blob: df03d12a85748419eae1b1df7a95ed573cc072b0 [file] [log] [blame]
Filip Kujawadc7d47c2023-04-08 16:16:51 -07001#include "yolov5.h"
2
3#include <opencv2/core.hpp>
4
5#include "gflags/gflags.h"
6#include "glog/logging.h"
7
8DEFINE_double(conf_threshold, 0.9,
9 "Threshold value for confidence scores. Detections with a "
10 "confidence score below this value will be ignored.");
11
12DEFINE_double(
13 nms_threshold, 0.5,
14 "Threshold value for non-maximum suppression. Detections with an "
15 "intersection-over-union value below this value will be removed.");
16
17DEFINE_int32(nthreads, 6, "Number of threads to use during inference.");
18
19namespace y2023 {
20namespace vision {
21
22void YOLOV5::LoadModel(const std::string path) {
23 model_ = tflite::FlatBufferModel::BuildFromFile(path.c_str());
24 CHECK(model_);
25 size_t num_devices;
26 std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
27 edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
28 const auto &device = devices.get()[0];
29 CHECK_EQ(num_devices, 1ul);
30 tflite::ops::builtin::BuiltinOpResolver resolver;
31 CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
32 kTfLiteOk);
33
34 auto *delegate =
35 edgetpu_create_delegate(device.type, device.path, nullptr, 0);
36 interpreter_->ModifyGraphWithDelegate(delegate);
37
38 TfLiteStatus status = interpreter_->AllocateTensors();
39 CHECK(status == kTfLiteOk);
40
41 input_ = interpreter_->inputs()[0];
42 TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
43 in_height_ = dims->data[1];
44 in_width_ = dims->data[2];
45 in_channels_ = dims->data[3];
46 in_type_ = interpreter_->tensor(input_)->type;
47 input_8_ = interpreter_->typed_tensor<uint8_t>(input_);
48
49 interpreter_->SetNumThreads(FLAGS_nthreads);
50}
51
52void YOLOV5::Preprocess(cv::Mat image) {
53 cv::resize(image, image, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
54 cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
55 image.convertTo(image, CV_8U);
56}
57
58void YOLOV5::ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in) {
59 CHECK(src.type() == CV_8UC3);
60 int n = 0, nc = src.channels(), ne = src.elemSize();
61 for (int y = 0; y < src.rows; ++y)
62 for (int x = 0; x < src.cols; ++x)
63 for (int c = 0; c < nc; ++c)
64 in[n++] = src.data[y * src.step + x * ne + c];
65}
66
67std::vector<std::vector<float>> YOLOV5::TensorToVector2D(
68 TfLiteTensor *src_tensor, const int rows, const int columns) {
69 auto scale = src_tensor->params.scale;
70 auto zero_point = src_tensor->params.zero_point;
71 std::vector<std::vector<float>> result_vec;
72 for (int32_t i = 0; i < rows; i++) {
73 std::vector<float> row_values;
74 for (int32_t j = 0; j < columns; j++) {
75 float val_float =
76 ((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
77 zero_point) *
78 scale;
79 row_values.push_back(val_float);
80 }
81 result_vec.push_back(row_values);
82 }
83 return result_vec;
84}
85
86void YOLOV5::NonMaximumSupression(
87 const std::vector<std::vector<float>> &orig_preds, const int rows,
88 const int columns, std::vector<Detection> *detections,
89 std::vector<int> *indices)
90
91{
92 std::vector<float> scores;
93 double confidence;
94 cv::Point class_id;
95
96 for (int i = 0; i < rows; i++) {
97 if (orig_preds[i][4] > FLAGS_conf_threshold) {
98 int left = (orig_preds[i][0] - orig_preds[i][2] / 2) * img_width_;
99 int top = (orig_preds[i][1] - orig_preds[i][3] / 2) * img_height_;
100 int w = orig_preds[i][2] * img_width_;
101 int h = orig_preds[i][3] * img_height_;
102
103 for (int j = 5; j < columns; j++) {
104 scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
105 }
106
107 cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
108 if (confidence > FLAGS_conf_threshold) {
109 Detection detection{cv::Rect(left, top, w, h), confidence,
110 class_id.x - kClassIdOffset};
111 detections->push_back(detection);
112 }
113 }
114 }
115
116 std::vector<cv::Rect> boxes;
117 std::vector<float> confidences;
118
119 for (const Detection &d : *detections) {
120 boxes.push_back(d.box);
121 confidences.push_back(d.confidence);
122 }
123
124 cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
125 FLAGS_nms_threshold, *indices);
126}
127
128std::vector<Detection> YOLOV5::ProcessImage(cv::Mat frame) {
129 img_height_ = frame.rows;
130 img_width_ = frame.cols;
131
132 Preprocess(frame);
133 ConvertCVMatToTensor(frame, input_8_);
134
135 // Inference
136 TfLiteStatus status = interpreter_->Invoke();
137 CHECK_EQ(status, kTfLiteOk);
138
139 int output_tensor_index = interpreter_->outputs()[0];
140 TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
141 int num_rows = out_dims->data[1];
142 int num_columns = out_dims->data[2];
143
144 TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
145 std::vector<std::vector<float>> orig_preds =
146 TensorToVector2D(src_tensor, num_rows, num_columns);
147
148 std::vector<int> indices;
149 std::vector<Detection> detections;
150
151 NonMaximumSupression(orig_preds, num_rows, num_columns, &detections,
152 &indices);
153
154 return detections;
155};
156
157} // namespace vision
158} // namespace y2023