Squashed 'third_party/cimg/' content from commit 4b66369

Change-Id: I7454d9107a08dba899fd4659731733049165ae0a
git-subtree-dir: third_party/cimg
git-subtree-split: 4b66369ab4e34a46119d6c43e9adce061bb40f4b
diff --git a/examples/gaussian_fit1d.cpp b/examples/gaussian_fit1d.cpp
new file mode 100644
index 0000000..352cc82
--- /dev/null
+++ b/examples/gaussian_fit1d.cpp
@@ -0,0 +1,172 @@
+/*

+ #

+ #  File        : gaussian_fit1d.cpp

+ #                ( C++ source file )

+ #

+ #  Description : Fit a gaussian function on a set of sample points,

+ #                using the Levenberg-Marquardt algorithm.

+ #                This file is a part of the CImg Library project.

+ #                ( http://cimg.eu )

+ #

+ #  Copyright   : David Tschumperle

+ #                ( http://tschumperle.users.greyc.fr/ )

+ #

+ #  License     : CeCILL v2.0

+ #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )

+ #

+ #  This software is governed by the CeCILL  license under French law and

+ #  abiding by the rules of distribution of free software.  You can  use,

+ #  modify and/ or redistribute the software under the terms of the CeCILL

+ #  license as circulated by CEA, CNRS and INRIA at the following URL

+ #  "http://www.cecill.info".

+ #

+ #  As a counterpart to the access to the source code and  rights to copy,

+ #  modify and redistribute granted by the license, users are provided only

+ #  with a limited warranty  and the software's author,  the holder of the

+ #  economic rights,  and the successive licensors  have only  limited

+ #  liability.

+ #

+ #  In this respect, the user's attention is drawn to the risks associated

+ #  with loading,  using,  modifying and/or developing or reproducing the

+ #  software by the user in light of its specific status of free software,

+ #  that may mean  that it is complicated to manipulate,  and  that  also

+ #  therefore means  that it is reserved for developers  and  experienced

+ #  professionals having in-depth computer knowledge. Users are therefore

+ #  encouraged to load and test the software's suitability as regards their

+ #  requirements in conditions enabling the security of their systems and/or

+ #  data to be ensured and,  more generally, to use and operate it in the

+ #  same conditions as regards security.

+ #

+ #  The fact that you are presently reading this means that you have had

+ #  knowledge of the CeCILL license and that you accept its terms.

+ #

+*/

+

+#ifndef cimg_plugin

+#define cimg_plugin "examples/gaussian_fit1d.cpp"

+#include "CImg.h"

+using namespace cimg_library;

+#undef min

+#undef max

+

+// Main procedure

+//----------------

+int main(int argc,char **argv) {

+  cimg_usage("Fit gaussian function on sample points, using Levenberg-Marquardt algorithm.");

+

+  // Read command line arguments.

+  const char *s_params = cimg_option("-p","10,3,4","Amplitude, Mean and Std of the ground truth");

+  const unsigned int s_nb = cimg_option("-N",40,"Number of sample points");

+  const float s_noise = cimg_option("-n",10.0f,"Pourcentage of noise on the samples points");

+  const char *s_xrange = cimg_option("-x","-10,10","X-range allowed for the sample points");

+  const char *f_params = cimg_option("-p0",(char*)0,"Amplitude, Mean and Std of the first estimate");

+  const float f_lambda0 = cimg_option("-l",100.0f,"Initial damping factor");

+  const float f_dlambda = cimg_option("-dl",0.9f,"Damping attenuation");

+  float s_xmin = -10, s_xmax = 10, s_amp = 1, s_mean = 1, s_std = 1;

+  std::sscanf(s_xrange,"%f%*c%f",&s_xmin,&s_xmax);

+  std::sscanf(s_params,"%f%*c%f%*c%f",&s_amp,&s_mean,&s_std);

+

+  // Create noisy samples of a Gaussian function.

+  const float s_std2 = 2*s_std*s_std, s_fact = s_amp/((float)std::sqrt(2*cimg::PI)*s_std);

+  CImg<> samples(s_nb,2);

+  cimg_forX(samples,i) {

+    const float

+      x = (float)(s_xmin + (s_xmax - s_xmin)*cimg::rand()),

+      y = s_fact*(float)(1 + s_noise*cimg::grand()/100)*std::exp(-cimg::sqr(x - s_mean)/s_std2);

+    samples(i,0) = x;

+    samples(i,1) = y;

+  }

+

+  // Fit Gaussian function on the sample points and display curve iterations.

+  CImgDisplay disp(640,480,"Levenberg-Marquardt Gaussian Fitting",0);

+  float f_amp = 1, f_mean = 1, f_std = 1, f_lambda = f_lambda0;

+  if (f_params) std::sscanf(f_params,"%f%*c%f%*c%f",&f_amp,&f_mean,&f_std);

+  else {

+    const float& vmax = samples.get_shared_row(1).max();

+    float cmax = 0; samples.contains(vmax,cmax);

+    f_mean = samples((int)cmax,0);

+    f_std = (s_xmax - s_xmin)/10;

+    f_amp = vmax*(float)std::sqrt(2*cimg::PI)*f_std;

+  }

+  CImg<> beta = CImg<>::vector(f_amp,f_mean,f_std);

+  for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) {

+

+    // Do one iteration of the Levenberg-Marquardt algorithm.

+    CImg<> YmF(1,s_nb), J(beta.height(),s_nb);

+    const float

+      f_amp = beta(0), f_mean = beta(1), f_std = beta(2),

+      f_std2 = 2*f_std*f_std, f_fact = (float)std::sqrt(2*cimg::PI)*f_std;

+    float f_error = 0;

+    cimg_forY(J,i) {

+      const float

+        x = samples(i,0),

+        f_exp = std::exp(-cimg::sqr(x - f_mean)/f_std2),

+        delta = samples(i,1) - f_amp*f_exp/f_fact;

+      YmF(i) = delta;

+      J(0,i) = f_exp/f_fact;

+      J(1,i) = f_amp*f_exp/f_fact*(x - f_mean)*2/f_std2;

+      J(2,i) = f_amp*f_exp/f_fact*(cimg::sqr(x - f_mean)/(f_std*f_std*f_std));

+      f_error+=cimg::sqr(delta);

+    }

+

+    CImg<> Jt = J.get_transpose(), M = Jt*J;

+    cimg_forX(M,x) M(x,x)*=1 + f_lambda;

+    beta+=M.get_invert()*Jt*YmF;

+    if (beta(0)<=0) beta(0) = 0.1f;

+    if (beta(2)<=0) beta(2) = 0.1f;

+    f_lambda*=f_dlambda;

+

+    // Display fitting curves.

+    const unsigned char black[] = { 0,0,0 }, gray[] = { 228,228,228 };

+    CImg<unsigned char>(disp.width(),disp.height(),1,3,255).

+      draw_gaussfit(samples,beta(0),beta(1),beta(2),s_amp,s_mean,s_std).

+      draw_rectangle(5,7,150,100,gray,0.9f).draw_rectangle(5,7,150,100,black,1,~0U).

+      draw_text(10,10,"Iteration : %d",black,0,1,13,iter).

+      draw_text(10,25,"Amplitude : %.4g (%.4g)",black,0,1,13,beta(0),s_amp).

+      draw_text(10,40,"Mean : %.4g (%.4g)",black,0,1,13,beta(1),s_mean).

+      draw_text(10,55,"Std : %.4g (%.4g)",black,0,1,13,beta(2),s_std).

+      draw_text(10,70,"Error : %.4g",black,0,1,13,std::sqrt(f_error)).

+      draw_text(10,85,"Lambda : %.4g",black,0,1,13,f_lambda).

+      display(disp.resize(false).wait(20));

+  }

+

+  return 0;

+}

+

+#else

+

+// Draw sample points, ideal and fitted gaussian curves on the instance image.

+// (defined as a CImg plug-in function).

+template<typename t>

+CImg<T>& draw_gaussfit(const CImg<t>& samples,

+                       const float f_amp, const float f_mean, const float f_std,

+                       const float i_amp, const float i_mean, const float i_std) {

+  if (is_empty()) return *this;

+  const unsigned char black[] = { 0,0,0 }, green[] = { 10,155,20 }, orange[] = { 155,20,0 }, purple[] = { 200,10,200 };

+  float

+    xmin, xmax = samples.get_shared_row(0).max_min(xmin), deltax = xmax - xmin,

+    ymin, ymax = samples.get_shared_row(1).max_min(ymin), deltay = ymax - ymin;

+  xmin-=0.2f*deltax; xmax+=0.2f*deltax; ymin-=0.2f*deltay; ymax+=0.2f*deltay;

+  deltax = xmax - xmin; deltay = ymax - ymin;

+  draw_grid(64,64,0,0,false,false,black,0.3f,0x55555555,0x55555555).draw_axes(xmin,xmax,ymax,ymin,black,0.8f);

+  CImg<> nsamples(samples);

+  (nsamples.get_shared_row(0)-=xmin)*=width()/deltax;

+  (nsamples.get_shared_row(1)-=ymax)*=-height()/deltay;

+  cimg_forX(nsamples,i) draw_circle((int)nsamples(i,0),(int)nsamples(i,1),3,orange,1,~0U);

+  CImg<int> truth(width(),2), fit(width(),2);

+  const float

+    i_std2 = 2*i_std*i_std, i_fact = i_amp/((float)std::sqrt(2*cimg::PI)*i_std),

+    f_std2 = 2*f_std*f_std, f_fact = f_amp/((float)std::sqrt(2*cimg::PI)*f_std);

+  cimg_forX(*this,x) {

+    const float

+      x0 = xmin + x*deltax/width(),

+      ys0 = i_fact*std::exp(-cimg::sqr(x0 - i_mean)/i_std2),

+      yf0 = f_fact*std::exp(-cimg::sqr(x0 - f_mean)/f_std2);

+    fit(x,0) = truth(x,0) = x;

+    truth(x,1) = (int)((ymax - ys0)*height()/deltay);

+    fit(x,1) = (int)((ymax - yf0)*height()/deltay);

+  }

+  return draw_line(truth,green,0.7f,0xCCCCCCCC).draw_line(fit,purple);

+}

+

+#endif