/* | |
# | |
# File : gaussian_fit1d.cpp | |
# ( C++ source file ) | |
# | |
# Description : Fit a gaussian function on a set of sample points, | |
# using the Levenberg-Marquardt algorithm. | |
# This file is a part of the CImg Library project. | |
# ( http://cimg.eu ) | |
# | |
# Copyright : David Tschumperle | |
# ( http://tschumperle.users.greyc.fr/ ) | |
# | |
# License : CeCILL v2.0 | |
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) | |
# | |
# This software is governed by the CeCILL license under French law and | |
# abiding by the rules of distribution of free software. You can use, | |
# modify and/ or redistribute the software under the terms of the CeCILL | |
# license as circulated by CEA, CNRS and INRIA at the following URL | |
# "http://www.cecill.info". | |
# | |
# As a counterpart to the access to the source code and rights to copy, | |
# modify and redistribute granted by the license, users are provided only | |
# with a limited warranty and the software's author, the holder of the | |
# economic rights, and the successive licensors have only limited | |
# liability. | |
# | |
# In this respect, the user's attention is drawn to the risks associated | |
# with loading, using, modifying and/or developing or reproducing the | |
# software by the user in light of its specific status of free software, | |
# that may mean that it is complicated to manipulate, and that also | |
# therefore means that it is reserved for developers and experienced | |
# professionals having in-depth computer knowledge. Users are therefore | |
# encouraged to load and test the software's suitability as regards their | |
# requirements in conditions enabling the security of their systems and/or | |
# data to be ensured and, more generally, to use and operate it in the | |
# same conditions as regards security. | |
# | |
# The fact that you are presently reading this means that you have had | |
# knowledge of the CeCILL license and that you accept its terms. | |
# | |
*/ | |
#ifndef cimg_plugin | |
#define cimg_plugin "examples/gaussian_fit1d.cpp" | |
#include "CImg.h" | |
using namespace cimg_library; | |
#undef min | |
#undef max | |
// Main procedure | |
//---------------- | |
int main(int argc,char **argv) { | |
cimg_usage("Fit gaussian function on sample points, using Levenberg-Marquardt algorithm."); | |
// Read command line arguments. | |
const char *s_params = cimg_option("-p","10,3,4","Amplitude, Mean and Std of the ground truth"); | |
const unsigned int s_nb = cimg_option("-N",40,"Number of sample points"); | |
const float s_noise = cimg_option("-n",10.0f,"Pourcentage of noise on the samples points"); | |
const char *s_xrange = cimg_option("-x","-10,10","X-range allowed for the sample points"); | |
const char *f_params = cimg_option("-p0",(char*)0,"Amplitude, Mean and Std of the first estimate"); | |
const float f_lambda0 = cimg_option("-l",100.0f,"Initial damping factor"); | |
const float f_dlambda = cimg_option("-dl",0.9f,"Damping attenuation"); | |
float s_xmin = -10, s_xmax = 10, s_amp = 1, s_mean = 1, s_std = 1; | |
std::sscanf(s_xrange,"%f%*c%f",&s_xmin,&s_xmax); | |
std::sscanf(s_params,"%f%*c%f%*c%f",&s_amp,&s_mean,&s_std); | |
// Create noisy samples of a Gaussian function. | |
const float s_std2 = 2*s_std*s_std, s_fact = s_amp/((float)std::sqrt(2*cimg::PI)*s_std); | |
CImg<> samples(s_nb,2); | |
cimg_forX(samples,i) { | |
const float | |
x = (float)(s_xmin + (s_xmax - s_xmin)*cimg::rand()), | |
y = s_fact*(float)(1 + s_noise*cimg::grand()/100)*std::exp(-cimg::sqr(x - s_mean)/s_std2); | |
samples(i,0) = x; | |
samples(i,1) = y; | |
} | |
// Fit Gaussian function on the sample points and display curve iterations. | |
CImgDisplay disp(640,480,"Levenberg-Marquardt Gaussian Fitting",0); | |
float f_amp = 1, f_mean = 1, f_std = 1, f_lambda = f_lambda0; | |
if (f_params) std::sscanf(f_params,"%f%*c%f%*c%f",&f_amp,&f_mean,&f_std); | |
else { | |
const float& vmax = samples.get_shared_row(1).max(); | |
float cmax = 0; samples.contains(vmax,cmax); | |
f_mean = samples((int)cmax,0); | |
f_std = (s_xmax - s_xmin)/10; | |
f_amp = vmax*(float)std::sqrt(2*cimg::PI)*f_std; | |
} | |
CImg<> beta = CImg<>::vector(f_amp,f_mean,f_std); | |
for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) { | |
// Do one iteration of the Levenberg-Marquardt algorithm. | |
CImg<> YmF(1,s_nb), J(beta.height(),s_nb); | |
const float | |
f_amp = beta(0), f_mean = beta(1), f_std = beta(2), | |
f_std2 = 2*f_std*f_std, f_fact = (float)std::sqrt(2*cimg::PI)*f_std; | |
float f_error = 0; | |
cimg_forY(J,i) { | |
const float | |
x = samples(i,0), | |
f_exp = std::exp(-cimg::sqr(x - f_mean)/f_std2), | |
delta = samples(i,1) - f_amp*f_exp/f_fact; | |
YmF(i) = delta; | |
J(0,i) = f_exp/f_fact; | |
J(1,i) = f_amp*f_exp/f_fact*(x - f_mean)*2/f_std2; | |
J(2,i) = f_amp*f_exp/f_fact*(cimg::sqr(x - f_mean)/(f_std*f_std*f_std)); | |
f_error+=cimg::sqr(delta); | |
} | |
CImg<> Jt = J.get_transpose(), M = Jt*J; | |
cimg_forX(M,x) M(x,x)*=1 + f_lambda; | |
beta+=M.get_invert()*Jt*YmF; | |
if (beta(0)<=0) beta(0) = 0.1f; | |
if (beta(2)<=0) beta(2) = 0.1f; | |
f_lambda*=f_dlambda; | |
// Display fitting curves. | |
const unsigned char black[] = { 0,0,0 }, gray[] = { 228,228,228 }; | |
CImg<unsigned char>(disp.width(),disp.height(),1,3,255). | |
draw_gaussfit(samples,beta(0),beta(1),beta(2),s_amp,s_mean,s_std). | |
draw_rectangle(5,7,150,100,gray,0.9f).draw_rectangle(5,7,150,100,black,1,~0U). | |
draw_text(10,10,"Iteration : %d",black,0,1,13,iter). | |
draw_text(10,25,"Amplitude : %.4g (%.4g)",black,0,1,13,beta(0),s_amp). | |
draw_text(10,40,"Mean : %.4g (%.4g)",black,0,1,13,beta(1),s_mean). | |
draw_text(10,55,"Std : %.4g (%.4g)",black,0,1,13,beta(2),s_std). | |
draw_text(10,70,"Error : %.4g",black,0,1,13,std::sqrt(f_error)). | |
draw_text(10,85,"Lambda : %.4g",black,0,1,13,f_lambda). | |
display(disp.resize(false).wait(20)); | |
} | |
return 0; | |
} | |
#else | |
// Draw sample points, ideal and fitted gaussian curves on the instance image. | |
// (defined as a CImg plug-in function). | |
template<typename t> | |
CImg<T>& draw_gaussfit(const CImg<t>& samples, | |
const float f_amp, const float f_mean, const float f_std, | |
const float i_amp, const float i_mean, const float i_std) { | |
if (is_empty()) return *this; | |
const unsigned char black[] = { 0,0,0 }, green[] = { 10,155,20 }, orange[] = { 155,20,0 }, purple[] = { 200,10,200 }; | |
float | |
xmin, xmax = samples.get_shared_row(0).max_min(xmin), deltax = xmax - xmin, | |
ymin, ymax = samples.get_shared_row(1).max_min(ymin), deltay = ymax - ymin; | |
xmin-=0.2f*deltax; xmax+=0.2f*deltax; ymin-=0.2f*deltay; ymax+=0.2f*deltay; | |
deltax = xmax - xmin; deltay = ymax - ymin; | |
draw_grid(64,64,0,0,false,false,black,0.3f,0x55555555,0x55555555).draw_axes(xmin,xmax,ymax,ymin,black,0.8f); | |
CImg<> nsamples(samples); | |
(nsamples.get_shared_row(0)-=xmin)*=width()/deltax; | |
(nsamples.get_shared_row(1)-=ymax)*=-height()/deltay; | |
cimg_forX(nsamples,i) draw_circle((int)nsamples(i,0),(int)nsamples(i,1),3,orange,1,~0U); | |
CImg<int> truth(width(),2), fit(width(),2); | |
const float | |
i_std2 = 2*i_std*i_std, i_fact = i_amp/((float)std::sqrt(2*cimg::PI)*i_std), | |
f_std2 = 2*f_std*f_std, f_fact = f_amp/((float)std::sqrt(2*cimg::PI)*f_std); | |
cimg_forX(*this,x) { | |
const float | |
x0 = xmin + x*deltax/width(), | |
ys0 = i_fact*std::exp(-cimg::sqr(x0 - i_mean)/i_std2), | |
yf0 = f_fact*std::exp(-cimg::sqr(x0 - f_mean)/f_std2); | |
fit(x,0) = truth(x,0) = x; | |
truth(x,1) = (int)((ymax - ys0)*height()/deltay); | |
fit(x,1) = (int)((ymax - yf0)*height()/deltay); | |
} | |
return draw_line(truth,green,0.7f,0xCCCCCCCC).draw_line(fit,purple); | |
} | |
#endif |