| #include "yolov5.h" |
| |
| #include <tensorflow/lite/c/common.h> |
| #include <tensorflow/lite/interpreter.h> |
| #include <tensorflow/lite/kernels/register.h> |
| #include <tensorflow/lite/model.h> |
| #include <tflite/public/edgetpu.h> |
| #include <tflite/public/edgetpu_c.h> |
| |
| #include <opencv2/dnn.hpp> |
| |
| #include "gflags/gflags.h" |
| #include "glog/logging.h" |
| |
| DEFINE_double(conf_threshold, 0.9, |
| "Threshold value for confidence scores. Detections with a " |
| "confidence score below this value will be ignored."); |
| |
| DEFINE_double( |
| nms_threshold, 0.5, |
| "Threshold value for non-maximum suppression. Detections with an " |
| "intersection-over-union value below this value will be removed."); |
| |
| DEFINE_int32(nthreads, 6, "Number of threads to use during inference."); |
| |
| namespace y2023 { |
| namespace vision { |
| |
| class YOLOV5Impl : public YOLOV5 { |
| public: |
| // Takes a model path as string and and loads a pre-trained |
| // YOLOv5 model from the specified path. |
| void LoadModel(const std::string path); |
| |
| // Takes an image and returns a Detection. |
| std::vector<Detection> ProcessImage(cv::Mat image); |
| |
| private: |
| // Convert an OpenCV Mat object to a tensor input |
| // that can be fed to the TensorFlow Lite model. |
| void ConvertCVMatToTensor(cv::Mat src, uint8_t *in); |
| |
| // Resizes, converts color space, and converts |
| // image data type before inference. |
| void Preprocess(cv::Mat image); |
| |
| // Converts a TensorFlow Lite tensor to a 2D vector. |
| std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor, |
| const int rows, |
| const int columns); |
| |
| // Performs non-maximum suppression to remove overlapping bounding boxes. |
| void NonMaximumSupression(const std::vector<std::vector<float>> &orig_preds, |
| const int rows, const int columns, |
| std::vector<Detection> *detections, |
| std::vector<int> *indices); |
| // Models |
| std::unique_ptr<tflite::FlatBufferModel> model_; |
| std::unique_ptr<tflite::Interpreter> interpreter_; |
| tflite::StderrReporter error_reporter_; |
| |
| // Parameters of interpreter's input |
| int input_; |
| int in_height_; |
| int in_width_; |
| int in_channels_; |
| int in_type_; |
| |
| // Parameters of original image |
| int img_height_; |
| int img_width_; |
| |
| // Input of the interpreter |
| uint8_t *input_8_; |
| |
| // Subtract this offset from class labels to get the actual label. |
| static constexpr int kClassIdOffset = 5; |
| }; |
| |
| std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); } |
| |
| void YOLOV5Impl::LoadModel(const std::string path) { |
| LOG(INFO) << "Load model: start"; |
| |
| |
| tflite::ops::builtin::BuiltinOpResolver resolver; |
| |
| model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str()); |
| |
| /* |
| auto model_impl = model_->GetModel(); |
| model_impl->subgraphs(); |
| LOG(INFO) << model_impl; |
| LOG(INFO) << model_impl->subgraphs(); |
| auto subgraphs = model_impl->subgraphs(); |
| LOG(INFO) << subgraphs->size(); |
| LOG(INFO) << subgraphs->Get(0)->inputs()->size(); |
| LOG(INFO) << subgraphs->Get(0)->inputs()->Get(0); |
| (void)subgraphs; |
| */ |
| |
| LOG(INFO) << "Load model: Build Model from file"; |
| |
| CHECK(model_); |
| CHECK(model_->initialized()); |
| CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_), |
| kTfLiteOk); |
| LOG(INFO) << "Load model: Interpreter builder done"; |
| /* |
| LOG(INFO) << &interpreter_->primary_subgraph(); |
| LOG(INFO) << interpreter_->subgraph(0); |
| LOG(INFO) << interpreter_->subgraphs_size(); |
| LOG(INFO) << interpreter_->subgraph(0)->inputs().size(); |
| LOG(INFO) << interpreter_->inputs().size(); |
| */ |
| |
| //interpreter_->SetExternalContext(kTfLiteEdgeTpuContext, edgetpu_context.get()); |
| // LOG(INFO) << "After set external context"; |
| |
| size_t num_devices; |
| std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices( |
| edgetpu_list_devices(&num_devices), &edgetpu_free_devices); |
| |
| //const auto &available_tpus = |
| // edgetpu::EdgeTpuManager::GetSingleton()->EnumerateEdgeTpu(); |
| //LOG(INFO) << "Available tpus: " << available_tpus.size(); |
| |
| LOG(INFO) << "Load model: Getting devices"; |
| CHECK_EQ(num_devices, 1ul); |
| const auto &device = devices.get()[0]; |
| (void )device; |
| LOG(INFO) << "Load model: Got Device"; |
| |
| auto *delegate = edgetpu_create_delegate(device.type, device.path, nullptr, 0); |
| |
| interpreter_->ModifyGraphWithDelegate(delegate); |
| |
| |
| TfLiteStatus status = interpreter_->AllocateTensors(); |
| CHECK_EQ(status, kTfLiteOk); |
| CHECK(interpreter_); |
| |
| LOG(INFO) << "Load model: Allocate tensors success"; |
| input_ = interpreter_->inputs()[0]; |
| LOG(INFO) << "After set inputs"; |
| LOG(INFO) << input_; |
| TfLiteIntArray *dims = interpreter_->tensor(input_)->dims; |
| in_height_ = dims->data[1]; |
| in_width_ = dims->data[2]; |
| in_channels_ = dims->data[3]; |
| in_type_ = interpreter_->tensor(input_)->type; |
| input_8_ = interpreter_->typed_tensor<uint8_t>(input_); |
| |
| |
| interpreter_->SetNumThreads(FLAGS_nthreads); |
| |
| LOG(INFO) << "End of load"; |
| } |
| |
| void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, uint8_t *in) { |
| CHECK(src.type() == CV_8UC3); |
| int n = 0, nc = src.channels(), ne = src.elemSize(); |
| LOG(INFO) << "ConvertCVMatToTensor - Rows " << src.rows; |
| LOG(INFO) << "ConvertCVMatToTensor - Cols " << src.cols; |
| for (int y = 0; y < src.rows; ++y) { |
| for (int x = 0; x < src.cols; ++x) { |
| for (int c = 0; c < nc; ++c) { |
| (void)ne; |
| (void)n; |
| in[n++] = src.data[y * src.step + x * ne + c]; |
| } |
| } |
| } |
| } |
| |
| std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D( |
| TfLiteTensor *src_tensor, const int rows, const int columns) { |
| auto scale = src_tensor->params.scale; |
| auto zero_point = src_tensor->params.zero_point; |
| std::vector<std::vector<float>> result_vec; |
| for (int32_t i = 0; i < rows; i++) { |
| std::vector<float> row_values; |
| for (int32_t j = 0; j < columns; j++) { |
| float val_float = |
| ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) - |
| zero_point) * |
| scale; |
| row_values.push_back(val_float); |
| } |
| result_vec.push_back(row_values); |
| } |
| return result_vec; |
| } |
| |
| void YOLOV5Impl::NonMaximumSupression( |
| const std::vector<std::vector<float>> &orig_preds, const int rows, |
| const int columns, std::vector<Detection> *detections, |
| std::vector<int> *indices) |
| |
| { |
| std::vector<float> scores; |
| double confidence; |
| cv::Point class_id; |
| |
| for (int i = 0; i < rows; i++) { |
| if (orig_preds[i][4] > FLAGS_conf_threshold) { |
| int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_; |
| int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_; |
| int w = orig_preds[i][2] * img_width_; |
| int h = orig_preds[i][3] * img_height_; |
| |
| for (int j = 5; j < columns; j++) { |
| scores.push_back(orig_preds[i][j] * orig_preds[i][4]); |
| } |
| |
| cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id); |
| if (confidence > FLAGS_conf_threshold) { |
| Detection detection{cv::Rect(left, top, w, h), confidence, |
| class_id.x - kClassIdOffset}; |
| detections->push_back(detection); |
| } |
| } |
| } |
| |
| std::vector<cv::Rect> boxes; |
| std::vector<float> confidences; |
| |
| for (const Detection &d : *detections) { |
| boxes.push_back(d.box); |
| confidences.push_back(d.confidence); |
| } |
| |
| (void)indices; |
| // TODO(FILIP): Fix linker error. |
| // cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold, |
| // FLAGS_nms_threshold, *indices); |
| } |
| |
| std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) { |
| img_height_ = frame.rows; |
| img_width_ = frame.cols; |
| |
| //Preprocess; |
| cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC); |
| cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); |
| frame.convertTo(frame, CV_8U); |
| |
| LOG(INFO) << "After preprocess - Before convert to tensor"; |
| ConvertCVMatToTensor(frame, input_8_); |
| |
| // Inference |
| LOG(INFO) << "Before Invoke"; |
| TfLiteStatus status = interpreter_->Invoke(); |
| CHECK_EQ(status, kTfLiteOk); |
| |
| LOG(INFO) << "After invoke, status checked"; |
| |
| int output_tensor_index = interpreter_->outputs()[0]; |
| TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims; |
| int num_rows = out_dims->data[1]; |
| int num_columns = out_dims->data[2]; |
| |
| TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]); |
| |
| std::vector<std::vector<float>> orig_preds = |
| TensorToVector2D(src_tensor, num_rows, num_columns); |
| LOG(INFO) << "After tensor to vector 2D"; |
| |
| std::vector<int> indices; |
| std::vector<Detection> detections; |
| |
| NonMaximumSupression(orig_preds, num_rows, num_columns, &detections, |
| &indices); |
| LOG(INFO) << "After NMS"; |
| for (size_t i = 0; i < interpreter_->outputs().size(); i++) { |
| LOG(INFO) << "Detection #" << i << " | " << interpreter_->outputs()[i]; |
| } |
| if (detections.size() > 0) { |
| LOG(INFO) << "Detection ID: " << detections[0].class_id; |
| LOG(INFO) << "Confidence" << detections[0].confidence; |
| } |
| return detections; |
| }; |
| |
| } // namespace vision |
| } // namespace y2023 |