blob: 473437c5ef9da53a6a79104a2f96f21b0fa39ec4 [file] [log] [blame]
Filip Kujawadc7d47c2023-04-08 16:16:51 -07001#include "yolov5.h"
2
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07003#include <tensorflow/lite/c/common.h>
Filip Kujawa26a23662023-04-08 16:19:13 -07004#include <tensorflow/lite/interpreter.h>
5#include <tensorflow/lite/kernels/register.h>
6#include <tensorflow/lite/model.h>
Filip Kujawa8c76e5d2023-04-08 16:20:27 -07007#include <tflite/public/edgetpu.h>
Filip Kujawa26a23662023-04-08 16:19:13 -07008#include <tflite/public/edgetpu_c.h>
9
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070010#include <chrono>
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070011#include <opencv2/dnn.hpp>
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070012#include <string>
Filip Kujawadc7d47c2023-04-08 16:16:51 -070013
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070014#include "absl/types/span.h"
Filip Kujawadc7d47c2023-04-08 16:16:51 -070015#include "gflags/gflags.h"
16#include "glog/logging.h"
17
18DEFINE_double(conf_threshold, 0.9,
19 "Threshold value for confidence scores. Detections with a "
20 "confidence score below this value will be ignored.");
21
22DEFINE_double(
23 nms_threshold, 0.5,
24 "Threshold value for non-maximum suppression. Detections with an "
25 "intersection-over-union value below this value will be removed.");
26
27DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
28
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070029DEFINE_bool(visualize_detections, false, "Display inference output");
30
Filip Kujawadc7d47c2023-04-08 16:16:51 -070031namespace y2023 {
32namespace vision {
33
Filip Kujawa26a23662023-04-08 16:19:13 -070034class YOLOV5Impl : public YOLOV5 {
35 public:
36 // Takes a model path as string and and loads a pre-trained
37 // YOLOv5 model from the specified path.
38 void LoadModel(const std::string path);
39
40 // Takes an image and returns a Detection.
41 std::vector<Detection> ProcessImage(cv::Mat image);
42
43 private:
44 // Convert an OpenCV Mat object to a tensor input
45 // that can be fed to the TensorFlow Lite model.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070046 void ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor);
Filip Kujawa26a23662023-04-08 16:19:13 -070047
48 // Resizes, converts color space, and converts
49 // image data type before inference.
50 void Preprocess(cv::Mat image);
51
52 // Converts a TensorFlow Lite tensor to a 2D vector.
53 std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
54 const int rows,
55 const int columns);
56
57 // Performs non-maximum suppression to remove overlapping bounding boxes.
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070058 std::vector<Detection> NonMaximumSupression(
59 const std::vector<std::vector<float>> &orig_preds, const int rows,
60 const int columns, std::vector<Detection> *detections,
61 std::vector<int> *indices);
Filip Kujawa26a23662023-04-08 16:19:13 -070062 // Models
63 std::unique_ptr<tflite::FlatBufferModel> model_;
64 std::unique_ptr<tflite::Interpreter> interpreter_;
65 tflite::StderrReporter error_reporter_;
66
67 // Parameters of interpreter's input
68 int input_;
69 int in_height_;
70 int in_width_;
71 int in_channels_;
72 int in_type_;
73
74 // Parameters of original image
75 int img_height_;
76 int img_width_;
77
78 // Input of the interpreter
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070079 absl::Span<uint8_t> input_8_;
Filip Kujawa26a23662023-04-08 16:19:13 -070080
81 // Subtract this offset from class labels to get the actual label.
82 static constexpr int kClassIdOffset = 5;
83};
84
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070085std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); }
Filip Kujawa26a23662023-04-08 16:19:13 -070086
87void YOLOV5Impl::LoadModel(const std::string path) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070088 VLOG(1) << "Load model: Start";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070089
90 tflite::ops::builtin::BuiltinOpResolver resolver;
91
92 model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str());
Filip Kujawadc7d47c2023-04-08 16:16:51 -070093 CHECK(model_);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070094 CHECK(model_->initialized());
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070095 VLOG(1) << "Load model: Build model from file success";
96
Filip Kujawa8c76e5d2023-04-08 16:20:27 -070097 CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
98 kTfLiteOk);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -070099 VLOG(1) << "Load model: Interpreter builder success";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700100
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700101 size_t num_devices;
102 std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
103 edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700104
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700105 CHECK_EQ(num_devices, 1ul);
106 const auto &device = devices.get()[0];
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700107 VLOG(1) << "Load model: Got Devices";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700108
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700109 auto *delegate =
110 edgetpu_create_delegate(device.type, device.path, nullptr, 0);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700111
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700112 interpreter_->ModifyGraphWithDelegate(delegate);
113
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700114 VLOG(1) << "Load model: Modify graph with delegate complete";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700115
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700116 TfLiteStatus status = interpreter_->AllocateTensors();
117 CHECK_EQ(status, kTfLiteOk);
118 CHECK(interpreter_);
119
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700120 VLOG(1) << "Load model: Allocate tensors success";
121
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700122 input_ = interpreter_->inputs()[0];
123 TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
124 in_height_ = dims->data[1];
125 in_width_ = dims->data[2];
126 in_channels_ = dims->data[3];
127 in_type_ = interpreter_->tensor(input_)->type;
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700128
129 int tensor_size = 1;
130 for (int i = 0; i < dims->size; i++) {
131 tensor_size *= dims->data[i];
132 }
133 input_8_ =
134 absl::Span(interpreter_->typed_tensor<uint8_t>(input_), tensor_size);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700135
136 interpreter_->SetNumThreads(FLAGS_nthreads);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700137
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700138 VLOG(1) << "Load model: Done";
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700139}
140
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700141void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor) {
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700142 CHECK(src.type() == CV_8UC3);
143 int n = 0, nc = src.channels(), ne = src.elemSize();
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700144 VLOG(2) << "ConvertCVMatToTensor: Rows " << src.rows;
145 VLOG(2) << "ConvertCVMatToTensor: Cols " << src.cols;
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700146 for (int y = 0; y < src.rows; ++y) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700147 auto *row_ptr = src.ptr<uint8_t>(y);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700148 for (int x = 0; x < src.cols; ++x) {
149 for (int c = 0; c < nc; ++c) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700150 tensor[n++] = *(row_ptr + x * ne + c);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700151 }
152 }
153 }
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700154}
155
Filip Kujawa26a23662023-04-08 16:19:13 -0700156std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700157 TfLiteTensor *src_tensor, const int rows, const int columns) {
158 auto scale = src_tensor->params.scale;
159 auto zero_point = src_tensor->params.zero_point;
160 std::vector<std::vector<float>> result_vec;
161 for (int32_t i = 0; i < rows; i++) {
162 std::vector<float> row_values;
163 for (int32_t j = 0; j < columns; j++) {
164 float val_float =
165 ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
166 zero_point) *
167 scale;
168 row_values.push_back(val_float);
169 }
170 result_vec.push_back(row_values);
171 }
172 return result_vec;
173}
174
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700175std::vector<Detection> YOLOV5Impl::NonMaximumSupression(
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700176 const std::vector<std::vector<float>> &orig_preds, const int rows,
177 const int columns, std::vector<Detection> *detections,
178 std::vector<int> *indices)
179
180{
181 std::vector<float> scores;
182 double confidence;
183 cv::Point class_id;
184
185 for (int i = 0; i < rows; i++) {
186 if (orig_preds[i][4] > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700187 float x = orig_preds[i][0];
188 float y = orig_preds[i][1];
189 float w = orig_preds[i][2];
190 float h = orig_preds[i][3];
191 int left = static_cast<int>((x - 0.5 * w) * img_width_);
192 int top = static_cast<int>((y - 0.5 * h) * img_height_);
193 int width = static_cast<int>(w * img_width_);
194 int height = static_cast<int>(h * img_height_);
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700195
196 for (int j = 5; j < columns; j++) {
197 scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
198 }
199
200 cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700201 scores.clear();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700202 if (confidence > FLAGS_conf_threshold) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700203 Detection detection{cv::Rect(left, top, width, height), confidence,
204 class_id.x};
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700205 detections->push_back(detection);
206 }
207 }
208 }
209
210 std::vector<cv::Rect> boxes;
211 std::vector<float> confidences;
212
213 for (const Detection &d : *detections) {
214 boxes.push_back(d.box);
215 confidences.push_back(d.confidence);
216 }
217
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700218 cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
219 FLAGS_nms_threshold, *indices);
220
221 std::vector<Detection> filtered_detections;
222 for (size_t i = 0; i < indices->size(); i++) {
223 filtered_detections.push_back((*detections)[(*indices)[i]]);
224 }
225
226 VLOG(1) << "NonMaximumSupression: " << detections->size() - indices->size()
227 << " detections filtered out";
228
229 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700230}
231
Filip Kujawa26a23662023-04-08 16:19:13 -0700232std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700233 VLOG(1) << "\n";
234
235 auto start = std::chrono::high_resolution_clock::now();
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700236 img_height_ = frame.rows;
237 img_width_ = frame.cols;
238
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700239 cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
240 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
241 frame.convertTo(frame, CV_8U);
242
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700243 ConvertCVMatToTensor(frame, input_8_);
244
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700245 TfLiteStatus status = interpreter_->Invoke();
246 CHECK_EQ(status, kTfLiteOk);
247
248 int output_tensor_index = interpreter_->outputs()[0];
249 TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
250 int num_rows = out_dims->data[1];
251 int num_columns = out_dims->data[2];
252
253 TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700254
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700255 std::vector<std::vector<float>> orig_preds =
256 TensorToVector2D(src_tensor, num_rows, num_columns);
257
258 std::vector<int> indices;
259 std::vector<Detection> detections;
260
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700261 std::vector<Detection> filtered_detections;
262 filtered_detections = NonMaximumSupression(orig_preds, num_rows, num_columns,
263 &detections, &indices);
264 VLOG(1) << "---";
265 for (size_t i = 0; i < filtered_detections.size(); i++) {
266 VLOG(1) << "Detection #" << i << " | Class ID #"
267 << filtered_detections[i].class_id << " @ "
268 << filtered_detections[i].confidence << " confidence";
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700269 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700270
271 VLOG(1) << "---";
272
273 auto stop = std::chrono::high_resolution_clock::now();
274
275 VLOG(1) << "Inference time: "
276 << std::chrono::duration_cast<std::chrono::milliseconds>(stop - start)
277 .count();
278
279 if (FLAGS_visualize_detections) {
280 cv::resize(frame, frame, cv::Size(img_width_, img_height_), 0, 0, true);
281 for (size_t i = 0; i < filtered_detections.size(); i++) {
282 VLOG(1) << "Bounding Box | X: " << filtered_detections[i].box.x
283 << " Y: " << filtered_detections[i].box.y
284 << " W: " << filtered_detections[i].box.width
285 << " H: " << filtered_detections[i].box.height;
286 cv::rectangle(frame, filtered_detections[i].box, cv::Scalar(255, 0, 0),
287 2);
288 cv::putText(
289 frame, std::to_string(filtered_detections[i].class_id),
290 cv::Point(filtered_detections[i].box.x, filtered_detections[i].box.y),
291 cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
292 }
293 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
294 cv::imshow("yolo", frame);
295 cv::waitKey(10);
Filip Kujawa8c76e5d2023-04-08 16:20:27 -0700296 }
Filip Kujawaf3b8adb2023-04-07 21:00:49 -0700297
298 return filtered_detections;
Filip Kujawadc7d47c2023-04-08 16:16:51 -0700299};
300
301} // namespace vision
302} // namespace y2023