Austin Schuh | 8c794d5 | 2019-03-03 21:17:37 -0800 | [diff] [blame] | 1 | /*
|
| 2 | #
|
| 3 | # File : gaussian_fit1d.cpp
|
| 4 | # ( C++ source file )
|
| 5 | #
|
| 6 | # Description : Fit a gaussian function on a set of sample points,
|
| 7 | # using the Levenberg-Marquardt algorithm.
|
| 8 | # This file is a part of the CImg Library project.
|
| 9 | # ( http://cimg.eu )
|
| 10 | #
|
| 11 | # Copyright : David Tschumperle
|
| 12 | # ( http://tschumperle.users.greyc.fr/ )
|
| 13 | #
|
| 14 | # License : CeCILL v2.0
|
| 15 | # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
|
| 16 | #
|
| 17 | # This software is governed by the CeCILL license under French law and
|
| 18 | # abiding by the rules of distribution of free software. You can use,
|
| 19 | # modify and/ or redistribute the software under the terms of the CeCILL
|
| 20 | # license as circulated by CEA, CNRS and INRIA at the following URL
|
| 21 | # "http://www.cecill.info".
|
| 22 | #
|
| 23 | # As a counterpart to the access to the source code and rights to copy,
|
| 24 | # modify and redistribute granted by the license, users are provided only
|
| 25 | # with a limited warranty and the software's author, the holder of the
|
| 26 | # economic rights, and the successive licensors have only limited
|
| 27 | # liability.
|
| 28 | #
|
| 29 | # In this respect, the user's attention is drawn to the risks associated
|
| 30 | # with loading, using, modifying and/or developing or reproducing the
|
| 31 | # software by the user in light of its specific status of free software,
|
| 32 | # that may mean that it is complicated to manipulate, and that also
|
| 33 | # therefore means that it is reserved for developers and experienced
|
| 34 | # professionals having in-depth computer knowledge. Users are therefore
|
| 35 | # encouraged to load and test the software's suitability as regards their
|
| 36 | # requirements in conditions enabling the security of their systems and/or
|
| 37 | # data to be ensured and, more generally, to use and operate it in the
|
| 38 | # same conditions as regards security.
|
| 39 | #
|
| 40 | # The fact that you are presently reading this means that you have had
|
| 41 | # knowledge of the CeCILL license and that you accept its terms.
|
| 42 | #
|
| 43 | */
|
| 44 |
|
| 45 | #ifndef cimg_plugin
|
| 46 | #define cimg_plugin "examples/gaussian_fit1d.cpp"
|
| 47 | #include "CImg.h"
|
| 48 | using namespace cimg_library;
|
| 49 | #undef min
|
| 50 | #undef max
|
| 51 |
|
| 52 | // Main procedure
|
| 53 | //----------------
|
| 54 | int main(int argc,char **argv) {
|
| 55 | cimg_usage("Fit gaussian function on sample points, using Levenberg-Marquardt algorithm.");
|
| 56 |
|
| 57 | // Read command line arguments.
|
| 58 | const char *s_params = cimg_option("-p","10,3,4","Amplitude, Mean and Std of the ground truth");
|
| 59 | const unsigned int s_nb = cimg_option("-N",40,"Number of sample points");
|
| 60 | const float s_noise = cimg_option("-n",10.0f,"Pourcentage of noise on the samples points");
|
| 61 | const char *s_xrange = cimg_option("-x","-10,10","X-range allowed for the sample points");
|
| 62 | const char *f_params = cimg_option("-p0",(char*)0,"Amplitude, Mean and Std of the first estimate");
|
| 63 | const float f_lambda0 = cimg_option("-l",100.0f,"Initial damping factor");
|
| 64 | const float f_dlambda = cimg_option("-dl",0.9f,"Damping attenuation");
|
| 65 | float s_xmin = -10, s_xmax = 10, s_amp = 1, s_mean = 1, s_std = 1;
|
| 66 | std::sscanf(s_xrange,"%f%*c%f",&s_xmin,&s_xmax);
|
| 67 | std::sscanf(s_params,"%f%*c%f%*c%f",&s_amp,&s_mean,&s_std);
|
| 68 |
|
| 69 | // Create noisy samples of a Gaussian function.
|
| 70 | const float s_std2 = 2*s_std*s_std, s_fact = s_amp/((float)std::sqrt(2*cimg::PI)*s_std);
|
| 71 | CImg<> samples(s_nb,2);
|
| 72 | cimg_forX(samples,i) {
|
| 73 | const float
|
| 74 | x = (float)(s_xmin + (s_xmax - s_xmin)*cimg::rand()),
|
| 75 | y = s_fact*(float)(1 + s_noise*cimg::grand()/100)*std::exp(-cimg::sqr(x - s_mean)/s_std2);
|
| 76 | samples(i,0) = x;
|
| 77 | samples(i,1) = y;
|
| 78 | }
|
| 79 |
|
| 80 | // Fit Gaussian function on the sample points and display curve iterations.
|
| 81 | CImgDisplay disp(640,480,"Levenberg-Marquardt Gaussian Fitting",0);
|
| 82 | float f_amp = 1, f_mean = 1, f_std = 1, f_lambda = f_lambda0;
|
| 83 | if (f_params) std::sscanf(f_params,"%f%*c%f%*c%f",&f_amp,&f_mean,&f_std);
|
| 84 | else {
|
| 85 | const float& vmax = samples.get_shared_row(1).max();
|
| 86 | float cmax = 0; samples.contains(vmax,cmax);
|
| 87 | f_mean = samples((int)cmax,0);
|
| 88 | f_std = (s_xmax - s_xmin)/10;
|
| 89 | f_amp = vmax*(float)std::sqrt(2*cimg::PI)*f_std;
|
| 90 | }
|
| 91 | CImg<> beta = CImg<>::vector(f_amp,f_mean,f_std);
|
| 92 | for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) {
|
| 93 |
|
| 94 | // Do one iteration of the Levenberg-Marquardt algorithm.
|
| 95 | CImg<> YmF(1,s_nb), J(beta.height(),s_nb);
|
| 96 | const float
|
| 97 | f_amp = beta(0), f_mean = beta(1), f_std = beta(2),
|
| 98 | f_std2 = 2*f_std*f_std, f_fact = (float)std::sqrt(2*cimg::PI)*f_std;
|
| 99 | float f_error = 0;
|
| 100 | cimg_forY(J,i) {
|
| 101 | const float
|
| 102 | x = samples(i,0),
|
| 103 | f_exp = std::exp(-cimg::sqr(x - f_mean)/f_std2),
|
| 104 | delta = samples(i,1) - f_amp*f_exp/f_fact;
|
| 105 | YmF(i) = delta;
|
| 106 | J(0,i) = f_exp/f_fact;
|
| 107 | J(1,i) = f_amp*f_exp/f_fact*(x - f_mean)*2/f_std2;
|
| 108 | J(2,i) = f_amp*f_exp/f_fact*(cimg::sqr(x - f_mean)/(f_std*f_std*f_std));
|
| 109 | f_error+=cimg::sqr(delta);
|
| 110 | }
|
| 111 |
|
| 112 | CImg<> Jt = J.get_transpose(), M = Jt*J;
|
| 113 | cimg_forX(M,x) M(x,x)*=1 + f_lambda;
|
| 114 | beta+=M.get_invert()*Jt*YmF;
|
| 115 | if (beta(0)<=0) beta(0) = 0.1f;
|
| 116 | if (beta(2)<=0) beta(2) = 0.1f;
|
| 117 | f_lambda*=f_dlambda;
|
| 118 |
|
| 119 | // Display fitting curves.
|
| 120 | const unsigned char black[] = { 0,0,0 }, gray[] = { 228,228,228 };
|
| 121 | CImg<unsigned char>(disp.width(),disp.height(),1,3,255).
|
| 122 | draw_gaussfit(samples,beta(0),beta(1),beta(2),s_amp,s_mean,s_std).
|
| 123 | draw_rectangle(5,7,150,100,gray,0.9f).draw_rectangle(5,7,150,100,black,1,~0U).
|
| 124 | draw_text(10,10,"Iteration : %d",black,0,1,13,iter).
|
| 125 | draw_text(10,25,"Amplitude : %.4g (%.4g)",black,0,1,13,beta(0),s_amp).
|
| 126 | draw_text(10,40,"Mean : %.4g (%.4g)",black,0,1,13,beta(1),s_mean).
|
| 127 | draw_text(10,55,"Std : %.4g (%.4g)",black,0,1,13,beta(2),s_std).
|
| 128 | draw_text(10,70,"Error : %.4g",black,0,1,13,std::sqrt(f_error)).
|
| 129 | draw_text(10,85,"Lambda : %.4g",black,0,1,13,f_lambda).
|
| 130 | display(disp.resize(false).wait(20));
|
| 131 | }
|
| 132 |
|
| 133 | return 0;
|
| 134 | }
|
| 135 |
|
| 136 | #else
|
| 137 |
|
| 138 | // Draw sample points, ideal and fitted gaussian curves on the instance image.
|
| 139 | // (defined as a CImg plug-in function).
|
| 140 | template<typename t>
|
| 141 | CImg<T>& draw_gaussfit(const CImg<t>& samples,
|
| 142 | const float f_amp, const float f_mean, const float f_std,
|
| 143 | const float i_amp, const float i_mean, const float i_std) {
|
| 144 | if (is_empty()) return *this;
|
| 145 | const unsigned char black[] = { 0,0,0 }, green[] = { 10,155,20 }, orange[] = { 155,20,0 }, purple[] = { 200,10,200 };
|
| 146 | float
|
| 147 | xmin, xmax = samples.get_shared_row(0).max_min(xmin), deltax = xmax - xmin,
|
| 148 | ymin, ymax = samples.get_shared_row(1).max_min(ymin), deltay = ymax - ymin;
|
| 149 | xmin-=0.2f*deltax; xmax+=0.2f*deltax; ymin-=0.2f*deltay; ymax+=0.2f*deltay;
|
| 150 | deltax = xmax - xmin; deltay = ymax - ymin;
|
| 151 | draw_grid(64,64,0,0,false,false,black,0.3f,0x55555555,0x55555555).draw_axes(xmin,xmax,ymax,ymin,black,0.8f);
|
| 152 | CImg<> nsamples(samples);
|
| 153 | (nsamples.get_shared_row(0)-=xmin)*=width()/deltax;
|
| 154 | (nsamples.get_shared_row(1)-=ymax)*=-height()/deltay;
|
| 155 | cimg_forX(nsamples,i) draw_circle((int)nsamples(i,0),(int)nsamples(i,1),3,orange,1,~0U);
|
| 156 | CImg<int> truth(width(),2), fit(width(),2);
|
| 157 | const float
|
| 158 | i_std2 = 2*i_std*i_std, i_fact = i_amp/((float)std::sqrt(2*cimg::PI)*i_std),
|
| 159 | f_std2 = 2*f_std*f_std, f_fact = f_amp/((float)std::sqrt(2*cimg::PI)*f_std);
|
| 160 | cimg_forX(*this,x) {
|
| 161 | const float
|
| 162 | x0 = xmin + x*deltax/width(),
|
| 163 | ys0 = i_fact*std::exp(-cimg::sqr(x0 - i_mean)/i_std2),
|
| 164 | yf0 = f_fact*std::exp(-cimg::sqr(x0 - f_mean)/f_std2);
|
| 165 | fit(x,0) = truth(x,0) = x;
|
| 166 | truth(x,1) = (int)((ymax - ys0)*height()/deltay);
|
| 167 | fit(x,1) = (int)((ymax - yf0)*height()/deltay);
|
| 168 | }
|
| 169 | return draw_line(truth,green,0.7f,0xCCCCCCCC).draw_line(fit,purple);
|
| 170 | }
|
| 171 |
|
| 172 | #endif
|