Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 3 | from frc971.control_loops.python import control_loop |
| 4 | from frc971.control_loops.python import controls |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 5 | import numpy |
Austin Schuh | dbd6bfa | 2015-02-14 21:25:16 -0800 | [diff] [blame] | 6 | import math |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 7 | import sys |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 8 | from matplotlib import pylab |
| 9 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 10 | import gflags |
| 11 | import glog |
| 12 | |
| 13 | FLAGS = gflags.FLAGS |
| 14 | |
| 15 | gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| 16 | |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 17 | |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 18 | class Arm(control_loop.ControlLoop): |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 19 | def __init__(self, name='Arm', mass=None): |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 20 | super(Arm, self).__init__(name) |
| 21 | # Stall Torque in N m |
| 22 | self.stall_torque = 0.476 |
| 23 | # Stall Current in Amps |
| 24 | self.stall_current = 80.730 |
| 25 | # Free Speed in RPM |
| 26 | self.free_speed = 13906.0 |
| 27 | # Free Current in Amps |
| 28 | self.free_current = 5.820 |
| 29 | # Mass of the arm |
| 30 | if mass is None: |
| 31 | self.mass = 13.0 |
| 32 | else: |
| 33 | self.mass = mass |
| 34 | |
| 35 | # Resistance of the motor |
| 36 | self.R = 12.0 / self.stall_current |
| 37 | # Motor velocity constant |
| 38 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 39 | (12.0 - self.R * self.free_current)) |
| 40 | # Torque constant |
| 41 | self.Kt = self.stall_torque / self.stall_current |
| 42 | # Gear ratio |
| 43 | self.G = (44.0 / 12.0) * (54.0 / 14.0) * (54.0 / 14.0) * (44.0 / 20.0) * (72.0 / 16.0) |
| 44 | # Fridge arm length |
| 45 | self.r = 32 * 0.0254 |
| 46 | # Control loop time step |
| 47 | self.dt = 0.005 |
| 48 | |
| 49 | # Arm moment of inertia |
| 50 | self.J = self.r * self.mass |
| 51 | |
| 52 | # Arm left/right spring constant (N*m / radian) |
Austin Schuh | 0b477d0 | 2015-02-20 22:09:13 -0800 | [diff] [blame] | 53 | self.spring = 100.0 |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 54 | |
| 55 | # State is [average position, average velocity, |
| 56 | # position difference/2, velocity difference/2] |
| 57 | # Position difference is 1 - 2 |
| 58 | # Input is [Voltage 1, Voltage 2] |
| 59 | |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 60 | self.C1 = self.spring / (self.J * 0.5) |
| 61 | self.C2 = self.Kt * self.G / (self.J * 0.5 * self.R) |
| 62 | self.C3 = self.G * self.G * self.Kt / (self.R * self.J * 0.5 * self.Kv) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 63 | |
| 64 | self.A_continuous = numpy.matrix( |
| 65 | [[0, 1, 0, 0], |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 66 | [0, -self.C3, 0, 0], |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 67 | [0, 0, 0, 1], |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 68 | [0, 0, -self.C1 * 2.0, -self.C3]]) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 69 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 70 | glog.debug('Full speed is %f', self.C2 / self.C3 * 12.0) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 71 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 72 | glog.debug('Stall arm difference is %f', 12.0 * self.C2 / self.C1) |
| 73 | glog.debug('Stall arm difference first principles is %f', self.stall_torque * self.G / self.spring) |
Austin Schuh | dbd6bfa | 2015-02-14 21:25:16 -0800 | [diff] [blame] | 74 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 75 | glog.debug('5 degrees of arm error is %f', self.spring / self.r * (math.pi * 5.0 / 180.0)) |
Austin Schuh | dbd6bfa | 2015-02-14 21:25:16 -0800 | [diff] [blame] | 76 | |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 77 | # Start with the unmodified input |
| 78 | self.B_continuous = numpy.matrix( |
| 79 | [[0, 0], |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 80 | [self.C2 / 2.0, self.C2 / 2.0], |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 81 | [0, 0], |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 82 | [self.C2 / 2.0, -self.C2 / 2.0]]) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 83 | |
| 84 | self.C = numpy.matrix([[1, 0, 1, 0], |
| 85 | [1, 0, -1, 0]]) |
| 86 | self.D = numpy.matrix([[0, 0], |
| 87 | [0, 0]]) |
| 88 | |
| 89 | self.A, self.B = self.ContinuousToDiscrete( |
| 90 | self.A_continuous, self.B_continuous, self.dt) |
| 91 | |
Brian Silverman | e18cf50 | 2015-11-28 23:04:43 +0000 | [diff] [blame] | 92 | controllability = controls.ctrb(self.A, self.B) |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 93 | glog.debug('Rank of augmented controllability matrix. %d', numpy.linalg.matrix_rank( |
| 94 | controllability)) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 95 | |
| 96 | q_pos = 0.02 |
| 97 | q_vel = 0.300 |
Austin Schuh | bfb8b24 | 2015-02-16 15:45:22 -0800 | [diff] [blame] | 98 | q_pos_diff = 0.005 |
| 99 | q_vel_diff = 0.13 |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 100 | self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0], |
| 101 | [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0], |
| 102 | [0.0, 0.0, (1.0 / (q_pos_diff ** 2.0)), 0.0], |
| 103 | [0.0, 0.0, 0.0, (1.0 / (q_vel_diff ** 2.0))]]) |
| 104 | |
| 105 | self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0], |
| 106 | [0.0, 1.0 / (12.0 ** 2.0)]]) |
| 107 | self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 108 | glog.debug('Controller\n %s', repr(self.K)) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 109 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 110 | glog.debug('Controller Poles\n %s', |
| 111 | numpy.linalg.eig(self.A - self.B * self.K)[0]) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 112 | |
| 113 | self.rpl = 0.20 |
| 114 | self.ipl = 0.05 |
| 115 | self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| 116 | self.rpl + 1j * self.ipl, |
| 117 | self.rpl - 1j * self.ipl, |
| 118 | self.rpl - 1j * self.ipl]) |
| 119 | |
| 120 | # The box formed by U_min and U_max must encompass all possible values, |
| 121 | # or else Austin's code gets angry. |
| 122 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 123 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 124 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 125 | glog.debug('Observer (Converted to a KF):\n%s', |
| 126 | repr(numpy.linalg.inv(self.A) * self.L)) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 127 | |
| 128 | self.InitializeState() |
| 129 | |
| 130 | |
| 131 | class IntegralArm(Arm): |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 132 | def __init__(self, name='IntegralArm', mass=None): |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 133 | super(IntegralArm, self).__init__(name=name, mass=mass) |
| 134 | |
| 135 | self.A_continuous_unaugmented = self.A_continuous |
| 136 | self.A_continuous = numpy.matrix(numpy.zeros((5, 5))) |
| 137 | self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented |
| 138 | self.A_continuous[1, 4] = self.C2 |
| 139 | |
| 140 | # Start with the unmodified input |
| 141 | self.B_continuous_unaugmented = self.B_continuous |
| 142 | self.B_continuous = numpy.matrix(numpy.zeros((5, 2))) |
| 143 | self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented |
| 144 | |
| 145 | self.C_unaugmented = self.C |
| 146 | self.C = numpy.matrix(numpy.zeros((2, 5))) |
| 147 | self.C[0:2, 0:4] = self.C_unaugmented |
| 148 | |
| 149 | self.A, self.B = self.ContinuousToDiscrete( |
| 150 | self.A_continuous, self.B_continuous, self.dt) |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 151 | glog.debug('A cont: %s', repr(self.A_continuous)) |
| 152 | glog.debug('B cont %s', repr(self.B_continuous)) |
| 153 | glog.debug('A discrete %s', repr(self.A)) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 154 | |
| 155 | q_pos = 0.08 |
| 156 | q_vel = 0.40 |
| 157 | |
| 158 | q_pos_diff = 0.08 |
| 159 | q_vel_diff = 0.40 |
| 160 | q_voltage = 6.0 |
| 161 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0], |
| 162 | [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0], |
| 163 | [0.0, 0.0, (q_pos_diff ** 2.0), 0.0, 0.0], |
| 164 | [0.0, 0.0, 0.0, (q_vel_diff ** 2.0), 0.0], |
| 165 | [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]]) |
| 166 | |
| 167 | r_volts = 0.05 |
| 168 | self.R = numpy.matrix([[(r_volts ** 2.0), 0.0], |
| 169 | [0.0, (r_volts ** 2.0)]]) |
| 170 | |
| 171 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 172 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 173 | |
| 174 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 175 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 176 | |
| 177 | self.K_unaugmented = self.K |
Brian Silverman | 4e55e58 | 2015-11-10 14:16:37 -0500 | [diff] [blame] | 178 | self.K = numpy.matrix(numpy.zeros((2, 5))) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 179 | self.K[0:2, 0:4] = self.K_unaugmented |
Brian Silverman | 4e55e58 | 2015-11-10 14:16:37 -0500 | [diff] [blame] | 180 | self.K[0, 4] = 1 |
| 181 | self.K[1, 4] = 1 |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 182 | glog.debug('Kal: %s', repr(self.KalmanGain)) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 183 | self.L = self.A * self.KalmanGain |
| 184 | |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 185 | self.InitializeState() |
| 186 | |
| 187 | |
| 188 | def CapU(U): |
| 189 | if U[0, 0] - U[1, 0] > 24: |
| 190 | return numpy.matrix([[12], [-12]]) |
| 191 | elif U[0, 0] - U[1, 0] < -24: |
| 192 | return numpy.matrix([[-12], [12]]) |
| 193 | else: |
| 194 | max_u = max(U[0, 0], U[1, 0]) |
| 195 | min_u = min(U[0, 0], U[1, 0]) |
| 196 | if max_u > 12: |
| 197 | return U - (max_u - 12) |
| 198 | if min_u < -12: |
| 199 | return U - (min_u + 12) |
| 200 | return U |
| 201 | |
| 202 | |
| 203 | def run_test(arm, initial_X, goal, max_separation_error=0.01, |
| 204 | show_graph=True, iterations=200, controller_arm=None, |
| 205 | observer_arm=None): |
| 206 | """Runs the arm plant with an initial condition and goal. |
| 207 | |
| 208 | The tests themselves are not terribly sophisticated; I just test for |
| 209 | whether the goal has been reached and whether the separation goes |
| 210 | outside of the initial and goal values by more than max_separation_error. |
| 211 | Prints out something for a failure of either condition and returns |
| 212 | False if tests fail. |
| 213 | Args: |
| 214 | arm: arm object to use. |
| 215 | initial_X: starting state. |
| 216 | goal: goal state. |
| 217 | show_graph: Whether or not to display a graph showing the changing |
| 218 | states and voltages. |
| 219 | iterations: Number of timesteps to run the model for. |
| 220 | controller_arm: arm object to get K from, or None if we should |
| 221 | use arm. |
| 222 | observer_arm: arm object to use for the observer, or None if we should |
| 223 | use the actual state. |
| 224 | """ |
| 225 | |
| 226 | arm.X = initial_X |
| 227 | |
| 228 | if controller_arm is None: |
| 229 | controller_arm = arm |
| 230 | |
| 231 | if observer_arm is not None: |
| 232 | observer_arm.X_hat = initial_X + 0.01 |
| 233 | observer_arm.X_hat = initial_X |
| 234 | |
| 235 | # Various lists for graphing things. |
| 236 | t = [] |
| 237 | x_avg = [] |
| 238 | x_sep = [] |
| 239 | x_hat_avg = [] |
| 240 | x_hat_sep = [] |
| 241 | v_avg = [] |
| 242 | v_sep = [] |
| 243 | u_left = [] |
| 244 | u_right = [] |
| 245 | |
| 246 | sep_plot_gain = 100.0 |
| 247 | |
| 248 | for i in xrange(iterations): |
| 249 | X_hat = arm.X |
| 250 | if observer_arm is not None: |
| 251 | X_hat = observer_arm.X_hat |
| 252 | x_hat_avg.append(observer_arm.X_hat[0, 0]) |
| 253 | x_hat_sep.append(observer_arm.X_hat[2, 0] * sep_plot_gain) |
| 254 | U = controller_arm.K * (goal - X_hat) |
| 255 | U = CapU(U) |
| 256 | x_avg.append(arm.X[0, 0]) |
| 257 | v_avg.append(arm.X[1, 0]) |
| 258 | x_sep.append(arm.X[2, 0] * sep_plot_gain) |
| 259 | v_sep.append(arm.X[3, 0]) |
| 260 | if observer_arm is not None: |
| 261 | observer_arm.PredictObserver(U) |
| 262 | arm.Update(U) |
| 263 | if observer_arm is not None: |
| 264 | observer_arm.Y = arm.Y |
| 265 | observer_arm.CorrectObserver(U) |
| 266 | |
| 267 | t.append(i * arm.dt) |
| 268 | u_left.append(U[0, 0]) |
| 269 | u_right.append(U[1, 0]) |
| 270 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 271 | glog.debug(repr(numpy.linalg.inv(arm.A))) |
| 272 | glog.debug('delta time is %f', arm.dt) |
| 273 | glog.debug('Velocity at t=0 is %f %f %f %f', x_avg[0], v_avg[0], x_sep[0], v_sep[0]) |
| 274 | glog.debug('Velocity at t=1+dt is %f %f %f %f', x_avg[1], v_avg[1], x_sep[1], v_sep[1]) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 275 | |
| 276 | if show_graph: |
| 277 | pylab.subplot(2, 1, 1) |
| 278 | pylab.plot(t, x_avg, label='x avg') |
| 279 | pylab.plot(t, x_sep, label='x sep') |
| 280 | if observer_arm is not None: |
| 281 | pylab.plot(t, x_hat_avg, label='x_hat avg') |
| 282 | pylab.plot(t, x_hat_sep, label='x_hat sep') |
| 283 | pylab.legend() |
| 284 | |
| 285 | pylab.subplot(2, 1, 2) |
| 286 | pylab.plot(t, u_left, label='u left') |
| 287 | pylab.plot(t, u_right, label='u right') |
| 288 | pylab.legend() |
| 289 | pylab.show() |
| 290 | |
| 291 | |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 292 | def run_integral_test(arm, initial_X, goal, observer_arm, disturbance, |
| 293 | max_separation_error=0.01, show_graph=True, |
| 294 | iterations=400): |
| 295 | """Runs the integral control arm plant with an initial condition and goal. |
| 296 | |
| 297 | The tests themselves are not terribly sophisticated; I just test for |
| 298 | whether the goal has been reached and whether the separation goes |
| 299 | outside of the initial and goal values by more than max_separation_error. |
| 300 | Prints out something for a failure of either condition and returns |
| 301 | False if tests fail. |
| 302 | Args: |
| 303 | arm: arm object to use. |
| 304 | initial_X: starting state. |
| 305 | goal: goal state. |
| 306 | observer_arm: arm object to use for the observer. |
| 307 | show_graph: Whether or not to display a graph showing the changing |
| 308 | states and voltages. |
| 309 | iterations: Number of timesteps to run the model for. |
| 310 | disturbance: Voltage missmatch between controller and model. |
| 311 | """ |
| 312 | |
| 313 | arm.X = initial_X |
| 314 | |
| 315 | # Various lists for graphing things. |
| 316 | t = [] |
| 317 | x_avg = [] |
| 318 | x_sep = [] |
| 319 | x_hat_avg = [] |
| 320 | x_hat_sep = [] |
| 321 | v_avg = [] |
| 322 | v_sep = [] |
| 323 | u_left = [] |
| 324 | u_right = [] |
| 325 | u_error = [] |
| 326 | |
| 327 | sep_plot_gain = 100.0 |
| 328 | |
| 329 | unaugmented_goal = goal |
| 330 | goal = numpy.matrix(numpy.zeros((5, 1))) |
| 331 | goal[0:4, 0] = unaugmented_goal |
| 332 | |
| 333 | for i in xrange(iterations): |
| 334 | X_hat = observer_arm.X_hat[0:4] |
| 335 | |
| 336 | x_hat_avg.append(observer_arm.X_hat[0, 0]) |
| 337 | x_hat_sep.append(observer_arm.X_hat[2, 0] * sep_plot_gain) |
| 338 | |
| 339 | U = observer_arm.K * (goal - observer_arm.X_hat) |
| 340 | u_error.append(observer_arm.X_hat[4,0]) |
| 341 | U = CapU(U) |
| 342 | x_avg.append(arm.X[0, 0]) |
| 343 | v_avg.append(arm.X[1, 0]) |
| 344 | x_sep.append(arm.X[2, 0] * sep_plot_gain) |
| 345 | v_sep.append(arm.X[3, 0]) |
| 346 | |
| 347 | observer_arm.PredictObserver(U) |
| 348 | |
| 349 | arm.Update(U + disturbance) |
| 350 | observer_arm.Y = arm.Y |
| 351 | observer_arm.CorrectObserver(U) |
| 352 | |
| 353 | t.append(i * arm.dt) |
| 354 | u_left.append(U[0, 0]) |
| 355 | u_right.append(U[1, 0]) |
| 356 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 357 | glog.debug('End is %f', observer_arm.X_hat[4, 0]) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 358 | |
| 359 | if show_graph: |
| 360 | pylab.subplot(2, 1, 1) |
| 361 | pylab.plot(t, x_avg, label='x avg') |
| 362 | pylab.plot(t, x_sep, label='x sep') |
| 363 | if observer_arm is not None: |
| 364 | pylab.plot(t, x_hat_avg, label='x_hat avg') |
| 365 | pylab.plot(t, x_hat_sep, label='x_hat sep') |
| 366 | pylab.legend() |
| 367 | |
| 368 | pylab.subplot(2, 1, 2) |
| 369 | pylab.plot(t, u_left, label='u left') |
| 370 | pylab.plot(t, u_right, label='u right') |
| 371 | pylab.plot(t, u_error, label='u error') |
| 372 | pylab.legend() |
| 373 | pylab.show() |
| 374 | |
| 375 | |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 376 | def main(argv): |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 377 | if FLAGS.plot: |
| 378 | loaded_mass = 25 |
| 379 | #loaded_mass = 0 |
| 380 | arm = Arm(mass=13 + loaded_mass) |
| 381 | #arm_controller = Arm(mass=13 + 15) |
| 382 | #observer_arm = Arm(mass=13 + 15) |
| 383 | #observer_arm = None |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 384 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 385 | integral_arm = IntegralArm(mass=13 + loaded_mass) |
| 386 | integral_arm.X_hat[0, 0] += 0.02 |
| 387 | integral_arm.X_hat[2, 0] += 0.02 |
| 388 | integral_arm.X_hat[4] = 0 |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 389 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 390 | # Test moving the arm with constant separation. |
| 391 | initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]]) |
| 392 | R = numpy.matrix([[0.0], [0.0], [0.0], [0.0]]) |
| 393 | run_integral_test(arm, initial_X, R, integral_arm, disturbance=2) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 394 | |
| 395 | # Write the generated constants out to a file. |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 396 | if len(argv) != 5: |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 397 | glog.fatal('Expected .h file name and .cc file name for the arm and augmented arm.') |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 398 | else: |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 399 | namespaces = ['y2015', 'control_loops', 'fridge'] |
| 400 | arm = Arm('Arm', mass=13) |
| 401 | loop_writer = control_loop.ControlLoopWriter('Arm', [arm], |
| 402 | namespaces=namespaces) |
| 403 | loop_writer.Write(argv[1], argv[2]) |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 404 | |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 405 | integral_arm = IntegralArm('IntegralArm', mass=13) |
| 406 | loop_writer = control_loop.ControlLoopWriter('IntegralArm', [integral_arm], |
| 407 | namespaces=namespaces) |
| 408 | loop_writer.Write(argv[3], argv[4]) |
Austin Schuh | 8de10c7 | 2015-02-27 23:33:40 -0800 | [diff] [blame] | 409 | |
Austin Schuh | 1a38796 | 2015-01-31 16:36:20 -0800 | [diff] [blame] | 410 | if __name__ == '__main__': |
Austin Schuh | 6c20f20 | 2017-02-18 22:31:44 -0800 | [diff] [blame] | 411 | argv = FLAGS(sys.argv) |
| 412 | glog.init() |
| 413 | sys.exit(main(argv)) |