blob: 1950468694ee893eb797e833908996d4e8bf9b22 [file] [log] [blame]
James Kuszmaul1057ce82019-02-09 17:58:24 -08001#include "y2019/control_loops/drivetrain/localizer.h"
2
James Kuszmaul1057ce82019-02-09 17:58:24 -08003#include <queue>
James Kuszmaul651fc3f2019-05-15 21:14:25 -07004#include <random>
James Kuszmaul1057ce82019-02-09 17:58:24 -08005
6#include "aos/testing/random_seed.h"
7#include "aos/testing/test_shm.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -08008#include "frc971/control_loops/drivetrain/splinedrivetrain.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -07009#include "frc971/control_loops/drivetrain/trajectory.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080010#include "gflags/gflags.h"
11#if defined(SUPPORT_PLOT)
12#include "third_party/matplotlib-cpp/matplotlibcpp.h"
13#endif
14#include "gtest/gtest.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080015#include "y2019/constants.h"
James Kuszmaul651fc3f2019-05-15 21:14:25 -070016#include "y2019/control_loops/drivetrain/drivetrain_base.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -080017
18DEFINE_bool(plot, false, "If true, plot");
19
20namespace y2019 {
21namespace control_loops {
22namespace testing {
23
24using ::y2019::constants::Field;
25
26constexpr size_t kNumCameras = 4;
27constexpr size_t kNumTargetsPerFrame = 3;
28
29typedef TypedLocalizer<kNumCameras, Field::kNumTargets, Field::kNumObstacles,
James Kuszmaul651fc3f2019-05-15 21:14:25 -070030 kNumTargetsPerFrame, double>
31 TestLocalizer;
James Kuszmaul1057ce82019-02-09 17:58:24 -080032typedef typename TestLocalizer::Camera TestCamera;
33typedef typename TestCamera::Pose Pose;
34typedef typename TestCamera::LineSegment Obstacle;
35
36typedef TestLocalizer::StateIdx StateIdx;
37
38using ::frc971::control_loops::drivetrain::DrivetrainConfig;
39
40// When placing the cameras on the robot, set them all kCameraOffset out from
41// the center, to test that we really can handle cameras that aren't at the
42// center-of-mass.
43constexpr double kCameraOffset = 0.1;
44
45#if defined(SUPPORT_PLOT)
46// Plots a line from a vector of Pose's.
47void PlotPlotPts(const ::std::vector<Pose> &poses,
48 const ::std::map<::std::string, ::std::string> &kwargs) {
49 ::std::vector<double> x;
50 ::std::vector<double> y;
James Kuszmaul651fc3f2019-05-15 21:14:25 -070051 for (const Pose &p : poses) {
James Kuszmaul1057ce82019-02-09 17:58:24 -080052 x.push_back(p.abs_pos().x());
53 y.push_back(p.abs_pos().y());
54 }
55 matplotlibcpp::plot(x, y, kwargs);
56}
57#endif
58
59struct LocalizerTestParams {
60 // Control points for the spline to make the robot follow.
61 ::std::array<float, 6> control_pts_x;
62 ::std::array<float, 6> control_pts_y;
63 // The actual state to start the robot at. By setting voltage errors and the
64 // such you can introduce persistent disturbances.
65 TestLocalizer::State true_start_state;
66 // The initial state of the estimator.
67 TestLocalizer::State known_start_state;
68 // Whether or not to add Gaussian noise to the sensors and cameras.
69 bool noisify;
70 // Whether or not to add unmodelled disturbances.
71 bool disturb;
72 // The tolerances for the estimator and for the trajectory following at
73 // the end of the spline:
74 double estimate_tolerance;
75 double goal_tolerance;
76};
77
78class ParameterizedLocalizerTest
79 : public ::testing::TestWithParam<LocalizerTestParams> {
80 public:
81 ::aos::testing::TestSharedMemory shm_;
82
83 // Set up three targets in a row, at (-1, 0), (0, 0), and (1, 0).
84 // Make the right-most target (1, 0) be facing away from the camera, and give
85 // the middle target some skew.
86 // Place one camera facing forward, the other facing backward, and set the
87 // robot at (0, -5) with the cameras each 0.1m from the center.
88 // Place one obstacle in a place where it can block the left-most target (-1,
89 // 0).
90 ParameterizedLocalizerTest()
91 : field_(),
92 targets_(field_.targets()),
93 modeled_obstacles_(field_.obstacles()),
94 true_obstacles_(field_.obstacles()),
95 dt_config_(drivetrain::GetDrivetrainConfig()),
96 // Pull the noise for the encoders/gyros from the R matrix:
97 encoder_noise_(::std::sqrt(
98 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
99 0, 0))),
100 gyro_noise_(::std::sqrt(
101 dt_config_.make_kf_drivetrain_loop().observer().coefficients().R(
102 2, 2))),
103 // As per the comments in localizer.h, we set the field of view and
104 // noise parameters on the robot_cameras_ so that they see a bit more
105 // than the true_cameras_. The robot_cameras_ are what is passed to the
106 // localizer and used to generate "expected" targets. The true_cameras_
107 // are what we actually use to generate targets to pass to the
108 // localizer.
109 robot_cameras_{
110 {TestCamera({&robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
111 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
112 modeled_obstacles_),
113 TestCamera({&robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
114 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
115 modeled_obstacles_),
116 TestCamera({&robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
117 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
118 modeled_obstacles_),
119 TestCamera({&robot_pose_, {0.0, -kCameraOffset, 0.0}, -M_PI_2},
120 M_PI_2 * 1.1, robot_noise_parameters_, targets_,
121 modeled_obstacles_)}},
122 true_cameras_{
123 {TestCamera({&true_robot_pose_, {0.0, kCameraOffset, 0.0}, M_PI_2},
124 M_PI_2 * 0.9, true_noise_parameters_, targets_,
125 true_obstacles_),
126 TestCamera({&true_robot_pose_, {kCameraOffset, 0.0, 0.0}, 0.0},
127 M_PI_2 * 0.9, true_noise_parameters_, targets_,
128 true_obstacles_),
129 TestCamera({&true_robot_pose_, {-kCameraOffset, 0.0, 0.0}, M_PI},
130 M_PI_2 * 0.9, true_noise_parameters_, targets_,
131 true_obstacles_),
132 TestCamera(
133 {&true_robot_pose_, {-0.0, -kCameraOffset, 0.0}, -M_PI_2},
134 M_PI_2 * 0.9, true_noise_parameters_, targets_,
135 true_obstacles_)}},
136 localizer_(dt_config_, &robot_pose_),
137 spline_drivetrain_(dt_config_) {
138 // We use the default P() for initialization.
139 localizer_.ResetInitialState(t0_, GetParam().known_start_state,
140 localizer_.P());
141 }
142
143 void SetUp() {
144 ::frc971::control_loops::DrivetrainQueue::Goal goal;
145 goal.controller_type = 2;
146 goal.spline.spline_idx = 1;
147 goal.spline.spline_count = 1;
148 goal.spline_handle = 1;
149 ::std::copy(GetParam().control_pts_x.begin(),
150 GetParam().control_pts_x.end(), goal.spline.spline_x.begin());
151 ::std::copy(GetParam().control_pts_y.begin(),
152 GetParam().control_pts_y.end(), goal.spline.spline_y.begin());
153 spline_drivetrain_.SetGoal(goal);
Alex Perrycc3ee4c2019-02-09 21:20:41 -0800154
155 // Let the spline drivetrain compute the spline.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700156 ::frc971::control_loops::DrivetrainQueue::Status status;
Alex Perrycc3ee4c2019-02-09 21:20:41 -0800157 do {
158 ::std::this_thread::sleep_for(::std::chrono::milliseconds(5));
159 spline_drivetrain_.PopulateStatus(&status);
160 } while (status.trajectory_logging.planning_state !=
161 (int8_t)::frc971::control_loops::drivetrain::SplineDrivetrain::
162 PlanState::kPlannedTrajectory);
163 spline_drivetrain_.SetGoal(goal);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800164 }
165
166 void TearDown() {
167 printf("Each iteration of the simulation took on average %f seconds.\n",
168 avg_time_.count());
169#if defined(SUPPORT_PLOT)
170 if (FLAGS_plot) {
171 matplotlibcpp::figure();
172 matplotlibcpp::plot(simulation_t_, simulation_vl_, {{"label", "Vl"}});
173 matplotlibcpp::plot(simulation_t_, simulation_vr_, {{"label", "Vr"}});
174 matplotlibcpp::legend();
175
176 matplotlibcpp::figure();
177 matplotlibcpp::plot(spline_x_, spline_y_, {{"label", "spline"}});
178 matplotlibcpp::plot(simulation_x_, simulation_y_, {{"label", "robot"}});
179 matplotlibcpp::plot(estimated_x_, estimated_y_,
180 {{"label", "estimation"}});
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700181 for (const Target &target : targets_) {
James Kuszmaul1057ce82019-02-09 17:58:24 -0800182 PlotPlotPts(target.PlotPoints(), {{"c", "g"}});
183 }
184 for (const Obstacle &obstacle : true_obstacles_) {
185 PlotPlotPts(obstacle.PlotPoints(), {{"c", "k"}});
186 }
187 // Go through and plot true/expected camera targets for a few select
188 // time-steps.
189 ::std::vector<const char *> colors{"m", "y", "c"};
190 int jj = 0;
191 for (size_t ii = 0; ii < simulation_x_.size(); ii += 400) {
192 *true_robot_pose_.mutable_pos() << simulation_x_[ii], simulation_y_[ii],
193 0.0;
194 true_robot_pose_.set_theta(simulation_theta_[ii]);
195 for (const TestCamera &camera : true_cameras_) {
196 for (const auto &plot_pts : camera.PlotPoints()) {
197 PlotPlotPts(plot_pts, {{"c", colors[jj]}});
198 }
199 }
200 for (const TestCamera &camera : robot_cameras_) {
201 *robot_pose_.mutable_pos() << estimated_x_[ii], estimated_y_[ii], 0.0;
202 robot_pose_.set_theta(estimated_theta_[ii]);
203 const auto &all_plot_pts = camera.PlotPoints();
204 *robot_pose_.mutable_pos() = true_robot_pose_.rel_pos();
205 robot_pose_.set_theta(true_robot_pose_.rel_theta());
206 for (const auto &plot_pts : all_plot_pts) {
207 PlotPlotPts(plot_pts, {{"c", colors[jj]}, {"ls", "--"}});
208 }
209 }
210 jj = (jj + 1) % colors.size();
211 }
212 matplotlibcpp::legend();
213
214 matplotlibcpp::figure();
215 matplotlibcpp::plot(
216 simulation_t_, spline_x_,
217 {{"label", "spline x"}, {"c", "g"}, {"ls", ""}, {"marker", "o"}});
218 matplotlibcpp::plot(simulation_t_, simulation_x_,
219 {{"label", "simulated x"}, {"c", "g"}});
220 matplotlibcpp::plot(simulation_t_, estimated_x_,
221 {{"label", "estimated x"}, {"c", "g"}, {"ls", "--"}});
222
223 matplotlibcpp::plot(
224 simulation_t_, spline_y_,
225 {{"label", "spline y"}, {"c", "b"}, {"ls", ""}, {"marker", "o"}});
226 matplotlibcpp::plot(simulation_t_, simulation_y_,
227 {{"label", "simulated y"}, {"c", "b"}});
228 matplotlibcpp::plot(simulation_t_, estimated_y_,
229 {{"label", "estimated y"}, {"c", "b"}, {"ls", "--"}});
230
231 matplotlibcpp::plot(simulation_t_, simulation_theta_,
232 {{"label", "simulated theta"}, {"c", "r"}});
233 matplotlibcpp::plot(
234 simulation_t_, estimated_theta_,
235 {{"label", "estimated theta"}, {"c", "r"}, {"ls", "--"}});
236 matplotlibcpp::legend();
237
238 matplotlibcpp::show();
239 }
240#endif
241 }
242
243 protected:
244 // Returns a random number with a gaussian distribution with a mean of zero
245 // and a standard deviation of std, if noisify = true.
246 // If noisify is false, then returns 0.0.
247 double Normal(double std) {
248 if (GetParam().noisify) {
249 return normal_(gen_) * std;
250 }
251 return 0.0;
252 }
253 // Adds random noise to the given target view.
254 void Noisify(TestCamera::TargetView *view) {
255 view->reading.heading += Normal(view->noise.heading);
256 view->reading.distance += Normal(view->noise.distance);
257 view->reading.height += Normal(view->noise.height);
258 view->reading.skew += Normal(view->noise.skew);
259 }
260 // The differential equation for the dynamics of the system.
261 TestLocalizer::State DiffEq(const TestLocalizer::State &X,
262 const TestLocalizer::Input &U) {
263 return localizer_.DiffEq(X, U);
264 }
265
266 Field field_;
267 ::std::array<Target, Field::kNumTargets> targets_;
268 // The obstacles that are passed to the camera objects for the localizer.
269 ::std::array<Obstacle, Field::kNumObstacles> modeled_obstacles_;
270 // The obstacles that are used for actually simulating the cameras.
271 ::std::array<Obstacle, Field::kNumObstacles> true_obstacles_;
272
273 DrivetrainConfig<double> dt_config_;
274
275 // Noise information for the actual simulated cameras (true_*) and the
276 // parameters that the localizer should use for modelling the cameras. Note
277 // how the max_viewable_distance is larger for the localizer, so that if
278 // there is any error in the estimation, it still thinks that it can see
279 // any targets that might actually be in range.
280 TestCamera::NoiseParameters true_noise_parameters_ = {
281 .max_viewable_distance = 10.0,
282 .heading_noise = 0.02,
283 .nominal_distance_noise = 0.06,
284 .nominal_skew_noise = 0.1,
285 .nominal_height_noise = 0.01};
286 TestCamera::NoiseParameters robot_noise_parameters_ = {
287 .max_viewable_distance = 11.0,
288 .heading_noise = 0.02,
289 .nominal_distance_noise = 0.06,
290 .nominal_skew_noise = 0.1,
291 .nominal_height_noise = 0.01};
292
293 // Standard deviations of the noise for the encoders/gyro.
294 double encoder_noise_, gyro_noise_;
295
296 Pose robot_pose_;
297 ::std::array<TestCamera, 4> robot_cameras_;
298 Pose true_robot_pose_;
299 ::std::array<TestCamera, 4> true_cameras_;
300
301 TestLocalizer localizer_;
302
303 ::frc971::control_loops::drivetrain::SplineDrivetrain spline_drivetrain_;
304
305 // All the data we want to end up plotting.
306 ::std::vector<double> simulation_t_;
307
308 ::std::vector<double> spline_x_;
309 ::std::vector<double> spline_y_;
310 ::std::vector<double> estimated_x_;
311 ::std::vector<double> estimated_y_;
312 ::std::vector<double> estimated_theta_;
313 ::std::vector<double> simulation_x_;
314 ::std::vector<double> simulation_y_;
315 ::std::vector<double> simulation_theta_;
316
317 ::std::vector<double> simulation_vl_;
318 ::std::vector<double> simulation_vr_;
319
320 // Simulation start time
321 ::aos::monotonic_clock::time_point t0_;
322
323 // Average duration of each iteration; used for debugging and getting a
324 // sanity-check on what performance looks like--uses a real system clock.
325 ::std::chrono::duration<double> avg_time_;
326
327 ::std::mt19937 gen_{static_cast<uint32_t>(::aos::testing::RandomSeed())};
328 ::std::normal_distribution<> normal_;
329};
330
James Kuszmaul6f941b72019-03-08 18:12:25 -0800331using ::std::chrono::milliseconds;
332
James Kuszmaul1057ce82019-02-09 17:58:24 -0800333// Tests that, when we attempt to follow a spline and use the localizer to
334// perform the state estimation, we end up roughly where we should and that
335// the localizer has a valid position estimate.
336TEST_P(ParameterizedLocalizerTest, SplineTest) {
337 // state stores the true state of the robot throughout the simulation.
338 TestLocalizer::State state = GetParam().true_start_state;
339
340 ::aos::monotonic_clock::time_point t = t0_;
341
342 // The period with which we should take frames from the cameras. Currently,
343 // we just trigger all the cameras at once, rather than offsetting them or
344 // anything.
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700345 const int camera_period = 5; // cycles
James Kuszmaul6f941b72019-03-08 18:12:25 -0800346 // The amount of time to delay the camera images from when they are taken, for
347 // each camera.
348 const ::std::array<milliseconds, 4> camera_latencies{
349 {milliseconds(45), milliseconds(50), milliseconds(55),
350 milliseconds(100)}};
James Kuszmaul1057ce82019-02-09 17:58:24 -0800351
James Kuszmaul6f941b72019-03-08 18:12:25 -0800352 // A queue of camera frames for each camera so that we can add a time delay to
353 // the data coming from the cameras.
354 ::std::array<
355 ::std::queue<::std::tuple<
356 ::aos::monotonic_clock::time_point, const TestCamera *,
357 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>>>,
358 4>
359 camera_queues;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800360
361 // Start time, for debugging.
362 const auto begin = ::std::chrono::steady_clock::now();
363
364 size_t i;
365 for (i = 0; !spline_drivetrain_.IsAtEnd(); ++i) {
366 // Get the current state estimate into a matrix that works for the
367 // trajectory code.
368 ::Eigen::Matrix<double, 5, 1> known_state;
369 TestLocalizer::State X_hat = localizer_.X_hat();
370 known_state << X_hat(StateIdx::kX, 0), X_hat(StateIdx::kY, 0),
371 X_hat(StateIdx::kTheta, 0), X_hat(StateIdx::kLeftVelocity, 0),
372 X_hat(StateIdx::kRightVelocity, 0);
373
374 spline_drivetrain_.Update(true, known_state);
375
376 ::frc971::control_loops::DrivetrainQueue::Output output;
377 output.left_voltage = 0;
378 output.right_voltage = 0;
379 spline_drivetrain_.SetOutput(&output);
380 TestLocalizer::Input U(output.left_voltage, output.right_voltage);
381
382 const ::Eigen::Matrix<double, 5, 1> goal_state =
383 spline_drivetrain_.CurrentGoalState();
384 simulation_t_.push_back(
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700385 ::aos::time::DurationInSeconds(t.time_since_epoch()));
James Kuszmaul1057ce82019-02-09 17:58:24 -0800386 spline_x_.push_back(goal_state(0, 0));
387 spline_y_.push_back(goal_state(1, 0));
388 simulation_x_.push_back(state(StateIdx::kX, 0));
389 simulation_y_.push_back(state(StateIdx::kY, 0));
390 simulation_theta_.push_back(state(StateIdx::kTheta, 0));
391 estimated_x_.push_back(known_state(0, 0));
392 estimated_y_.push_back(known_state(1, 0));
393 estimated_theta_.push_back(known_state(StateIdx::kTheta, 0));
394
395 simulation_vl_.push_back(U(0));
396 simulation_vr_.push_back(U(1));
397 U(0, 0) = ::std::max(::std::min(U(0, 0), 12.0), -12.0);
398 U(1, 0) = ::std::max(::std::min(U(1, 0), 12.0), -12.0);
399
400 state = ::frc971::control_loops::RungeKuttaU(
James Kuszmaul074429e2019-03-23 16:01:49 -0700401 [this](const ::Eigen::Matrix<double, 10, 1> &X,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800402 const ::Eigen::Matrix<double, 2, 1> &U) { return DiffEq(X, U); },
James Kuszmaul651fc3f2019-05-15 21:14:25 -0700403 state, U, ::aos::time::DurationInSeconds(dt_config_.dt));
James Kuszmaul1057ce82019-02-09 17:58:24 -0800404
405 // Add arbitrary disturbances at some arbitrary interval. The main points of
406 // interest here are that we (a) stop adding disturbances at the very end of
407 // the trajectory, to allow us to actually converge to the goal, and (b)
408 // scale disturbances by the corruent velocity.
James Kuszmaulc73bb222019-04-07 12:15:35 -0700409 if (GetParam().disturb && i % 75 == 0) {
James Kuszmaul1057ce82019-02-09 17:58:24 -0800410 // Scale the disturbance so that when we have near-zero velocity we don't
411 // have much disturbance.
412 double disturbance_scale = ::std::min(
413 1.0, ::std::sqrt(::std::pow(state(StateIdx::kLeftVelocity, 0), 2) +
414 ::std::pow(state(StateIdx::kRightVelocity, 0), 2)) /
415 3.0);
416 TestLocalizer::State disturbance;
James Kuszmaul074429e2019-03-23 16:01:49 -0700417 disturbance << 0.02, 0.02, 0.001, 0.03, 0.02, 0.0, 0.0, 0.0, 0.0, 0.0;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800418 disturbance *= disturbance_scale;
419 state += disturbance;
420 }
421
422 t += dt_config_.dt;
423 *true_robot_pose_.mutable_pos() << state(StateIdx::kX, 0),
424 state(StateIdx::kY, 0), 0.0;
425 true_robot_pose_.set_theta(state(StateIdx::kTheta, 0));
426 const double left_enc = state(StateIdx::kLeftEncoder, 0);
427 const double right_enc = state(StateIdx::kRightEncoder, 0);
428
429 const double gyro = (state(StateIdx::kRightVelocity, 0) -
430 state(StateIdx::kLeftVelocity, 0)) /
431 dt_config_.robot_radius / 2.0;
432
433 localizer_.UpdateEncodersAndGyro(left_enc + Normal(encoder_noise_),
434 right_enc + Normal(encoder_noise_),
435 gyro + Normal(gyro_noise_), U, t);
436
James Kuszmaul6f941b72019-03-08 18:12:25 -0800437 for (size_t cam_idx = 0; cam_idx < camera_queues.size(); ++cam_idx) {
438 auto &camera_queue = camera_queues[cam_idx];
439 // Clear out the camera frames that we are ready to pass to the localizer.
440 while (!camera_queue.empty() && ::std::get<0>(camera_queue.front()) <
441 t - camera_latencies[cam_idx]) {
442 const auto tuple = camera_queue.front();
443 camera_queue.pop();
444 ::aos::monotonic_clock::time_point t_obs = ::std::get<0>(tuple);
445 const TestCamera *camera = ::std::get<1>(tuple);
446 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame> views =
447 ::std::get<2>(tuple);
448 localizer_.UpdateTargets(*camera, views, t_obs);
449 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800450
James Kuszmaul6f941b72019-03-08 18:12:25 -0800451 // Actually take all the images and store them in the queue.
452 if (i % camera_period == 0) {
453 for (size_t jj = 0; jj < true_cameras_.size(); ++jj) {
454 const auto target_views = true_cameras_[jj].target_views();
455 ::aos::SizedArray<TestCamera::TargetView, kNumTargetsPerFrame>
456 pass_views;
457 for (size_t ii = 0;
458 ii < ::std::min(kNumTargetsPerFrame, target_views.size());
459 ++ii) {
460 TestCamera::TargetView view = target_views[ii];
461 Noisify(&view);
462 pass_views.push_back(view);
463 }
464 camera_queue.emplace(t, &robot_cameras_[jj], pass_views);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800465 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800466 }
467 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800468 }
469
470 const auto end = ::std::chrono::steady_clock::now();
471 avg_time_ = (end - begin) / i;
472 TestLocalizer::State estimate_err = state - localizer_.X_hat();
473 EXPECT_LT(estimate_err.template topRows<7>().norm(),
474 GetParam().estimate_tolerance);
475 // Check that none of the states that we actually care about (x/y/theta, and
476 // wheel positions/speeds) are too far off, individually:
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700477 EXPECT_LT(estimate_err.template topRows<3>().cwiseAbs().maxCoeff(),
James Kuszmaul1057ce82019-02-09 17:58:24 -0800478 GetParam().estimate_tolerance / 3.0)
479 << "Estimate error: " << estimate_err.transpose();
480 Eigen::Matrix<double, 5, 1> final_trajectory_state;
481 final_trajectory_state << state(StateIdx::kX, 0), state(StateIdx::kY, 0),
482 state(StateIdx::kTheta, 0), state(StateIdx::kLeftVelocity, 0),
483 state(StateIdx::kRightVelocity, 0);
484 const Eigen::Matrix<double, 5, 1> final_trajectory_state_err =
485 final_trajectory_state - spline_drivetrain_.CurrentGoalState();
486 EXPECT_LT(final_trajectory_state_err.norm(), GetParam().goal_tolerance)
487 << "Goal error: " << final_trajectory_state_err.transpose();
488}
489
490INSTANTIATE_TEST_CASE_P(
491 LocalizerTest, ParameterizedLocalizerTest,
492 ::testing::Values(
493 // Checks a "perfect" scenario, where we should track perfectly.
494 LocalizerTestParams({
495 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
496 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700497 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
498 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800499 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700500 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
501 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800502 .finished(),
503 /*noisify=*/false,
504 /*disturb=*/false,
505 /*estimate_tolerance=*/1e-5,
506 /*goal_tolerance=*/2e-2,
507 }),
508 // Checks "perfect" estimation, but start off the spline and check
509 // that we can still follow it.
510 LocalizerTestParams({
511 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
512 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700513 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
514 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800515 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700516 (TestLocalizer::State() << 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
517 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800518 .finished(),
519 /*noisify=*/false,
520 /*disturb=*/false,
521 /*estimate_tolerance=*/1e-5,
522 /*goal_tolerance=*/2e-2,
523 }),
524 // Repeats perfect scenario, but add sensor noise.
525 LocalizerTestParams({
526 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
527 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700528 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
529 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800530 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700531 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
532 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800533 .finished(),
534 /*noisify=*/true,
535 /*disturb=*/false,
536 /*estimate_tolerance=*/0.2,
James Kuszmaula5632fe2019-03-23 20:28:33 -0700537 /*goal_tolerance=*/0.4,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800538 }),
539 // Repeats perfect scenario, but add initial estimator error.
540 LocalizerTestParams({
541 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
542 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700543 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
544 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800545 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700546 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
547 0.0, 0.0, 0.0)
548 .finished(),
549 /*noisify=*/false,
550 /*disturb=*/false,
551 /*estimate_tolerance=*/1e-4,
552 /*goal_tolerance=*/2e-2,
553 }),
554 // Repeats perfect scenario, but add voltage + angular errors:
555 LocalizerTestParams({
556 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
557 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
558 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
559 0.5, 0.02)
560 .finished(),
561 (TestLocalizer::State() << 0.1, -5.1, -0.01, 0.0, 0.0, 0.0, 0.0,
562 0.0, 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800563 .finished(),
564 /*noisify=*/false,
565 /*disturb=*/false,
566 /*estimate_tolerance=*/1e-4,
567 /*goal_tolerance=*/2e-2,
568 }),
569 // Add disturbances while we are driving:
570 LocalizerTestParams({
571 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
572 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700573 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
574 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800575 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700576 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
577 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800578 .finished(),
579 /*noisify=*/false,
580 /*disturb=*/true,
James Kuszmaulc73bb222019-04-07 12:15:35 -0700581 /*estimate_tolerance=*/2.5e-2,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800582 /*goal_tolerance=*/0.15,
583 }),
584 // Add noise and some initial error in addition:
585 LocalizerTestParams({
586 /*control_pts_x=*/{{0.0, 3.0, 3.0, 0.0, 1.0, 1.0}},
587 /*control_pts_y=*/{{-5.0, -5.0, 2.0, 2.0, 2.0, 3.0}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700588 (TestLocalizer::State() << 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
589 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800590 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700591 (TestLocalizer::State() << 0.1, -5.1, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0,
592 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800593 .finished(),
594 /*noisify=*/true,
595 /*disturb=*/true,
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700596 /*estimate_tolerance=*/0.2,
James Kuszmaul074429e2019-03-23 16:01:49 -0700597 /*goal_tolerance=*/0.5,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800598 }),
599 // Try another spline, just in case the one I was using is special for
600 // some reason; this path will also go straight up to a target, to
601 // better simulate what might happen when trying to score:
602 LocalizerTestParams({
603 /*control_pts_x=*/{{0.5, 3.5, 4.0, 8.0, 11.0, 10.2}},
604 /*control_pts_y=*/{{1.0, 1.0, -3.0, -2.0, -3.5, -3.65}},
James Kuszmaul074429e2019-03-23 16:01:49 -0700605 (TestLocalizer::State() << 0.6, 1.01, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0,
606 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800607 .finished(),
James Kuszmaul074429e2019-03-23 16:01:49 -0700608 (TestLocalizer::State() << 0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
609 0.0, 0.0)
James Kuszmaul1057ce82019-02-09 17:58:24 -0800610 .finished(),
611 /*noisify=*/true,
612 /*disturb=*/false,
James Kuszmaul7f1a4082019-04-14 10:50:44 -0700613 // TODO(james): Improve tests so that we aren't constantly
614 // readjusting the tolerances up.
James Kuszmaulc40c26e2019-03-24 16:26:43 -0700615 /*estimate_tolerance=*/0.3,
James Kuszmaul074429e2019-03-23 16:01:49 -0700616 /*goal_tolerance=*/0.7,
James Kuszmaul1057ce82019-02-09 17:58:24 -0800617 })));
618
619} // namespace testing
620} // namespace control_loops
621} // namespace y2019