blob: 2a833b0a48db7a64703e5bc8a25fff36d32825c0 [file] [log] [blame]
Austin Schuh189376f2018-12-20 22:11:15 +11001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_EULERSYSTEM_H
11#define EIGEN_EULERSYSTEM_H
12
13namespace Eigen
14{
Austin Schuhc55b0172022-02-20 17:52:35 -080015 // Forward declarations
Austin Schuh189376f2018-12-20 22:11:15 +110016 template <typename _Scalar, class _System>
17 class EulerAngles;
18
19 namespace internal
20 {
Austin Schuhc55b0172022-02-20 17:52:35 -080021 // TODO: Add this trait to the Eigen internal API?
Austin Schuh189376f2018-12-20 22:11:15 +110022 template <int Num, bool IsPositive = (Num > 0)>
23 struct Abs
24 {
25 enum { value = Num };
26 };
27
28 template <int Num>
29 struct Abs<Num, false>
30 {
31 enum { value = -Num };
32 };
33
34 template <int Axis>
35 struct IsValidAxis
36 {
37 enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
38 };
Austin Schuhc55b0172022-02-20 17:52:35 -080039
40 template<typename System,
41 typename Other,
42 int OtherRows=Other::RowsAtCompileTime,
43 int OtherCols=Other::ColsAtCompileTime>
44 struct eulerangles_assign_impl;
Austin Schuh189376f2018-12-20 22:11:15 +110045 }
46
47 #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
48
49 /** \brief Representation of a fixed signed rotation axis for EulerSystem.
50 *
51 * \ingroup EulerAngles_Module
52 *
53 * Values here represent:
54 * - The axis of the rotation: X, Y or Z.
55 * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
56 *
57 * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
58 *
59 * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
60 */
61 enum EulerAxis
62 {
63 EULER_X = 1, /*!< the X axis */
64 EULER_Y = 2, /*!< the Y axis */
65 EULER_Z = 3 /*!< the Z axis */
66 };
67
68 /** \class EulerSystem
69 *
70 * \ingroup EulerAngles_Module
71 *
72 * \brief Represents a fixed Euler rotation system.
73 *
74 * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
75 *
76 * You can use this class to get two things:
77 * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
Austin Schuhc55b0172022-02-20 17:52:35 -080078 * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
Austin Schuh189376f2018-12-20 22:11:15 +110079 *
80 * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
81 * This meta-class store constantly those signed axes. (see \ref EulerAxis)
82 *
83 * ### Types of Euler systems ###
84 *
85 * All and only valid 3 dimension Euler rotation over standard
86 * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
87 * - all axes X, Y, Z in each valid order (see below what order is valid)
88 * - rotation over the axis is supported both over the positive and negative directions.
Austin Schuhc55b0172022-02-20 17:52:35 -080089 * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
Austin Schuh189376f2018-12-20 22:11:15 +110090 *
91 * Since EulerSystem support both positive and negative directions,
92 * you may call this rotation distinction in other names:
93 * - _right handed_ or _left handed_
94 * - _counterclockwise_ or _clockwise_
95 *
96 * Notice all axed combination are valid, and would trigger a static assertion.
97 * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
98 * This yield two and only two classes:
Austin Schuhc55b0172022-02-20 17:52:35 -080099 * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
Austin Schuh189376f2018-12-20 22:11:15 +1100100 * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
101 * and the second is different, e.g. {X,Y,X}
102 *
103 * ### Intrinsic vs extrinsic Euler systems ###
104 *
105 * Only intrinsic Euler systems are supported for simplicity.
106 * If you want to use extrinsic Euler systems,
107 * just use the equal intrinsic opposite order for axes and angles.
108 * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
109 *
110 * ### Convenient user typedefs ###
111 *
112 * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
113 * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
114 *
115 * ### Additional reading ###
116 *
117 * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
118 *
119 * \tparam _AlphaAxis the first fixed EulerAxis
120 *
Austin Schuhc55b0172022-02-20 17:52:35 -0800121 * \tparam _BetaAxis the second fixed EulerAxis
Austin Schuh189376f2018-12-20 22:11:15 +1100122 *
Austin Schuhc55b0172022-02-20 17:52:35 -0800123 * \tparam _GammaAxis the third fixed EulerAxis
Austin Schuh189376f2018-12-20 22:11:15 +1100124 */
125 template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
126 class EulerSystem
127 {
128 public:
129 // It's defined this way and not as enum, because I think
130 // that enum is not guerantee to support negative numbers
131
132 /** The first rotation axis */
133 static const int AlphaAxis = _AlphaAxis;
134
135 /** The second rotation axis */
136 static const int BetaAxis = _BetaAxis;
137
138 /** The third rotation axis */
139 static const int GammaAxis = _GammaAxis;
140
141 enum
142 {
143 AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
144 BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
145 GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
146
Austin Schuhc55b0172022-02-20 17:52:35 -0800147 IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
148 IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
149 IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
Austin Schuh189376f2018-12-20 22:11:15 +1100150
Austin Schuhc55b0172022-02-20 17:52:35 -0800151 // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
152 // by Z, or Z is followed by X; otherwise it is odd.
153 IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
154 IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
155
156 IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
Austin Schuh189376f2018-12-20 22:11:15 +1100157 };
158
159 private:
160
161 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
162 ALPHA_AXIS_IS_INVALID);
163
164 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
165 BETA_AXIS_IS_INVALID);
166
167 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
168 GAMMA_AXIS_IS_INVALID);
169
170 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
171 ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
172
173 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
174 BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
175
Austin Schuhc55b0172022-02-20 17:52:35 -0800176 static const int
Austin Schuh189376f2018-12-20 22:11:15 +1100177 // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
178 // They are used in this class converters.
179 // They are always different from each other, and their possible values are: 0, 1, or 2.
Austin Schuhc55b0172022-02-20 17:52:35 -0800180 I_ = AlphaAxisAbs - 1,
181 J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
182 K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
183 ;
Austin Schuh189376f2018-12-20 22:11:15 +1100184
185 // TODO: Get @mat parameter in form that avoids double evaluation.
186 template <typename Derived>
187 static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
188 {
189 using std::atan2;
Austin Schuhc55b0172022-02-20 17:52:35 -0800190 using std::sqrt;
Austin Schuh189376f2018-12-20 22:11:15 +1100191
192 typedef typename Derived::Scalar Scalar;
Austin Schuhc55b0172022-02-20 17:52:35 -0800193
194 const Scalar plusMinus = IsEven? 1 : -1;
195 const Scalar minusPlus = IsOdd? 1 : -1;
196
197 const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
198 res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
199
200 // There is a singularity when cos(beta) == 0
201 if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
202 res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
203 res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
Austin Schuh189376f2018-12-20 22:11:15 +1100204 }
Austin Schuhc55b0172022-02-20 17:52:35 -0800205 else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1
206 Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma
207 Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma)
208 Scalar alphaPlusMinusGamma = atan2(spos, cpos);
209 res[0] = alphaPlusMinusGamma;
210 res[2] = 0;
211 }
212 else {// cos(beta) == 0 and sin(beta) == -1
213 Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma)
214 Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_); // 2*cos(alpha + minusPlus*gamma)
215 Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
216 res[0] = alphaMinusPlusBeta;
217 res[2] = 0;
218 }
Austin Schuh189376f2018-12-20 22:11:15 +1100219 }
220
221 template <typename Derived>
Austin Schuhc55b0172022-02-20 17:52:35 -0800222 static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
223 const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
Austin Schuh189376f2018-12-20 22:11:15 +1100224 {
225 using std::atan2;
Austin Schuhc55b0172022-02-20 17:52:35 -0800226 using std::sqrt;
Austin Schuh189376f2018-12-20 22:11:15 +1100227
228 typedef typename Derived::Scalar Scalar;
Austin Schuh189376f2018-12-20 22:11:15 +1100229
Austin Schuhc55b0172022-02-20 17:52:35 -0800230 const Scalar plusMinus = IsEven? 1 : -1;
231 const Scalar minusPlus = IsOdd? 1 : -1;
Austin Schuh189376f2018-12-20 22:11:15 +1100232
Austin Schuhc55b0172022-02-20 17:52:35 -0800233 const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
234
235 res[1] = atan2(Rsum, mat(I_, I_));
236
237 // There is a singularity when sin(beta) == 0
238 if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
239 res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
240 res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
241 }
242 else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1
243 Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma)
244 Scalar cpos = mat(J_, J_) + mat(K_, K_); // 2*cos(alpha + gamma)
245 res[0] = atan2(spos, cpos);
246 res[2] = 0;
247 }
248 else {// sin(beta) == 0 and cos(beta) == -1
249 Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma)
250 Scalar cneg = mat(J_, J_) - mat(K_, K_); // 2*cos(alpha - gamma)
251 res[0] = atan2(sneg, cneg);
252 res[2] = 0;
253 }
Austin Schuh189376f2018-12-20 22:11:15 +1100254 }
255
256 template<typename Scalar>
257 static void CalcEulerAngles(
258 EulerAngles<Scalar, EulerSystem>& res,
259 const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
260 {
Austin Schuh189376f2018-12-20 22:11:15 +1100261 CalcEulerAngles_imp(
262 res.angles(), mat,
263 typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
264
Austin Schuhc55b0172022-02-20 17:52:35 -0800265 if (IsAlphaOpposite)
Austin Schuh189376f2018-12-20 22:11:15 +1100266 res.alpha() = -res.alpha();
267
Austin Schuhc55b0172022-02-20 17:52:35 -0800268 if (IsBetaOpposite)
Austin Schuh189376f2018-12-20 22:11:15 +1100269 res.beta() = -res.beta();
270
Austin Schuhc55b0172022-02-20 17:52:35 -0800271 if (IsGammaOpposite)
Austin Schuh189376f2018-12-20 22:11:15 +1100272 res.gamma() = -res.gamma();
Austin Schuh189376f2018-12-20 22:11:15 +1100273 }
274
275 template <typename _Scalar, class _System>
276 friend class Eigen::EulerAngles;
Austin Schuhc55b0172022-02-20 17:52:35 -0800277
278 template<typename System,
279 typename Other,
280 int OtherRows,
281 int OtherCols>
282 friend struct internal::eulerangles_assign_impl;
Austin Schuh189376f2018-12-20 22:11:15 +1100283 };
284
285#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
286 /** \ingroup EulerAngles_Module */ \
287 typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
288
289 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
290 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
291 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
292 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
293
294 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
295 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
296 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
297 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
298
299 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
300 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
301 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
302 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
303}
304
305#endif // EIGEN_EULERSYSTEM_H