blob: 887960d8c6ac4d671bc776e35a8831d9247bedf9 [file] [log] [blame]
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -08001#include "y2022/vision/blob_detector.h"
2
milind-u92195982022-01-22 20:29:31 -08003#include <cmath>
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -08004#include <optional>
milind-u92195982022-01-22 20:29:31 -08005#include <string>
6
Austin Schuh99f7c6a2024-06-25 22:07:44 -07007#include "absl/flags/flag.h"
milind-u92195982022-01-22 20:29:31 -08008#include "opencv2/features2d.hpp"
Milind Upadhyay8f38ad82022-03-03 10:06:18 -08009#include "opencv2/highgui/highgui.hpp"
milind-u92195982022-01-22 20:29:31 -080010#include "opencv2/imgproc.hpp"
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080011
Philipp Schrader790cb542023-07-05 21:06:52 -070012#include "aos/network/team_number.h"
13#include "aos/time/time.h"
14#include "frc971/vision/geometry.h"
15
Austin Schuh99f7c6a2024-06-25 22:07:44 -070016ABSL_FLAG(bool, use_outdoors, true,
17 "If set, use the color filters and exposure for an outdoor setting.");
18ABSL_FLAG(int32_t, red_delta, 50,
19 "Required difference between green pixels vs. red");
20ABSL_FLAG(int32_t, blue_delta, -20,
21 "Required difference between green pixels vs. blue");
22ABSL_FLAG(int32_t, outdoors_red_delta, 70,
23 "Required difference between green pixels vs. red when using "
24 "--use_outdoors");
25ABSL_FLAG(int32_t, outdoors_blue_delta, -10,
26 "Required difference between green pixels vs. blue when using "
27 "--use_outdoors");
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080028
Stephan Pleinesf63bde82024-01-13 15:59:33 -080029namespace y2022::vision {
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080030
Milind Upadhyayec41e132022-02-05 17:14:05 -080031cv::Mat BlobDetector::ThresholdImage(cv::Mat bgr_image) {
32 cv::Mat binarized_image(cv::Size(bgr_image.cols, bgr_image.rows), CV_8UC1);
Milind Upadhyayf67f67d2022-03-27 14:29:47 -070033
Austin Schuh99f7c6a2024-06-25 22:07:44 -070034 const int red_delta = (absl::GetFlag(FLAGS_use_outdoors)
35 ? absl::GetFlag(FLAGS_outdoors_red_delta)
36 : absl::GetFlag(FLAGS_red_delta));
37 const int blue_delta = (absl::GetFlag(FLAGS_use_outdoors)
38 ? absl::GetFlag(FLAGS_outdoors_blue_delta)
39 : absl::GetFlag(FLAGS_blue_delta));
Milind Upadhyayf67f67d2022-03-27 14:29:47 -070040
Milind Upadhyayec41e132022-02-05 17:14:05 -080041 for (int row = 0; row < bgr_image.rows; row++) {
42 for (int col = 0; col < bgr_image.cols; col++) {
43 cv::Vec3b pixel = bgr_image.at<cv::Vec3b>(row, col);
Milind Upadhyay81711112022-03-13 22:59:19 -070044 int blue = pixel.val[0];
45 int green = pixel.val[1];
46 int red = pixel.val[2];
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080047 // Simple filter that looks for green pixels sufficiently brigher than
48 // red and blue
Milind Upadhyayf67f67d2022-03-27 14:29:47 -070049 if ((green > blue + blue_delta) && (green > red + red_delta)) {
milind-u61f21e82022-01-23 18:34:11 -080050 binarized_image.at<uint8_t>(row, col) = 255;
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080051 } else {
milind-u61f21e82022-01-23 18:34:11 -080052 binarized_image.at<uint8_t>(row, col) = 0;
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080053 }
54 }
55 }
56
Milind Upadhyayae998722022-03-13 12:45:55 -070057 // Fill in the contours on the binarized image so that we don't detect
58 // multiple blobs in one
59 const auto blobs = FindBlobs(binarized_image);
60 for (auto it = blobs.begin(); it < blobs.end(); it++) {
61 cv::drawContours(binarized_image, blobs, it - blobs.begin(),
62 cv::Scalar(255), cv::FILLED);
63 }
64
milind-u61f21e82022-01-23 18:34:11 -080065 return binarized_image;
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -080066}
67
68std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs(
69 cv::Mat binarized_image) {
70 // find the contours (blob outlines)
71 std::vector<std::vector<cv::Point>> contours;
72 std::vector<cv::Vec4i> hierarchy;
73 cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP,
74 cv::CHAIN_APPROX_SIMPLE);
75
76 return contours;
77}
78
milind-u61f21e82022-01-23 18:34:11 -080079std::vector<BlobDetector::BlobStats> BlobDetector::ComputeStats(
Milind Upadhyayf61e1482022-02-11 20:42:55 -080080 const std::vector<std::vector<cv::Point>> &blobs) {
Milind Upadhyay8f38ad82022-03-03 10:06:18 -080081 cv::Mat img = cv::Mat::zeros(640, 480, CV_8UC3);
82
milind-u61f21e82022-01-23 18:34:11 -080083 std::vector<BlobDetector::BlobStats> blob_stats;
84 for (auto blob : blobs) {
Milind Upadhyay8f38ad82022-03-03 10:06:18 -080085 // Opencv doesn't have height and width ordered correctly.
86 // The rotated size will only be used after blobs have been filtered, so it
87 // is ok to assume that width is the larger side
88 const cv::Size rotated_rect_size_unordered = cv::minAreaRect(blob).size;
89 const cv::Size rotated_rect_size = {
90 std::max(rotated_rect_size_unordered.width,
91 rotated_rect_size_unordered.height),
92 std::min(rotated_rect_size_unordered.width,
93 rotated_rect_size_unordered.height)};
94 const cv::Size bounding_box_size = cv::boundingRect(blob).size();
95
Milind Upadhyayf61e1482022-02-11 20:42:55 -080096 cv::Moments moments = cv::moments(blob);
milind-u61f21e82022-01-23 18:34:11 -080097
98 const auto centroid =
99 cv::Point(moments.m10 / moments.m00, moments.m01 / moments.m00);
100 const double aspect_ratio =
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800101 static_cast<double>(bounding_box_size.width) / bounding_box_size.height;
milind-u61f21e82022-01-23 18:34:11 -0800102 const double area = moments.m00;
Henry Speisere45e7a22022-02-04 23:17:01 -0800103 const size_t num_points = blob.size();
milind-u61f21e82022-01-23 18:34:11 -0800104
Henry Speisere45e7a22022-02-04 23:17:01 -0800105 blob_stats.emplace_back(
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800106 BlobStats{centroid, rotated_rect_size, aspect_ratio, area, num_points});
milind-u61f21e82022-01-23 18:34:11 -0800107 }
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800108
milind-u61f21e82022-01-23 18:34:11 -0800109 return blob_stats;
110}
111
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800112void BlobDetector::FilterBlobs(BlobResult *blob_result) {
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800113 std::vector<std::vector<cv::Point>> filtered_blobs;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800114 std::vector<BlobStats> filtered_stats;
milind-u92195982022-01-22 20:29:31 -0800115
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800116 auto blob_it = blob_result->unfiltered_blobs.begin();
117 auto stats_it = blob_result->blob_stats.begin();
118 while (blob_it < blob_result->unfiltered_blobs.end() &&
119 stats_it < blob_result->blob_stats.end()) {
milind-u61f21e82022-01-23 18:34:11 -0800120 constexpr double kTapeAspectRatio = 5.0 / 2.0;
Milind Upadhyay07f6f9e2022-03-18 18:40:34 -0700121 constexpr double kAspectRatioThreshold = 2.0;
milind-u61f21e82022-01-23 18:34:11 -0800122 constexpr double kMinArea = 10;
Milind Upadhyay07f6f9e2022-03-18 18:40:34 -0700123 constexpr size_t kMinNumPoints = 2;
Milind Upadhyay56414692022-09-24 20:44:16 -0700124 constexpr size_t kMaxNumPoints = 50;
milind-u92195982022-01-22 20:29:31 -0800125
milind-u61f21e82022-01-23 18:34:11 -0800126 // Remove all blobs that are at the bottom of the image, have a different
Milind Upadhyayec41e132022-02-05 17:14:05 -0800127 // aspect ratio than the tape, or have too little area or points.
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800128 if ((std::abs(1.0 - kTapeAspectRatio / stats_it->aspect_ratio) <
milind-u61f21e82022-01-23 18:34:11 -0800129 kAspectRatioThreshold) &&
Milind Upadhyayec41e132022-02-05 17:14:05 -0800130 (stats_it->area >= kMinArea) &&
Milind Upadhyay56414692022-09-24 20:44:16 -0700131 (stats_it->num_points >= kMinNumPoints) &&
132 (stats_it->num_points <= kMaxNumPoints)) {
milind-u61f21e82022-01-23 18:34:11 -0800133 filtered_blobs.push_back(*blob_it);
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800134 filtered_stats.push_back(*stats_it);
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800135 }
milind-u61f21e82022-01-23 18:34:11 -0800136 blob_it++;
137 stats_it++;
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800138 }
milind-u92195982022-01-22 20:29:31 -0800139
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800140 // Threshold for mean distance from a blob centroid to a circle.
Austin Schuh0912ea52022-04-16 10:20:53 -0700141 constexpr double kCircleDistanceThreshold = 2.0;
Milind Upadhyayec41e132022-02-05 17:14:05 -0800142 // We should only expect to see blobs between these angles on a circle.
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800143 constexpr double kDegToRad = M_PI / 180.0;
144 constexpr double kMinBlobAngle = 50.0 * kDegToRad;
Milind Upadhyayec41e132022-02-05 17:14:05 -0800145 constexpr double kMaxBlobAngle = M_PI - kMinBlobAngle;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800146 std::vector<std::vector<cv::Point>> blob_circle;
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800147 std::vector<BlobStats> blob_circle_stats;
Milind Upadhyayb67c6182022-10-22 13:45:45 -0700148 frc971::vision::Circle circle;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800149
150 // If we see more than this number of blobs after filtering based on
151 // color/size, the circle fit may detect noise so just return no blobs.
Milind Upadhyay2b4404c2022-02-04 21:20:57 -0800152 constexpr size_t kMinFilteredBlobs = 3;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800153 constexpr size_t kMaxFilteredBlobs = 50;
Milind Upadhyay2b4404c2022-02-04 21:20:57 -0800154 if (filtered_blobs.size() >= kMinFilteredBlobs &&
155 filtered_blobs.size() <= kMaxFilteredBlobs) {
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800156 constexpr size_t kRansacIterations = 15;
157 for (size_t i = 0; i < kRansacIterations; i++) {
158 // Pick 3 random blobs and see how many fit on their circle
159 const size_t j = std::rand() % filtered_blobs.size();
160 const size_t k = std::rand() % filtered_blobs.size();
161 const size_t l = std::rand() % filtered_blobs.size();
162
163 // Restart if the random indices clash
164 if ((j == k) || (j == l) || (k == l)) {
165 i--;
166 continue;
167 }
168
169 std::vector<std::vector<cv::Point>> current_blobs{
170 filtered_blobs[j], filtered_blobs[k], filtered_blobs[l]};
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800171 std::vector<BlobStats> current_stats{filtered_stats[j], filtered_stats[k],
172 filtered_stats[l]};
Milind Upadhyayb67c6182022-10-22 13:45:45 -0700173 const std::optional<frc971::vision::Circle> current_circle =
174 frc971::vision::Circle::Fit({current_stats[0].centroid,
175 current_stats[1].centroid,
176 current_stats[2].centroid});
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800177
178 // Make sure that a circle could be created from the points
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800179 if (!current_circle) {
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800180 continue;
181 }
182
Milind Upadhyayec41e132022-02-05 17:14:05 -0800183 // Only try to fit points to this circle if all of these are between
184 // certain angles.
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800185 if (current_circle->InAngleRange(current_stats[0].centroid, kMinBlobAngle,
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800186 kMaxBlobAngle) &&
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800187 current_circle->InAngleRange(current_stats[1].centroid, kMinBlobAngle,
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800188 kMaxBlobAngle) &&
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800189 current_circle->InAngleRange(current_stats[2].centroid, kMinBlobAngle,
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800190 kMaxBlobAngle)) {
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800191 for (size_t m = 0; m < filtered_blobs.size(); m++) {
192 // Add this blob to the list if it is close to the circle, is on the
193 // top half, and isn't one of the other blobs
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800194 if ((m != j) && (m != k) && (m != l) &&
195 current_circle->InAngleRange(filtered_stats[m].centroid,
196 kMinBlobAngle, kMaxBlobAngle) &&
197 (current_circle->DistanceTo(filtered_stats[m].centroid) <
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800198 kCircleDistanceThreshold)) {
199 current_blobs.emplace_back(filtered_blobs[m]);
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800200 current_stats.emplace_back(filtered_stats[m]);
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800201 }
202 }
203
204 if (current_blobs.size() > blob_circle.size()) {
205 blob_circle = current_blobs;
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800206 blob_circle_stats = current_stats;
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800207 circle = *current_circle;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800208 }
209 }
210 }
211 }
212
213 cv::Point avg_centroid(-1, -1);
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800214 if (blob_circle.size() > 0) {
215 for (const auto &stats : blob_circle_stats) {
216 avg_centroid.x += stats.centroid.x;
217 avg_centroid.y += stats.centroid.y;
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800218 }
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800219 avg_centroid.x /= blob_circle_stats.size();
220 avg_centroid.y /= blob_circle_stats.size();
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800221 }
222
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800223 blob_result->filtered_blobs = blob_circle;
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800224 blob_result->filtered_stats = blob_circle_stats;
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800225 blob_result->centroid = avg_centroid;
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800226}
227
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800228void BlobDetector::DrawBlobs(const BlobResult &blob_result,
229 cv::Mat view_image) {
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800230 CHECK_GT(view_image.cols, 0);
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800231 if (blob_result.unfiltered_blobs.size() > 0) {
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800232 // Draw blobs unfilled, with red color border
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800233 cv::drawContours(view_image, blob_result.unfiltered_blobs, -1,
234 cv::Scalar(0, 0, 255), 0);
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800235 }
236
James Kuszmauld230d7a2022-03-06 15:00:43 -0800237 if (blob_result.filtered_blobs.size() > 0) {
238 cv::drawContours(view_image, blob_result.filtered_blobs, -1,
239 cv::Scalar(0, 100, 0), cv::FILLED);
240 }
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800241
Milind Upadhyay2da80bb2022-03-12 22:54:35 -0800242 for (const auto &blob : blob_result.filtered_blobs) {
243 cv::polylines(view_image, blob, true, cv::Scalar(0, 255, 0));
244 }
245
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800246 static constexpr double kCircleRadius = 2.0;
milind-u92195982022-01-22 20:29:31 -0800247 // Draw blob centroids
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800248 for (auto stats : blob_result.blob_stats) {
249 cv::circle(view_image, stats.centroid, kCircleRadius,
250 cv::Scalar(0, 215, 255), cv::FILLED);
251 }
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800252 for (auto stats : blob_result.filtered_stats) {
253 cv::circle(view_image, stats.centroid, kCircleRadius, cv::Scalar(0, 255, 0),
milind-u61f21e82022-01-23 18:34:11 -0800254 cv::FILLED);
255 }
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800256}
257
Milind Upadhyayec41e132022-02-05 17:14:05 -0800258void BlobDetector::ExtractBlobs(cv::Mat bgr_image,
Milind Upadhyay25610d22022-02-07 15:35:26 -0800259 BlobDetector::BlobResult *blob_result) {
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800260 auto start = aos::monotonic_clock::now();
Milind Upadhyayec41e132022-02-05 17:14:05 -0800261 blob_result->binarized_image = ThresholdImage(bgr_image);
Milind Upadhyay25610d22022-02-07 15:35:26 -0800262 blob_result->unfiltered_blobs = FindBlobs(blob_result->binarized_image);
263 blob_result->blob_stats = ComputeStats(blob_result->unfiltered_blobs);
Milind Upadhyayf61e1482022-02-11 20:42:55 -0800264 FilterBlobs(blob_result);
Milind Upadhyaye7aa40c2022-01-29 22:36:21 -0800265 auto end = aos::monotonic_clock::now();
Milind Upadhyay8f38ad82022-03-03 10:06:18 -0800266 VLOG(1) << "Blob detection elapsed time: "
Jim Ostrowskifec0c332022-02-06 23:28:26 -0800267 << std::chrono::duration<double, std::milli>(end - start).count()
268 << " ms";
Jim Ostrowskiff0f5e42022-01-22 01:35:31 -0800269}
270
Stephan Pleinesf63bde82024-01-13 15:59:33 -0800271} // namespace y2022::vision