Jim Ostrowski | ff0f5e4 | 2022-01-22 01:35:31 -0800 | [diff] [blame^] | 1 | #include "y2022/vision/blob_detector.h" |
| 2 | |
| 3 | #include <opencv2/imgproc.hpp> |
| 4 | |
| 5 | #include "aos/network/team_number.h" |
| 6 | |
| 7 | DEFINE_uint64(green_delta, 50, |
| 8 | "Required difference between green pixels vs. red and blue"); |
| 9 | DEFINE_bool(use_outdoors, false, |
| 10 | "If true, change thresholds to handle outdoor illumination"); |
| 11 | |
| 12 | namespace y2022 { |
| 13 | namespace vision { |
| 14 | |
| 15 | cv::Mat BlobDetector::ThresholdImage(cv::Mat rgb_image) { |
| 16 | cv::Mat gray_image(cv::Size(rgb_image.cols, rgb_image.rows), CV_8UC1); |
| 17 | for (int row = 0; row < rgb_image.rows; row++) { |
| 18 | for (int col = 0; col < rgb_image.cols; col++) { |
| 19 | cv::Vec3b pixel = rgb_image.at<cv::Vec3b>(row, col); |
| 20 | uint8_t blue = pixel.val[0]; |
| 21 | uint8_t green = pixel.val[1]; |
| 22 | uint8_t red = pixel.val[2]; |
| 23 | // Simple filter that looks for green pixels sufficiently brigher than |
| 24 | // red and blue |
| 25 | if ((green > blue + 30) && (green > red + 50)) { |
| 26 | gray_image.at<uint8_t>(row, col) = 255; |
| 27 | } else { |
| 28 | gray_image.at<uint8_t>(row, col) = 0; |
| 29 | } |
| 30 | } |
| 31 | } |
| 32 | |
| 33 | return gray_image; |
| 34 | } |
| 35 | |
| 36 | std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs( |
| 37 | cv::Mat binarized_image) { |
| 38 | // find the contours (blob outlines) |
| 39 | std::vector<std::vector<cv::Point>> contours; |
| 40 | std::vector<cv::Vec4i> hierarchy; |
| 41 | cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP, |
| 42 | cv::CHAIN_APPROX_SIMPLE); |
| 43 | |
| 44 | return contours; |
| 45 | } |
| 46 | |
| 47 | // Filter blobs to get rid of noise, too large items, etc. |
| 48 | std::vector<std::vector<cv::Point>> BlobDetector::FilterBlobs( |
| 49 | std::vector<std::vector<cv::Point>> blobs) { |
| 50 | // TODO: Put in some filters |
| 51 | |
| 52 | std::vector<std::vector<cv::Point>> filtered_blobs; |
| 53 | for (auto blob : blobs) { |
| 54 | // for now, let's remove all blobs that are at the bottom of the image |
| 55 | if (blob[0].y < 400) { |
| 56 | filtered_blobs.push_back(blob); |
| 57 | } else { |
| 58 | // LOG(INFO) << "Found and removed blob"; |
| 59 | } |
| 60 | } |
| 61 | return filtered_blobs; |
| 62 | } |
| 63 | |
| 64 | void BlobDetector::DrawBlobs( |
| 65 | cv::Mat view_image, std::vector<std::vector<cv::Point>> unfiltered_blobs, |
| 66 | std::vector<std::vector<cv::Point>> filtered_blobs) { |
| 67 | CHECK_GT(view_image.cols, 0); |
| 68 | if (unfiltered_blobs.size() > 0) { |
| 69 | // Draw blobs unfilled, with red color border |
| 70 | drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), 0); |
| 71 | } |
| 72 | |
| 73 | drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0), |
| 74 | cv::FILLED); |
| 75 | } |
| 76 | |
| 77 | std::vector<std::vector<cv::Point>> BlobDetector::ComputeStats( |
| 78 | std::vector<std::vector<cv::Point>> blobs) { |
| 79 | // Placeholder for now for this |
| 80 | // TODO<Jim>: need to compute stats on blobs, like centroid, aspect |
| 81 | // ratio, bounding box |
| 82 | return blobs; |
| 83 | } |
| 84 | |
| 85 | void BlobDetector::ExtractBlobs( |
| 86 | cv::Mat rgb_image, cv::Mat binarized_image, cv::Mat blob_image, |
| 87 | std::vector<std::vector<cv::Point>> &filtered_blobs, |
| 88 | std::vector<std::vector<cv::Point>> &unfiltered_blobs, |
| 89 | std::vector<std::vector<cv::Point>> &blob_stats) { |
| 90 | binarized_image = ThresholdImage(rgb_image); |
| 91 | unfiltered_blobs = FindBlobs(binarized_image); |
| 92 | filtered_blobs = FilterBlobs(unfiltered_blobs); |
| 93 | DrawBlobs(blob_image, unfiltered_blobs, filtered_blobs); |
| 94 | blob_stats = ComputeStats(filtered_blobs); |
| 95 | } |
| 96 | |
| 97 | } // namespace vision |
| 98 | } // namespace y2022 |