blob: 7f5aa2a1c792d9b17f74611f38a5d54eff4099a0 [file] [log] [blame]
#include "yolov5.h"
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tflite/public/edgetpu_c.h>
#include <opencv2/core.hpp>
#include "gflags/gflags.h"
#include "glog/logging.h"
DEFINE_double(conf_threshold, 0.9,
"Threshold value for confidence scores. Detections with a "
"confidence score below this value will be ignored.");
DEFINE_double(
nms_threshold, 0.5,
"Threshold value for non-maximum suppression. Detections with an "
"intersection-over-union value below this value will be removed.");
DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
namespace y2023 {
namespace vision {
class YOLOV5Impl : public YOLOV5 {
public:
// Takes a model path as string and and loads a pre-trained
// YOLOv5 model from the specified path.
void LoadModel(const std::string path);
// Takes an image and returns a Detection.
std::vector<Detection> ProcessImage(cv::Mat image);
private:
// Convert an OpenCV Mat object to a tensor input
// that can be fed to the TensorFlow Lite model.
void ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in);
// Resizes, converts color space, and converts
// image data type before inference.
void Preprocess(cv::Mat image);
// Converts a TensorFlow Lite tensor to a 2D vector.
std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
const int rows,
const int columns);
// Performs non-maximum suppression to remove overlapping bounding boxes.
void NonMaximumSupression(const std::vector<std::vector<float>> &orig_preds,
const int rows, const int columns,
std::vector<Detection> *detections,
std::vector<int> *indices);
// Models
std::unique_ptr<tflite::FlatBufferModel> model_;
std::unique_ptr<tflite::Interpreter> interpreter_;
tflite::StderrReporter error_reporter_;
// Parameters of interpreter's input
int input_;
int in_height_;
int in_width_;
int in_channels_;
int in_type_;
// Parameters of original image
int img_height_;
int img_width_;
// Input of the interpreter
uint8_t *input_8_;
// Subtract this offset from class labels to get the actual label.
static constexpr int kClassIdOffset = 5;
};
std::unique_ptr<YOLOV5> MakeYOLOV5() {
YOLOV5Impl *yolo = new YOLOV5Impl();
return std::unique_ptr<YOLOV5>(yolo);
}
void YOLOV5Impl::LoadModel(const std::string path) {
model_ = tflite::FlatBufferModel::BuildFromFile(path.c_str());
CHECK(model_);
size_t num_devices;
std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
const auto &device = devices.get()[0];
CHECK_EQ(num_devices, 1ul);
tflite::ops::builtin::BuiltinOpResolver resolver;
CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
kTfLiteOk);
auto *delegate =
edgetpu_create_delegate(device.type, device.path, nullptr, 0);
interpreter_->ModifyGraphWithDelegate(delegate);
TfLiteStatus status = interpreter_->AllocateTensors();
CHECK(status == kTfLiteOk);
input_ = interpreter_->inputs()[0];
TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
in_height_ = dims->data[1];
in_width_ = dims->data[2];
in_channels_ = dims->data[3];
in_type_ = interpreter_->tensor(input_)->type;
input_8_ = interpreter_->typed_tensor<uint8_t>(input_);
interpreter_->SetNumThreads(FLAGS_nthreads);
}
void YOLOV5Impl::Preprocess(cv::Mat image) {
cv::resize(image, image, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
image.convertTo(image, CV_8U);
}
void YOLOV5Impl::ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in) {
CHECK(src.type() == CV_8UC3);
int n = 0, nc = src.channels(), ne = src.elemSize();
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
for (int c = 0; c < nc; ++c)
in[n++] = src.data[y * src.step + x * ne + c];
}
std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
TfLiteTensor *src_tensor, const int rows, const int columns) {
auto scale = src_tensor->params.scale;
auto zero_point = src_tensor->params.zero_point;
std::vector<std::vector<float>> result_vec;
for (int32_t i = 0; i < rows; i++) {
std::vector<float> row_values;
for (int32_t j = 0; j < columns; j++) {
float val_float =
((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
zero_point) *
scale;
row_values.push_back(val_float);
}
result_vec.push_back(row_values);
}
return result_vec;
}
void YOLOV5Impl::NonMaximumSupression(
const std::vector<std::vector<float>> &orig_preds, const int rows,
const int columns, std::vector<Detection> *detections,
std::vector<int> *indices)
{
std::vector<float> scores;
double confidence;
cv::Point class_id;
for (int i = 0; i < rows; i++) {
if (orig_preds[i][4] > FLAGS_conf_threshold) {
int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_;
int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_;
int w = orig_preds[i][2] * img_width_;
int h = orig_preds[i][3] * img_height_;
for (int j = 5; j < columns; j++) {
scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
}
cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
if (confidence > FLAGS_conf_threshold) {
Detection detection{cv::Rect(left, top, w, h), confidence,
class_id.x - kClassIdOffset};
detections->push_back(detection);
}
}
}
std::vector<cv::Rect> boxes;
std::vector<float> confidences;
for (const Detection &d : *detections) {
boxes.push_back(d.box);
confidences.push_back(d.confidence);
}
cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
FLAGS_nms_threshold, *indices);
}
std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
img_height_ = frame.rows;
img_width_ = frame.cols;
Preprocess(frame);
ConvertCVMatToTensor(frame, input_8_);
// Inference
TfLiteStatus status = interpreter_->Invoke();
CHECK_EQ(status, kTfLiteOk);
int output_tensor_index = interpreter_->outputs()[0];
TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
int num_rows = out_dims->data[1];
int num_columns = out_dims->data[2];
TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
std::vector<std::vector<float>> orig_preds =
TensorToVector2D(src_tensor, num_rows, num_columns);
std::vector<int> indices;
std::vector<Detection> detections;
NonMaximumSupression(orig_preds, num_rows, num_columns, &detections,
&indices);
return detections;
};
} // namespace vision
} // namespace y2023