Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 1 | #include "y2022/vision/blob_detector.h" |
| 2 | |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 3 | #include <cmath> |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 4 | #include <optional> |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 5 | #include <string> |
| 6 | |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 7 | #include "aos/network/team_number.h" |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 8 | #include "aos/time/time.h" |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 9 | #include "opencv2/features2d.hpp" |
| 10 | #include "opencv2/imgproc.hpp" |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 11 | |
| 12 | DEFINE_uint64(green_delta, 50, |
| 13 | "Required difference between green pixels vs. red and blue"); |
| 14 | DEFINE_bool(use_outdoors, false, |
| 15 | "If true, change thresholds to handle outdoor illumination"); |
| 16 | |
| 17 | namespace y2022 { |
| 18 | namespace vision { |
| 19 | |
| 20 | cv::Mat BlobDetector::ThresholdImage(cv::Mat rgb_image) { |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 21 | cv::Mat binarized_image(cv::Size(rgb_image.cols, rgb_image.rows), CV_8UC1); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 22 | for (int row = 0; row < rgb_image.rows; row++) { |
| 23 | for (int col = 0; col < rgb_image.cols; col++) { |
| 24 | cv::Vec3b pixel = rgb_image.at<cv::Vec3b>(row, col); |
| 25 | uint8_t blue = pixel.val[0]; |
| 26 | uint8_t green = pixel.val[1]; |
| 27 | uint8_t red = pixel.val[2]; |
| 28 | // Simple filter that looks for green pixels sufficiently brigher than |
| 29 | // red and blue |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 30 | if ((green > blue + FLAGS_green_delta) && |
| 31 | (green > red + FLAGS_green_delta)) { |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 32 | binarized_image.at<uint8_t>(row, col) = 255; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 33 | } else { |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 34 | binarized_image.at<uint8_t>(row, col) = 0; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 35 | } |
| 36 | } |
| 37 | } |
| 38 | |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 39 | return binarized_image; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 40 | } |
| 41 | |
| 42 | std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs( |
| 43 | cv::Mat binarized_image) { |
| 44 | // find the contours (blob outlines) |
| 45 | std::vector<std::vector<cv::Point>> contours; |
| 46 | std::vector<cv::Vec4i> hierarchy; |
| 47 | cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP, |
| 48 | cv::CHAIN_APPROX_SIMPLE); |
| 49 | |
| 50 | return contours; |
| 51 | } |
| 52 | |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 53 | std::vector<BlobDetector::BlobStats> BlobDetector::ComputeStats( |
| 54 | std::vector<std::vector<cv::Point>> blobs) { |
| 55 | std::vector<BlobDetector::BlobStats> blob_stats; |
| 56 | for (auto blob : blobs) { |
| 57 | // Make the blob convex before finding bounding box |
| 58 | std::vector<cv::Point> convex_blob; |
| 59 | cv::convexHull(blob, convex_blob); |
| 60 | auto blob_size = cv::boundingRect(convex_blob).size(); |
| 61 | cv::Moments moments = cv::moments(convex_blob); |
| 62 | |
| 63 | const auto centroid = |
| 64 | cv::Point(moments.m10 / moments.m00, moments.m01 / moments.m00); |
| 65 | const double aspect_ratio = |
| 66 | static_cast<double>(blob_size.width) / blob_size.height; |
| 67 | const double area = moments.m00; |
Henry Speiser | e45e7a2 | 2022-02-04 23:17:01 -0800 | [diff] [blame^] | 68 | const size_t num_points = blob.size(); |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 69 | |
Henry Speiser | e45e7a2 | 2022-02-04 23:17:01 -0800 | [diff] [blame^] | 70 | blob_stats.emplace_back( |
| 71 | BlobStats{centroid, aspect_ratio, area, num_points}); |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 72 | } |
| 73 | return blob_stats; |
| 74 | } |
| 75 | |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 76 | namespace { |
| 77 | |
| 78 | // Linear equation in the form ax + by = c |
| 79 | struct Line { |
| 80 | public: |
| 81 | double a, b, c; |
| 82 | |
| 83 | std::optional<cv::Point2d> Intersection(const Line &l) const { |
| 84 | // Use Cramer's rule to solve for the intersection |
| 85 | const double denominator = Determinant(a, b, l.a, l.b); |
| 86 | const double numerator_x = Determinant(c, b, l.c, l.b); |
| 87 | const double numerator_y = Determinant(a, c, l.a, l.c); |
| 88 | |
| 89 | std::optional<cv::Point2d> intersection = std::nullopt; |
| 90 | // Return nullopt if the denominator is 0, meaning the same slopes |
| 91 | if (denominator != 0) { |
| 92 | intersection = |
| 93 | cv::Point2d(numerator_x / denominator, numerator_y / denominator); |
| 94 | } |
| 95 | |
| 96 | return intersection; |
| 97 | } |
| 98 | |
| 99 | private: // Determinant of [[a, b], [c, d]] |
| 100 | static double Determinant(double a, double b, double c, double d) { |
| 101 | return (a * d) - (b * c); |
| 102 | } |
| 103 | }; |
| 104 | |
| 105 | struct Circle { |
| 106 | public: |
| 107 | cv::Point2d center; |
| 108 | double radius; |
| 109 | |
| 110 | static std::optional<Circle> Fit(std::vector<cv::Point2d> centroids) { |
| 111 | CHECK_EQ(centroids.size(), 3ul); |
| 112 | // For the 3 points, we have 3 equations in the form |
| 113 | // (x - h)^2 + (y - k)^2 = r^2 |
| 114 | // Manipulate them to solve for the center and radius |
| 115 | // (x1 - h)^2 + (y1 - k)^2 = r^2 -> |
| 116 | // x1^2 + h^2 - 2x1h + y1^2 + k^2 - 2y1k = r^2 |
| 117 | // Also, (x2 - h)^2 + (y2 - k)^2 = r^2 |
| 118 | // Subtracting these two, we get |
| 119 | // x1^2 - x2^2 - 2h(x1 - x2) + y1^2 - y2^2 - 2k(y1 - y2) = 0 -> |
| 120 | // h(x1 - x2) + k(y1 - y2) = (-x1^2 + x2^2 - y1^2 + y2^2) / -2 |
| 121 | // Doing the same with equations 1 and 3, we get the second linear equation |
| 122 | // h(x1 - x3) + k(y1 - y3) = (-x1^2 + x3^2 - y1^2 + y3^2) / -2 |
| 123 | // Now, we can solve for their intersection and find the center |
| 124 | const auto l = |
| 125 | Line{centroids[0].x - centroids[1].x, centroids[0].y - centroids[1].y, |
| 126 | (-std::pow(centroids[0].x, 2) + std::pow(centroids[1].x, 2) - |
| 127 | std::pow(centroids[0].y, 2) + std::pow(centroids[1].y, 2)) / |
| 128 | -2.0}; |
| 129 | const auto m = |
| 130 | Line{centroids[0].x - centroids[2].x, centroids[0].y - centroids[2].y, |
| 131 | (-std::pow(centroids[0].x, 2) + std::pow(centroids[2].x, 2) - |
| 132 | std::pow(centroids[0].y, 2) + std::pow(centroids[2].y, 2)) / |
| 133 | -2.0}; |
| 134 | const auto center = l.Intersection(m); |
| 135 | |
| 136 | std::optional<Circle> circle = std::nullopt; |
| 137 | if (center) { |
| 138 | // Now find the radius |
| 139 | const double radius = cv::norm(centroids[0] - *center); |
| 140 | circle = Circle{*center, radius}; |
| 141 | } |
| 142 | return circle; |
| 143 | } |
| 144 | |
| 145 | double DistanceTo(cv::Point2d p) const { |
| 146 | // Translate the point so that the circle orgin can be (0, 0) |
| 147 | const auto p_prime = cv::Point2d(p.y - center.y, p.x - center.x); |
| 148 | // Now, the distance is simply the difference between distance from the |
| 149 | // origin to p' and the radius. |
| 150 | return std::abs(cv::norm(p_prime) - radius); |
| 151 | } |
| 152 | |
| 153 | // Inverted because y-coordinates go backwards |
| 154 | bool OnTopHalf(cv::Point2d p) const { return p.y <= center.y; } |
| 155 | }; |
| 156 | |
| 157 | } // namespace |
| 158 | |
| 159 | std::pair<std::vector<std::vector<cv::Point>>, cv::Point> |
| 160 | BlobDetector::FilterBlobs(std::vector<std::vector<cv::Point>> blobs, |
| 161 | std::vector<BlobDetector::BlobStats> blob_stats) { |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 162 | std::vector<std::vector<cv::Point>> filtered_blobs; |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 163 | std::vector<BlobStats> filtered_stats; |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 164 | |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 165 | auto blob_it = blobs.begin(); |
| 166 | auto stats_it = blob_stats.begin(); |
| 167 | while (blob_it < blobs.end() && stats_it < blob_stats.end()) { |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 168 | // To estimate the maximum y, we can figure out the y value of the blobs |
| 169 | // when the camera is the farthest from the target, at the field corner. |
| 170 | // We can solve for the pitch of the blob: |
| 171 | // blob_pitch = atan((height_tape - height_camera) / depth) + camera_pitch |
| 172 | // The triangle with the height of the tape above the camera and the camera |
| 173 | // depth is similar to the one with the focal length in y pixels and the y |
| 174 | // coordinate offset from the center of the image. |
| 175 | // Therefore y_offset = focal_length_y * tan(blob_pitch), and |
| 176 | // y = -(y_offset - offset_y) |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 177 | constexpr int kMaxY = 400; |
| 178 | constexpr double kTapeAspectRatio = 5.0 / 2.0; |
| 179 | constexpr double kAspectRatioThreshold = 1.5; |
| 180 | constexpr double kMinArea = 10; |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 181 | constexpr size_t kMinPoints = 6; |
| 182 | |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 183 | // Remove all blobs that are at the bottom of the image, have a different |
| 184 | // aspect ratio than the tape, or have too little area or points |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 185 | // TODO(milind): modify to take into account that blobs will be on the side. |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 186 | if ((stats_it->centroid.y <= kMaxY) && |
| 187 | (std::abs(kTapeAspectRatio - stats_it->aspect_ratio) < |
| 188 | kAspectRatioThreshold) && |
Henry Speiser | e45e7a2 | 2022-02-04 23:17:01 -0800 | [diff] [blame^] | 189 | (stats_it->area >= kMinArea) && (stats_it->num_points >= kMinPoints)) { |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 190 | filtered_blobs.push_back(*blob_it); |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 191 | filtered_stats.push_back(*stats_it); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 192 | } |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 193 | blob_it++; |
| 194 | stats_it++; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 195 | } |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 196 | |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 197 | // Threshold for mean distance from a blob centroid to a circle. |
| 198 | constexpr double kCircleDistanceThreshold = 5.0; |
| 199 | std::vector<std::vector<cv::Point>> blob_circle; |
| 200 | std::vector<cv::Point2d> centroids; |
| 201 | |
| 202 | // If we see more than this number of blobs after filtering based on |
| 203 | // color/size, the circle fit may detect noise so just return no blobs. |
Milind Upadhyay | 2b4404c | 2022-02-04 21:20:57 -0800 | [diff] [blame] | 204 | constexpr size_t kMinFilteredBlobs = 3; |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 205 | constexpr size_t kMaxFilteredBlobs = 50; |
Milind Upadhyay | 2b4404c | 2022-02-04 21:20:57 -0800 | [diff] [blame] | 206 | if (filtered_blobs.size() >= kMinFilteredBlobs && |
| 207 | filtered_blobs.size() <= kMaxFilteredBlobs) { |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 208 | constexpr size_t kRansacIterations = 15; |
| 209 | for (size_t i = 0; i < kRansacIterations; i++) { |
| 210 | // Pick 3 random blobs and see how many fit on their circle |
| 211 | const size_t j = std::rand() % filtered_blobs.size(); |
| 212 | const size_t k = std::rand() % filtered_blobs.size(); |
| 213 | const size_t l = std::rand() % filtered_blobs.size(); |
| 214 | |
| 215 | // Restart if the random indices clash |
| 216 | if ((j == k) || (j == l) || (k == l)) { |
| 217 | i--; |
| 218 | continue; |
| 219 | } |
| 220 | |
| 221 | std::vector<std::vector<cv::Point>> current_blobs{ |
| 222 | filtered_blobs[j], filtered_blobs[k], filtered_blobs[l]}; |
| 223 | std::vector<cv::Point2d> current_centroids{filtered_stats[j].centroid, |
| 224 | filtered_stats[k].centroid, |
| 225 | filtered_stats[l].centroid}; |
| 226 | const std::optional<Circle> circle = Circle::Fit(current_centroids); |
| 227 | |
| 228 | // Make sure that a circle could be created from the points |
| 229 | if (!circle) { |
| 230 | continue; |
| 231 | } |
| 232 | |
| 233 | // Only try to fit points to this circle if all of these are on the top |
| 234 | // half, like how the blobs should be |
| 235 | if (circle->OnTopHalf(current_centroids[0]) && |
| 236 | circle->OnTopHalf(current_centroids[1]) && |
| 237 | circle->OnTopHalf(current_centroids[2])) { |
| 238 | for (size_t m = 0; m < filtered_blobs.size(); m++) { |
| 239 | // Add this blob to the list if it is close to the circle, is on the |
| 240 | // top half, and isn't one of the other blobs |
| 241 | if ((m != i) && (m != j) && (m != k) && |
| 242 | circle->OnTopHalf(filtered_stats[m].centroid) && |
| 243 | (circle->DistanceTo(filtered_stats[m].centroid) < |
| 244 | kCircleDistanceThreshold)) { |
| 245 | current_blobs.emplace_back(filtered_blobs[m]); |
| 246 | current_centroids.emplace_back(filtered_stats[m].centroid); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | if (current_blobs.size() > blob_circle.size()) { |
| 251 | blob_circle = current_blobs; |
| 252 | centroids = current_centroids; |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | cv::Point avg_centroid(-1, -1); |
| 259 | if (centroids.size() > 0) { |
| 260 | for (auto centroid : centroids) { |
| 261 | avg_centroid.x += centroid.x; |
| 262 | avg_centroid.y += centroid.y; |
| 263 | } |
| 264 | avg_centroid.x /= centroids.size(); |
| 265 | avg_centroid.y /= centroids.size(); |
| 266 | } |
| 267 | |
| 268 | return {blob_circle, avg_centroid}; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 269 | } |
| 270 | |
| 271 | void BlobDetector::DrawBlobs( |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 272 | cv::Mat view_image, |
| 273 | const std::vector<std::vector<cv::Point>> &unfiltered_blobs, |
| 274 | const std::vector<std::vector<cv::Point>> &filtered_blobs, |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 275 | const std::vector<BlobStats> &blob_stats, cv::Point centroid) { |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 276 | CHECK_GT(view_image.cols, 0); |
| 277 | if (unfiltered_blobs.size() > 0) { |
| 278 | // Draw blobs unfilled, with red color border |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 279 | cv::drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), |
| 280 | 0); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 281 | } |
| 282 | |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 283 | cv::drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0), |
| 284 | cv::FILLED); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 285 | |
milind-u | 9219598 | 2022-01-22 20:29:31 -0800 | [diff] [blame] | 286 | // Draw blob centroids |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 287 | for (auto stats : blob_stats) { |
| 288 | cv::circle(view_image, stats.centroid, 2, cv::Scalar(255, 0, 0), |
| 289 | cv::FILLED); |
| 290 | } |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 291 | |
| 292 | // Draw average centroid |
| 293 | cv::circle(view_image, centroid, 3, cv::Scalar(255, 255, 0), cv::FILLED); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 294 | } |
| 295 | |
| 296 | void BlobDetector::ExtractBlobs( |
Henry Speiser | e45e7a2 | 2022-02-04 23:17:01 -0800 | [diff] [blame^] | 297 | cv::Mat rgb_image, cv::Mat &binarized_image, |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 298 | std::vector<std::vector<cv::Point>> &filtered_blobs, |
| 299 | std::vector<std::vector<cv::Point>> &unfiltered_blobs, |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 300 | std::vector<BlobStats> &blob_stats, cv::Point ¢roid) { |
| 301 | auto start = aos::monotonic_clock::now(); |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 302 | binarized_image = ThresholdImage(rgb_image); |
| 303 | unfiltered_blobs = FindBlobs(binarized_image); |
milind-u | 61f21e8 | 2022-01-23 18:34:11 -0800 | [diff] [blame] | 304 | blob_stats = ComputeStats(unfiltered_blobs); |
Milind Upadhyay | e7aa40c | 2022-01-29 22:36:21 -0800 | [diff] [blame] | 305 | auto filtered_pair = FilterBlobs(unfiltered_blobs, blob_stats); |
| 306 | filtered_blobs = filtered_pair.first; |
| 307 | centroid = filtered_pair.second; |
| 308 | auto end = aos::monotonic_clock::now(); |
| 309 | LOG(INFO) << "Blob detection elapsed time: " |
| 310 | << std::chrono::duration<double, std::milli>(end - start).count() |
| 311 | << " ms"; |
Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame] | 312 | } |
| 313 | |
| 314 | } // namespace vision |
| 315 | } // namespace y2022 |