 0); |
| 214 | const Scalar linear_vel = |
| 215 | (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| 216 | const Scalar stheta = ::std::sin(theta); |
| 217 | const Scalar ctheta = ::std::cos(theta); |
| 218 | // X and Y derivatives |
| 219 | A_continuous(kX, kTheta) = -stheta * linear_vel; |
| 220 | A_continuous(kX, kLeftVelocity) = ctheta / 2.0; |
| 221 | A_continuous(kX, kRightVelocity) = ctheta / 2.0; |
| 222 | A_continuous(kY, kTheta) = ctheta * linear_vel; |
| 223 | A_continuous(kY, kLeftVelocity) = stheta / 2.0; |
| 224 | A_continuous(kY, kRightVelocity) = stheta / 2.0; |
| 225 | return A_continuous; |
| 226 | } |
| 227 | |
| 228 | State DiffEq(const State &X, const Input &U) const { |
| 229 | State Xdot = A_continuous_ * X + B_continuous_ * U; |
| 230 | // And then we need to add on the terms for the x/y change: |
| 231 | const Scalar theta = X(kTheta, 0); |
| 232 | const Scalar linear_vel = |
| 233 | (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| 234 | const Scalar stheta = ::std::sin(theta); |
| 235 | const Scalar ctheta = ::std::cos(theta); |
| 236 | Xdot(kX, 0) = ctheta * linear_vel; |
| 237 | Xdot(kY, 0) = stheta * linear_vel; |
| 238 | return Xdot; |
| 239 | } |
| 240 | |
| 241 | void PredictImpl(const Input &U, std::chrono::nanoseconds dt, State *state, |
| 242 | StateSquare *P) { |
| 243 | StateSquare A_c = AForState(*state); |
| 244 | StateSquare A_d; |
| 245 | Eigen::Matrix<Scalar, kNStates, 0> dummy_B; |
| 246 | controls::C2D<Scalar, kNStates, 0>( |
| 247 | A_c, Eigen::Matrix<Scalar, kNStates, 0>::Zero(), dt, &A_d, &dummy_B); |
| 248 | StateSquare Q_d; |
| 249 | controls::DiscretizeQ(Q_continuous_, A_c, dt, &Q_d); |
| 250 | *P = A_d * *P * A_d.transpose() + Q_d; |
| 251 | |
| 252 | *state = RungeKuttaU( |
| 253 | [this](const State &X, |
| 254 | const Input &U) { return DiffEq(X, U); }, |
| 255 | *state, U, |
| 256 | ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt) |
| 257 | .count()); |
| 258 | } |
| 259 | |
| 260 | void CorrectImpl(const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 261 | const Output &Z, const Output &expected_Z, |
| 262 | const Eigen::Matrix<Scalar, kNOutputs, kNStates> &H, |
| 263 | State *state, StateSquare *P) { |
| 264 | Output err = Z - expected_Z; |
| 265 | Eigen::Matrix<Scalar, kNStates, kNOutputs> PH = *P * H.transpose(); |
| 266 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> S = H * PH + R; |
| 267 | Eigen::Matrix<Scalar, kNStates, kNOutputs> K = PH * S.inverse(); |
| 268 | *state = *state + K * err; |
| 269 | *P = (StateSquare::Identity() - K * H) * *P; |
| 270 | } |
| 271 | |
| 272 | void ProcessObservation(Observation *obs, const std::chrono::nanoseconds dt, |
| 273 | State *state, StateSquare *P) { |
| 274 | *state = obs->X_hat; |
| 275 | *P = obs->P; |
| 276 | if (dt.count() != 0) { |
| 277 | PredictImpl(obs->U, dt, state, P); |
| 278 | } |
| 279 | if (!(obs->h && obs->dhdx)) { |
| 280 | CHECK(obs->make_h); |
| 281 | obs->make_h(*state, *P, &obs->h, &obs->dhdx); |
| 282 | } |
| 283 | CorrectImpl(obs->R, obs->z, obs->h(*state, obs->U), obs->dhdx(*state), |
| 284 | state, P); |
| 285 | } |
| 286 | |
| 287 | DrivetrainConfig<Scalar> dt_config_; |
| 288 | State X_hat_; |
| 289 | StateFeedbackHybridPlantCoefficients<2, 2, 2, Scalar> |
| 290 | velocity_drivetrain_coefficients_; |
| 291 | StateSquare A_continuous_; |
| 292 | StateSquare Q_continuous_; |
| 293 | StateSquare P_; |
| 294 | Eigen::Matrix<Scalar, kNOutputs, kNStates> H_encoders_and_gyro_; |
| 295 | Scalar encoder_noise_, gyro_noise_; |
| 296 | Eigen::Matrix<Scalar, kNStates, kNInputs> B_continuous_; |
| 297 | |
| 298 | aos::PriorityQueue<Observation, kSaveSamples, ::std::less<Observation>> |
| 299 | observations_; |
| 300 | |
| 301 | friend class testing::HybridEkfTest; |
| 302 | }; // class HybridEkf |
| 303 | |
| 304 | template <typename Scalar> |
| 305 | void HybridEkf<Scalar>::Correct( |
| 306 | const Output &z, const Input *U, |
| 307 | ::std::function< |
| 308 | void(const State &, const StateSquare &, |
| 309 | ::std::function<Output(const State &, const Input &)> *, |
| 310 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 311 | const State &)> *)> make_h, |
| 312 | ::std::function<Output(const State &, const Input &)> h, |
| 313 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| 314 | dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 315 | aos::monotonic_clock::time_point t) { |
| 316 | CHECK(!observations_.empty()); |
| 317 | if (!observations_.full() && t < observations_.begin()->t) { |
| 318 | LOG(ERROR, |
| 319 | "Dropped an observation that was received before we " |
| 320 | "initialized.\n"); |
| 321 | return; |
| 322 | } |
| 323 | auto cur_it = |
| 324 | observations_.PushFromBottom({t, t, State::Zero(), StateSquare::Zero(), |
| 325 | Input::Zero(), z, make_h, h, dhdx, R}); |
| 326 | if (cur_it == observations_.end()) { |
| 327 | LOG(DEBUG, |
| 328 | "Camera dropped off of end with time of %fs; earliest observation in " |
| 329 | "queue has time of %fs.\n", |
| 330 | ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| 331 | t.time_since_epoch()).count(), |
| 332 | ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| 333 | observations_.begin()->t.time_since_epoch()).count()); |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | // Now we populate any state information that depends on where the |
| 338 | // observation was inserted into the queue. X_hat and P must be populated |
| 339 | // from the values present in the observation *following* this one in |
| 340 | // the queue (note that the X_hat and P that we store in each observation |
| 341 | // is the values that they held after accounting for the previous |
| 342 | // measurement and before accounting for the time between the previous and |
| 343 | // current measurement). If we appended to the end of the queue, then |
| 344 | // we need to pull from X_hat_ and P_ specifically. |
| 345 | // Furthermore, for U: |
| 346 | // -If the observation was inserted at the end, then the user must've |
| 347 | // provided U and we use it. |
| 348 | // -Otherwise, only grab U if necessary. |
| 349 | auto next_it = cur_it; |
| 350 | ++next_it; |
| 351 | if (next_it == observations_.end()) { |
| 352 | cur_it->X_hat = X_hat_; |
| 353 | cur_it->P = P_; |
| 354 | // Note that if next_it == observations_.end(), then because we already |
| 355 | // checked for !observations_.empty(), we are guaranteed to have |
| 356 | // valid prev_it. |
| 357 | auto prev_it = cur_it; |
| 358 | --prev_it; |
| 359 | cur_it->prev_t = prev_it->t; |
| 360 | // TODO(james): Figure out a saner way of handling this. |
| 361 | CHECK(U != nullptr); |
| 362 | cur_it->U = *U; |
| 363 | } else { |
| 364 | cur_it->X_hat = next_it->X_hat; |
| 365 | cur_it->P = next_it->P; |
| 366 | cur_it->prev_t = next_it->prev_t; |
| 367 | next_it->prev_t = cur_it->t; |
| 368 | cur_it->U = (U == nullptr) ? next_it->U : *U; |
| 369 | } |
| 370 | // Now we need to rerun the predict step from the previous to the new |
| 371 | // observation as well as every following correct/predict up to the current |
| 372 | // time. |
| 373 | while (true) { |
| 374 | // We use X_hat_ and P_ to store the intermediate states, and then |
| 375 | // once we reach the end they will all be up-to-date. |
| 376 | ProcessObservation(&*cur_it, cur_it->t - cur_it->prev_t, &X_hat_, &P_); |
| 377 | CHECK(X_hat_.allFinite()); |
| 378 | if (next_it != observations_.end()) { |
| 379 | next_it->X_hat = X_hat_; |
| 380 | next_it->P = P_; |
| 381 | } else { |
| 382 | break; |
| 383 | } |
| 384 | ++cur_it; |
| 385 | ++next_it; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | template <typename Scalar> |
| 390 | void HybridEkf<Scalar>::InitializeMatrices() { |
| 391 | A_continuous_.setZero(); |
| 392 | const Scalar diameter = 2.0 * dt_config_.robot_radius; |
| 393 | // Theta derivative |
| 394 | A_continuous_(kTheta, kLeftVelocity) = -1.0 / diameter; |
| 395 | A_continuous_(kTheta, kRightVelocity) = 1.0 / diameter; |
| 396 | |
| 397 | // Encoder derivatives |
| 398 | A_continuous_(kLeftEncoder, kLeftVelocity) = 1.0; |
| 399 | A_continuous_(kLeftEncoder, kAngularError) = 1.0; |
| 400 | A_continuous_(kRightEncoder, kRightVelocity) = 1.0; |
| 401 | A_continuous_(kRightEncoder, kAngularError) = -1.0; |
| 402 | |
| 403 | // Pull velocity derivatives from velocity matrices. |
| 404 | // Note that this looks really awkward (doesn't use |
| 405 | // Eigen blocks) because someone decided that the full |
| 406 | // drivetrain Kalman Filter should half a weird convention. |
| 407 | // TODO(james): Support shifting drivetrains with changing A_continuous |
| 408 | const auto &vel_coefs = velocity_drivetrain_coefficients_; |
| 409 | A_continuous_(kLeftVelocity, kLeftVelocity) = vel_coefs.A_continuous(0, 0); |
| 410 | A_continuous_(kLeftVelocity, kRightVelocity) = vel_coefs.A_continuous(0, 1); |
| 411 | A_continuous_(kRightVelocity, kLeftVelocity) = vel_coefs.A_continuous(1, 0); |
| 412 | A_continuous_(kRightVelocity, kRightVelocity) = vel_coefs.A_continuous(1, 1); |
| 413 | |
| 414 | // Provide for voltage error terms: |
| 415 | B_continuous_.setZero(); |
| 416 | B_continuous_.row(kLeftVelocity) = vel_coefs.B_continuous.row(0); |
| 417 | B_continuous_.row(kRightVelocity) = vel_coefs.B_continuous.row(1); |
| 418 | A_continuous_.template block<kNStates, kNInputs>(0, 7) = B_continuous_; |
| 419 | |
| 420 | Q_continuous_.setZero(); |
| 421 | // TODO(james): Improve estimates of process noise--e.g., X/Y noise can |
| 422 | // probably be reduced because we rarely randomly jump in space, but maybe |
| 423 | // wheel speed noise should increase due to likelihood of slippage. |
| 424 | Q_continuous_(kX, kX) = 0.005; |
| 425 | Q_continuous_(kY, kY) = 0.005; |
| 426 | Q_continuous_(kTheta, kTheta) = 0.001; |
| 427 | Q_continuous_.template block<7, 7>(3, 3) = |
| 428 | dt_config_.make_kf_drivetrain_loop().observer().coefficients().Q; |
| 429 | |
| 430 | P_.setZero(); |
| 431 | P_.diagonal() << 1, 1, 1, 0.5, 0.1, 0.5, 0.1, 1, 1, 1; |
| 432 | |
| 433 | H_encoders_and_gyro_.setZero(); |
| 434 | // Encoders are stored directly in the state matrix, so are a minor |
| 435 | // transform away. |
| 436 | H_encoders_and_gyro_(0, kLeftEncoder) = 1.0; |
| 437 | H_encoders_and_gyro_(1, kRightEncoder) = 1.0; |
| 438 | // Gyro rate is just the difference between right/left side speeds: |
| 439 | H_encoders_and_gyro_(2, kLeftVelocity) = -1.0 / diameter; |
| 440 | H_encoders_and_gyro_(2, kRightVelocity) = 1.0 / diameter; |
| 441 | |
| 442 | const Eigen::Matrix<Scalar, 4, 4> R_kf_drivetrain = |
| 443 | dt_config_.make_kf_drivetrain_loop().observer().coefficients().R; |
| 444 | encoder_noise_ = R_kf_drivetrain(0, 0); |
| 445 | gyro_noise_ = R_kf_drivetrain(2, 2); |
| 446 | } |
| 447 | |
| 448 | } // namespace drivetrain |
| 449 | } // namespace control_loops |
| 450 | } // namespace frc971 |
| 451 | |
| 452 | #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |