James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 1 | #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| 2 | #define FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| 3 | |
| 4 | #include <chrono> |
| 5 | |
| 6 | #include "aos/containers/priority_queue.h" |
James Kuszmaul | fedc461 | 2019-03-10 11:24:51 -0700 | [diff] [blame] | 7 | #include "aos/util/math.h" |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 8 | #include "frc971/control_loops/c2d.h" |
| 9 | #include "frc971/control_loops/runge_kutta.h" |
| 10 | #include "Eigen/Dense" |
| 11 | #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| 12 | |
James Kuszmaul | 1057ce8 | 2019-02-09 17:58:24 -0800 | [diff] [blame] | 13 | namespace y2019 { |
| 14 | namespace control_loops { |
| 15 | namespace testing { |
| 16 | class ParameterizedLocalizerTest; |
| 17 | } // namespace testing |
| 18 | } // namespace control_loops |
| 19 | } // namespace y2019 |
| 20 | |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 21 | namespace frc971 { |
| 22 | namespace control_loops { |
| 23 | namespace drivetrain { |
| 24 | |
| 25 | namespace testing { |
| 26 | class HybridEkfTest; |
| 27 | } |
| 28 | |
| 29 | // HybridEkf is an EKF for use in robot localization. It is currently |
| 30 | // coded for use with drivetrains in particular, and so the states and inputs |
| 31 | // are chosen as such. |
| 32 | // The "Hybrid" part of the name refers to the fact that it can take in |
| 33 | // measurements with variable time-steps. |
| 34 | // measurements can also have been taken in the past and we maintain a buffer |
| 35 | // so that we can replay the kalman filter whenever we get an old measurement. |
| 36 | // Currently, this class provides the necessary utilities for doing |
| 37 | // measurement updates with an encoder/gyro as well as a more generic |
| 38 | // update function that can be used for arbitrary nonlinear updates (presumably |
| 39 | // a camera update). |
| 40 | template <typename Scalar = double> |
| 41 | class HybridEkf { |
| 42 | public: |
| 43 | // An enum specifying what each index in the state vector is for. |
| 44 | enum StateIdx { |
| 45 | kX = 0, |
| 46 | kY = 1, |
| 47 | kTheta = 2, |
| 48 | kLeftEncoder = 3, |
| 49 | kLeftVelocity = 4, |
| 50 | kRightEncoder = 5, |
| 51 | kRightVelocity = 6, |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 52 | kLeftVoltageError = 7, |
| 53 | kRightVoltageError = 8 , |
| 54 | kAngularError = 9, |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 55 | }; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 56 | static constexpr int kNStates = 10; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 57 | static constexpr int kNInputs = 2; |
| 58 | // Number of previous samples to save. |
| 59 | static constexpr int kSaveSamples = 50; |
| 60 | // Assume that all correction steps will have kNOutputs |
| 61 | // dimensions. |
| 62 | // TODO(james): Relax this assumption; relaxing it requires |
| 63 | // figuring out how to deal with storing variable size |
| 64 | // observation matrices, though. |
| 65 | static constexpr int kNOutputs = 3; |
| 66 | // Inputs are [left_volts, right_volts] |
| 67 | typedef Eigen::Matrix<Scalar, kNInputs, 1> Input; |
| 68 | // Outputs are either: |
| 69 | // [left_encoder, right_encoder, gyro_vel]; or [heading, distance, skew] to |
| 70 | // some target. This makes it so we don't have to figure out how we store |
| 71 | // variable-size measurement updates. |
| 72 | typedef Eigen::Matrix<Scalar, kNOutputs, 1> Output; |
| 73 | typedef Eigen::Matrix<Scalar, kNStates, kNStates> StateSquare; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 74 | // State is [x_position, y_position, theta, Kalman States], where |
| 75 | // Kalman States are the states from the standard drivetrain Kalman Filter, |
| 76 | // which is: [left encoder, left ground vel, right encoder, right ground vel, |
| 77 | // left voltage error, right voltage error, angular_error], where: |
| 78 | // left/right encoder should correspond directly to encoder readings |
| 79 | // left/right velocities are the velocity of the left/right sides over the |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 80 | // ground (i.e., corrected for angular_error). |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 81 | // voltage errors are the difference between commanded and effective voltage, |
| 82 | // used to estimate consistent modelling errors (e.g., friction). |
| 83 | // angular error is the difference between the angular velocity as estimated |
| 84 | // by the encoders vs. estimated by the gyro, such as might be caused by |
| 85 | // wheels on one side of the drivetrain being too small or one side's |
| 86 | // wheels slipping more than the other. |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 87 | typedef Eigen::Matrix<Scalar, kNStates, 1> State; |
| 88 | |
| 89 | // Constructs a HybridEkf for a particular drivetrain. |
| 90 | // Currently, we use the drivetrain config for modelling constants |
| 91 | // (continuous time A and B matrices) and for the noise matrices for the |
| 92 | // encoders/gyro. |
| 93 | HybridEkf(const DrivetrainConfig<Scalar> &dt_config) |
| 94 | : dt_config_(dt_config), |
| 95 | velocity_drivetrain_coefficients_( |
| 96 | dt_config.make_hybrid_drivetrain_velocity_loop() |
| 97 | .plant() |
| 98 | .coefficients()) { |
| 99 | InitializeMatrices(); |
| 100 | } |
| 101 | |
| 102 | // Set the initial guess of the state. Can only be called once, and before |
| 103 | // any measurement updates have occured. |
| 104 | // TODO(james): We may want to actually re-initialize and reset things on |
| 105 | // the field. Create some sort of Reset() function. |
| 106 | void ResetInitialState(::aos::monotonic_clock::time_point t, |
James Kuszmaul | 1057ce8 | 2019-02-09 17:58:24 -0800 | [diff] [blame] | 107 | const State &state, const StateSquare &P) { |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 108 | observations_.clear(); |
| 109 | X_hat_ = state; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 110 | have_zeroed_encoders_ = true; |
James Kuszmaul | 1057ce8 | 2019-02-09 17:58:24 -0800 | [diff] [blame] | 111 | P_ = P; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 112 | observations_.PushFromBottom( |
| 113 | {t, |
| 114 | t, |
| 115 | X_hat_, |
| 116 | P_, |
| 117 | Input::Zero(), |
| 118 | Output::Zero(), |
| 119 | {}, |
| 120 | [](const State &, const Input &) { return Output::Zero(); }, |
| 121 | [](const State &) { |
| 122 | return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero(); |
| 123 | }, |
| 124 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs>::Identity()}); |
| 125 | } |
| 126 | |
| 127 | // Correct with: |
| 128 | // A measurement z at time t with z = h(X_hat, U) + v where v has noise |
| 129 | // covariance R. |
| 130 | // Input U is applied from the previous timestep until time t. |
| 131 | // If t is later than any previous measurements, then U must be provided. |
| 132 | // If the measurement falls between two previous measurements, then U |
| 133 | // can be provided or not; if U is not provided, then it is filled in based |
| 134 | // on an assumption that the voltage was held constant between the time steps. |
| 135 | // TODO(james): Is it necessary to explicitly to provide a version with H as a |
| 136 | // matrix for linear cases? |
| 137 | void Correct( |
| 138 | const Output &z, const Input *U, |
| 139 | ::std::function< |
| 140 | void(const State &, const StateSquare &, |
| 141 | ::std::function<Output(const State &, const Input &)> *, |
| 142 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 143 | const State &)> *)> make_h, |
| 144 | ::std::function<Output(const State &, const Input &)> h, |
| 145 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| 146 | dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 147 | aos::monotonic_clock::time_point t); |
| 148 | |
| 149 | // A utility function for specifically updating with encoder and gyro |
| 150 | // measurements. |
| 151 | void UpdateEncodersAndGyro(const Scalar left_encoder, |
| 152 | const Scalar right_encoder, const Scalar gyro_rate, |
| 153 | const Input &U, |
| 154 | ::aos::monotonic_clock::time_point t) { |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 155 | // Because the check below for have_zeroed_encoders_ will add an |
| 156 | // Observation, do a check here to ensure that initialization has been |
| 157 | // performed and so there is at least one observation. |
| 158 | CHECK(!observations_.empty()); |
| 159 | if (!have_zeroed_encoders_) { |
| 160 | // This logic handles ensuring that on the first encoder reading, we |
| 161 | // update the internal state for the encoders to match the reading. |
| 162 | // Otherwise, if we restart the drivetrain without restarting |
| 163 | // wpilib_interface, then we can get some obnoxious initial corrections |
| 164 | // that mess up the localization. |
| 165 | State newstate = X_hat_; |
| 166 | newstate(kLeftEncoder, 0) = left_encoder; |
| 167 | newstate(kRightEncoder, 0) = right_encoder; |
| 168 | newstate(kLeftVoltageError, 0) = 0.0; |
| 169 | newstate(kRightVoltageError, 0) = 0.0; |
| 170 | newstate(kAngularError, 0) = 0.0; |
| 171 | ResetInitialState(t, newstate, P_); |
| 172 | // We need to set have_zeroed_encoders_ after ResetInitialPosition because |
| 173 | // the reset clears have_zeroed_encoders_... |
| 174 | have_zeroed_encoders_ = true; |
| 175 | } |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 176 | Output z(left_encoder, right_encoder, gyro_rate); |
| 177 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| 178 | R.setZero(); |
| 179 | R.diagonal() << encoder_noise_, encoder_noise_, gyro_noise_; |
| 180 | Correct(z, &U, {}, [this](const State &X, const Input &) { |
| 181 | return H_encoders_and_gyro_ * X; |
| 182 | }, |
| 183 | [this](const State &) { return H_encoders_and_gyro_; }, R, t); |
| 184 | } |
| 185 | |
| 186 | // Sundry accessor: |
| 187 | State X_hat() const { return X_hat_; } |
| 188 | Scalar X_hat(long i) const { return X_hat_(i, 0); } |
| 189 | StateSquare P() const { return P_; } |
| 190 | ::aos::monotonic_clock::time_point latest_t() const { |
| 191 | return observations_.top().t; |
| 192 | } |
| 193 | |
| 194 | private: |
| 195 | struct Observation { |
| 196 | // Time when the observation was taken. |
| 197 | aos::monotonic_clock::time_point t; |
| 198 | // Time that the previous observation was taken: |
| 199 | aos::monotonic_clock::time_point prev_t; |
| 200 | // Estimate of state at previous observation time t, after accounting for |
| 201 | // the previous observation. |
| 202 | State X_hat; |
| 203 | // Noise matrix corresponding to X_hat_. |
| 204 | StateSquare P; |
| 205 | // The input applied from previous observation until time t. |
| 206 | Input U; |
| 207 | // Measurement taken at that time. |
| 208 | Output z; |
| 209 | // A function to create h and dhdx from a given position/covariance |
| 210 | // estimate. This is used by the camera to make it so that we only have to |
| 211 | // match targets once. |
| 212 | // Only called if h and dhdx are empty. |
| 213 | ::std::function< |
| 214 | void(const State &, const StateSquare &, |
| 215 | ::std::function<Output(const State &, const Input &)> *, |
| 216 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 217 | const State &)> *)> make_h; |
| 218 | // A function to calculate the expected output at a given state/input. |
| 219 | // TODO(james): For encoders/gyro, it is linear and the function call may |
| 220 | // be expensive. Potential source of optimization. |
| 221 | ::std::function<Output(const State &, const Input &)> h; |
| 222 | // The Jacobian of h with respect to x. |
| 223 | // We assume that U has no impact on the Jacobian. |
| 224 | // TODO(james): Currently, none of the users of this actually make use of |
| 225 | // the ability to have dynamic dhdx (technically, the camera code should |
| 226 | // recalculate it to be strictly correct, but I was both too lazy to do |
| 227 | // so and it seemed unnecessary). This is a potential source for future |
| 228 | // optimizations if function calls are being expensive. |
| 229 | ::std::function< |
| 230 | Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> dhdx; |
| 231 | // The measurement noise matrix. |
| 232 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| 233 | |
| 234 | // In order to sort the observations in the PriorityQueue object, we |
| 235 | // need a comparison function. |
| 236 | friend bool operator <(const Observation &l, const Observation &r) { |
| 237 | return l.t < r.t; |
| 238 | } |
| 239 | }; |
| 240 | |
| 241 | void InitializeMatrices(); |
| 242 | |
| 243 | StateSquare AForState(const State &X) const { |
| 244 | StateSquare A_continuous = A_continuous_; |
| 245 | const Scalar theta = X(kTheta, 0); |
| 246 | const Scalar linear_vel = |
| 247 | (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| 248 | const Scalar stheta = ::std::sin(theta); |
| 249 | const Scalar ctheta = ::std::cos(theta); |
| 250 | // X and Y derivatives |
| 251 | A_continuous(kX, kTheta) = -stheta * linear_vel; |
| 252 | A_continuous(kX, kLeftVelocity) = ctheta / 2.0; |
| 253 | A_continuous(kX, kRightVelocity) = ctheta / 2.0; |
| 254 | A_continuous(kY, kTheta) = ctheta * linear_vel; |
| 255 | A_continuous(kY, kLeftVelocity) = stheta / 2.0; |
| 256 | A_continuous(kY, kRightVelocity) = stheta / 2.0; |
| 257 | return A_continuous; |
| 258 | } |
| 259 | |
| 260 | State DiffEq(const State &X, const Input &U) const { |
| 261 | State Xdot = A_continuous_ * X + B_continuous_ * U; |
| 262 | // And then we need to add on the terms for the x/y change: |
| 263 | const Scalar theta = X(kTheta, 0); |
| 264 | const Scalar linear_vel = |
| 265 | (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| 266 | const Scalar stheta = ::std::sin(theta); |
| 267 | const Scalar ctheta = ::std::cos(theta); |
| 268 | Xdot(kX, 0) = ctheta * linear_vel; |
| 269 | Xdot(kY, 0) = stheta * linear_vel; |
| 270 | return Xdot; |
| 271 | } |
| 272 | |
| 273 | void PredictImpl(const Input &U, std::chrono::nanoseconds dt, State *state, |
| 274 | StateSquare *P) { |
| 275 | StateSquare A_c = AForState(*state); |
| 276 | StateSquare A_d; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 277 | StateSquare Q_d; |
James Kuszmaul | b2a2f35 | 2019-03-02 16:59:34 -0800 | [diff] [blame] | 278 | controls::DiscretizeQAFast(Q_continuous_, A_c, dt, &Q_d, &A_d); |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 279 | |
| 280 | *state = RungeKuttaU( |
| 281 | [this](const State &X, |
| 282 | const Input &U) { return DiffEq(X, U); }, |
| 283 | *state, U, |
| 284 | ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt) |
| 285 | .count()); |
James Kuszmaul | b2a2f35 | 2019-03-02 16:59:34 -0800 | [diff] [blame] | 286 | |
| 287 | StateSquare Ptemp = A_d * *P * A_d.transpose() + Q_d; |
| 288 | *P = Ptemp; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 289 | } |
| 290 | |
| 291 | void CorrectImpl(const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 292 | const Output &Z, const Output &expected_Z, |
| 293 | const Eigen::Matrix<Scalar, kNOutputs, kNStates> &H, |
| 294 | State *state, StateSquare *P) { |
| 295 | Output err = Z - expected_Z; |
| 296 | Eigen::Matrix<Scalar, kNStates, kNOutputs> PH = *P * H.transpose(); |
| 297 | Eigen::Matrix<Scalar, kNOutputs, kNOutputs> S = H * PH + R; |
| 298 | Eigen::Matrix<Scalar, kNStates, kNOutputs> K = PH * S.inverse(); |
James Kuszmaul | b2a2f35 | 2019-03-02 16:59:34 -0800 | [diff] [blame] | 299 | *state += K * err; |
| 300 | StateSquare Ptemp = (StateSquare::Identity() - K * H) * *P; |
| 301 | *P = Ptemp; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 302 | } |
| 303 | |
| 304 | void ProcessObservation(Observation *obs, const std::chrono::nanoseconds dt, |
| 305 | State *state, StateSquare *P) { |
| 306 | *state = obs->X_hat; |
| 307 | *P = obs->P; |
| 308 | if (dt.count() != 0) { |
| 309 | PredictImpl(obs->U, dt, state, P); |
| 310 | } |
| 311 | if (!(obs->h && obs->dhdx)) { |
| 312 | CHECK(obs->make_h); |
| 313 | obs->make_h(*state, *P, &obs->h, &obs->dhdx); |
| 314 | } |
| 315 | CorrectImpl(obs->R, obs->z, obs->h(*state, obs->U), obs->dhdx(*state), |
| 316 | state, P); |
| 317 | } |
| 318 | |
| 319 | DrivetrainConfig<Scalar> dt_config_; |
| 320 | State X_hat_; |
| 321 | StateFeedbackHybridPlantCoefficients<2, 2, 2, Scalar> |
| 322 | velocity_drivetrain_coefficients_; |
| 323 | StateSquare A_continuous_; |
| 324 | StateSquare Q_continuous_; |
| 325 | StateSquare P_; |
| 326 | Eigen::Matrix<Scalar, kNOutputs, kNStates> H_encoders_and_gyro_; |
| 327 | Scalar encoder_noise_, gyro_noise_; |
| 328 | Eigen::Matrix<Scalar, kNStates, kNInputs> B_continuous_; |
| 329 | |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 330 | bool have_zeroed_encoders_ = false; |
| 331 | |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 332 | aos::PriorityQueue<Observation, kSaveSamples, ::std::less<Observation>> |
| 333 | observations_; |
| 334 | |
| 335 | friend class testing::HybridEkfTest; |
James Kuszmaul | 1057ce8 | 2019-02-09 17:58:24 -0800 | [diff] [blame] | 336 | friend class ::y2019::control_loops::testing::ParameterizedLocalizerTest; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 337 | }; // class HybridEkf |
| 338 | |
| 339 | template <typename Scalar> |
| 340 | void HybridEkf<Scalar>::Correct( |
| 341 | const Output &z, const Input *U, |
| 342 | ::std::function< |
| 343 | void(const State &, const StateSquare &, |
| 344 | ::std::function<Output(const State &, const Input &)> *, |
| 345 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| 346 | const State &)> *)> make_h, |
| 347 | ::std::function<Output(const State &, const Input &)> h, |
| 348 | ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| 349 | dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| 350 | aos::monotonic_clock::time_point t) { |
| 351 | CHECK(!observations_.empty()); |
| 352 | if (!observations_.full() && t < observations_.begin()->t) { |
| 353 | LOG(ERROR, |
| 354 | "Dropped an observation that was received before we " |
| 355 | "initialized.\n"); |
| 356 | return; |
| 357 | } |
| 358 | auto cur_it = |
| 359 | observations_.PushFromBottom({t, t, State::Zero(), StateSquare::Zero(), |
| 360 | Input::Zero(), z, make_h, h, dhdx, R}); |
| 361 | if (cur_it == observations_.end()) { |
| 362 | LOG(DEBUG, |
| 363 | "Camera dropped off of end with time of %fs; earliest observation in " |
| 364 | "queue has time of %fs.\n", |
| 365 | ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| 366 | t.time_since_epoch()).count(), |
| 367 | ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| 368 | observations_.begin()->t.time_since_epoch()).count()); |
| 369 | return; |
| 370 | } |
| 371 | |
| 372 | // Now we populate any state information that depends on where the |
| 373 | // observation was inserted into the queue. X_hat and P must be populated |
| 374 | // from the values present in the observation *following* this one in |
| 375 | // the queue (note that the X_hat and P that we store in each observation |
| 376 | // is the values that they held after accounting for the previous |
| 377 | // measurement and before accounting for the time between the previous and |
| 378 | // current measurement). If we appended to the end of the queue, then |
| 379 | // we need to pull from X_hat_ and P_ specifically. |
| 380 | // Furthermore, for U: |
| 381 | // -If the observation was inserted at the end, then the user must've |
| 382 | // provided U and we use it. |
| 383 | // -Otherwise, only grab U if necessary. |
| 384 | auto next_it = cur_it; |
| 385 | ++next_it; |
| 386 | if (next_it == observations_.end()) { |
| 387 | cur_it->X_hat = X_hat_; |
| 388 | cur_it->P = P_; |
| 389 | // Note that if next_it == observations_.end(), then because we already |
| 390 | // checked for !observations_.empty(), we are guaranteed to have |
| 391 | // valid prev_it. |
| 392 | auto prev_it = cur_it; |
| 393 | --prev_it; |
| 394 | cur_it->prev_t = prev_it->t; |
| 395 | // TODO(james): Figure out a saner way of handling this. |
| 396 | CHECK(U != nullptr); |
| 397 | cur_it->U = *U; |
| 398 | } else { |
| 399 | cur_it->X_hat = next_it->X_hat; |
| 400 | cur_it->P = next_it->P; |
| 401 | cur_it->prev_t = next_it->prev_t; |
| 402 | next_it->prev_t = cur_it->t; |
| 403 | cur_it->U = (U == nullptr) ? next_it->U : *U; |
| 404 | } |
| 405 | // Now we need to rerun the predict step from the previous to the new |
| 406 | // observation as well as every following correct/predict up to the current |
| 407 | // time. |
| 408 | while (true) { |
| 409 | // We use X_hat_ and P_ to store the intermediate states, and then |
| 410 | // once we reach the end they will all be up-to-date. |
| 411 | ProcessObservation(&*cur_it, cur_it->t - cur_it->prev_t, &X_hat_, &P_); |
| 412 | CHECK(X_hat_.allFinite()); |
| 413 | if (next_it != observations_.end()) { |
| 414 | next_it->X_hat = X_hat_; |
| 415 | next_it->P = P_; |
| 416 | } else { |
| 417 | break; |
| 418 | } |
| 419 | ++cur_it; |
| 420 | ++next_it; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | template <typename Scalar> |
| 425 | void HybridEkf<Scalar>::InitializeMatrices() { |
| 426 | A_continuous_.setZero(); |
| 427 | const Scalar diameter = 2.0 * dt_config_.robot_radius; |
| 428 | // Theta derivative |
| 429 | A_continuous_(kTheta, kLeftVelocity) = -1.0 / diameter; |
| 430 | A_continuous_(kTheta, kRightVelocity) = 1.0 / diameter; |
| 431 | |
| 432 | // Encoder derivatives |
| 433 | A_continuous_(kLeftEncoder, kLeftVelocity) = 1.0; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 434 | A_continuous_(kLeftEncoder, kAngularError) = 1.0; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 435 | A_continuous_(kRightEncoder, kRightVelocity) = 1.0; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 436 | A_continuous_(kRightEncoder, kAngularError) = -1.0; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 437 | |
| 438 | // Pull velocity derivatives from velocity matrices. |
| 439 | // Note that this looks really awkward (doesn't use |
| 440 | // Eigen blocks) because someone decided that the full |
| 441 | // drivetrain Kalman Filter should half a weird convention. |
| 442 | // TODO(james): Support shifting drivetrains with changing A_continuous |
| 443 | const auto &vel_coefs = velocity_drivetrain_coefficients_; |
| 444 | A_continuous_(kLeftVelocity, kLeftVelocity) = vel_coefs.A_continuous(0, 0); |
| 445 | A_continuous_(kLeftVelocity, kRightVelocity) = vel_coefs.A_continuous(0, 1); |
| 446 | A_continuous_(kRightVelocity, kLeftVelocity) = vel_coefs.A_continuous(1, 0); |
| 447 | A_continuous_(kRightVelocity, kRightVelocity) = vel_coefs.A_continuous(1, 1); |
| 448 | |
| 449 | // Provide for voltage error terms: |
| 450 | B_continuous_.setZero(); |
| 451 | B_continuous_.row(kLeftVelocity) = vel_coefs.B_continuous.row(0); |
| 452 | B_continuous_.row(kRightVelocity) = vel_coefs.B_continuous.row(1); |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 453 | A_continuous_.template block<kNStates, kNInputs>(0, 7) = B_continuous_; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 454 | |
| 455 | Q_continuous_.setZero(); |
| 456 | // TODO(james): Improve estimates of process noise--e.g., X/Y noise can |
James Kuszmaul | 1057ce8 | 2019-02-09 17:58:24 -0800 | [diff] [blame] | 457 | // probably be reduced when we are stopped because you rarely jump randomly. |
| 458 | // Or maybe it's more appropriate to scale wheelspeed noise with wheelspeed, |
| 459 | // since the wheels aren't likely to slip much stopped. |
James Kuszmaul | a5632fe | 2019-03-23 20:28:33 -0700 | [diff] [blame^] | 460 | Q_continuous_(kX, kX) = 0.002; |
| 461 | Q_continuous_(kY, kY) = 0.002; |
James Kuszmaul | fedc461 | 2019-03-10 11:24:51 -0700 | [diff] [blame] | 462 | Q_continuous_(kTheta, kTheta) = 0.0002; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 463 | Q_continuous_(kLeftEncoder, kLeftEncoder) = ::std::pow(0.15, 2.0); |
| 464 | Q_continuous_(kRightEncoder, kRightEncoder) = ::std::pow(0.15, 2.0); |
| 465 | Q_continuous_(kLeftVelocity, kLeftVelocity) = ::std::pow(0.5, 2.0); |
| 466 | Q_continuous_(kRightVelocity, kRightVelocity) = ::std::pow(0.5, 2.0); |
| 467 | Q_continuous_(kLeftVoltageError, kLeftVoltageError) = ::std::pow(10.0, 2.0); |
| 468 | Q_continuous_(kRightVoltageError, kRightVoltageError) = ::std::pow(10.0, 2.0); |
| 469 | Q_continuous_(kAngularError, kAngularError) = ::std::pow(2.0, 2.0); |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 470 | |
| 471 | P_.setZero(); |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 472 | P_.diagonal() << 0.1, 0.1, 0.01, 0.02, 0.01, 0.02, 0.01, 1, 1, 0.03; |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 473 | |
| 474 | H_encoders_and_gyro_.setZero(); |
| 475 | // Encoders are stored directly in the state matrix, so are a minor |
| 476 | // transform away. |
| 477 | H_encoders_and_gyro_(0, kLeftEncoder) = 1.0; |
| 478 | H_encoders_and_gyro_(1, kRightEncoder) = 1.0; |
| 479 | // Gyro rate is just the difference between right/left side speeds: |
| 480 | H_encoders_and_gyro_(2, kLeftVelocity) = -1.0 / diameter; |
| 481 | H_encoders_and_gyro_(2, kRightVelocity) = 1.0 / diameter; |
| 482 | |
| 483 | const Eigen::Matrix<Scalar, 4, 4> R_kf_drivetrain = |
| 484 | dt_config_.make_kf_drivetrain_loop().observer().coefficients().R; |
James Kuszmaul | 074429e | 2019-03-23 16:01:49 -0700 | [diff] [blame] | 485 | // TODO(james): The multipliers here are hand-waving things that I put in when |
| 486 | // tuning things. I haven't yet tried messing with these values again. |
| 487 | encoder_noise_ = 0.05 * R_kf_drivetrain(0, 0); |
| 488 | gyro_noise_ = 0.1 * R_kf_drivetrain(2, 2); |
James Kuszmaul | 2ed7b3c | 2019-02-09 18:26:19 -0800 | [diff] [blame] | 489 | } |
| 490 | |
| 491 | } // namespace drivetrain |
| 492 | } // namespace control_loops |
| 493 | } // namespace frc971 |
| 494 | |
| 495 | #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |