Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
new file mode 100644
index 0000000..98f9f64
--- /dev/null
+++ b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -0,0 +1,326 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERSYSTEM_H
+#define EIGEN_EULERSYSTEM_H
+
+namespace Eigen
+{
+  // Forward declerations
+  template <typename _Scalar, class _System>
+  class EulerAngles;
+  
+  namespace internal
+  {
+    // TODO: Check if already exists on the rest API
+    template <int Num, bool IsPositive = (Num > 0)>
+    struct Abs
+    {
+      enum { value = Num };
+    };
+  
+    template <int Num>
+    struct Abs<Num, false>
+    {
+      enum { value = -Num };
+    };
+
+    template <int Axis>
+    struct IsValidAxis
+    {
+      enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
+    };
+  }
+  
+  #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
+  
+  /** \brief Representation of a fixed signed rotation axis for EulerSystem.
+    *
+    * \ingroup EulerAngles_Module
+    *
+    * Values here represent:
+    *  - The axis of the rotation: X, Y or Z.
+    *  - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
+    *
+    * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
+    *
+    * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
+    */
+  enum EulerAxis
+  {
+    EULER_X = 1, /*!< the X axis */
+    EULER_Y = 2, /*!< the Y axis */
+    EULER_Z = 3  /*!< the Z axis */
+  };
+  
+  /** \class EulerSystem
+    *
+    * \ingroup EulerAngles_Module
+    *
+    * \brief Represents a fixed Euler rotation system.
+    *
+    * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
+    *
+    * You can use this class to get two things:
+    *  - Build an Euler system, and then pass it as a template parameter to EulerAngles.
+    *  - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
+    *
+    * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
+    * This meta-class store constantly those signed axes. (see \ref EulerAxis)
+    *
+    * ### Types of Euler systems ###
+    *
+    * All and only valid 3 dimension Euler rotation over standard
+    *  signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
+    *  - all axes X, Y, Z in each valid order (see below what order is valid)
+    *  - rotation over the axis is supported both over the positive and negative directions.
+    *  - both tait bryan and proper/classic Euler angles (i.e. the opposite).
+    *
+    * Since EulerSystem support both positive and negative directions,
+    *  you may call this rotation distinction in other names:
+    *  - _right handed_ or _left handed_
+    *  - _counterclockwise_ or _clockwise_
+    *
+    * Notice all axed combination are valid, and would trigger a static assertion.
+    * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
+    * This yield two and only two classes:
+    *  - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+    *  - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
+    *     and the second is different, e.g. {X,Y,X}
+    *
+    * ### Intrinsic vs extrinsic Euler systems ###
+    *
+    * Only intrinsic Euler systems are supported for simplicity.
+    *  If you want to use extrinsic Euler systems,
+    *   just use the equal intrinsic opposite order for axes and angles.
+    *  I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
+    *
+    * ### Convenient user typedefs ###
+    *
+    * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
+    *  in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
+    *
+    * ### Additional reading ###
+    *
+    * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+    *
+    * \tparam _AlphaAxis the first fixed EulerAxis
+    *
+    * \tparam _AlphaAxis the second fixed EulerAxis
+    *
+    * \tparam _AlphaAxis the third fixed EulerAxis
+    */
+  template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
+  class EulerSystem
+  {
+    public:
+    // It's defined this way and not as enum, because I think
+    //  that enum is not guerantee to support negative numbers
+    
+    /** The first rotation axis */
+    static const int AlphaAxis = _AlphaAxis;
+    
+    /** The second rotation axis */
+    static const int BetaAxis = _BetaAxis;
+    
+    /** The third rotation axis */
+    static const int GammaAxis = _GammaAxis;
+
+    enum
+    {
+      AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
+      BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
+      GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
+      
+      IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
+      IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
+      IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
+      
+      IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
+      IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
+
+      IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
+    };
+    
+    private:
+    
+    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
+      ALPHA_AXIS_IS_INVALID);
+      
+    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
+      BETA_AXIS_IS_INVALID);
+      
+    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
+      GAMMA_AXIS_IS_INVALID);
+      
+    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
+      ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
+      
+    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
+      BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
+
+    enum
+    {
+      // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system. 
+      // They are used in this class converters.
+      // They are always different from each other, and their possible values are: 0, 1, or 2.
+      I = AlphaAxisAbs - 1,
+      J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
+      K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
+    };
+    
+    // TODO: Get @mat parameter in form that avoids double evaluation.
+    template <typename Derived>
+    static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
+    {
+      using std::atan2;
+      using std::sin;
+      using std::cos;
+      
+      typedef typename Derived::Scalar Scalar;
+      typedef Matrix<Scalar,2,1> Vector2;
+      
+      res[0] = atan2(mat(J,K), mat(K,K));
+      Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
+      if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
+        if(res[0] > Scalar(0)) {
+          res[0] -= Scalar(EIGEN_PI);
+        }
+        else {
+          res[0] += Scalar(EIGEN_PI);
+        }
+        res[1] = atan2(-mat(I,K), -c2);
+      }
+      else
+        res[1] = atan2(-mat(I,K), c2);
+      Scalar s1 = sin(res[0]);
+      Scalar c1 = cos(res[0]);
+      res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
+    }
+
+    template <typename Derived>
+    static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+    {
+      using std::atan2;
+      using std::sin;
+      using std::cos;
+
+      typedef typename Derived::Scalar Scalar;
+      typedef Matrix<Scalar,2,1> Vector2;
+      
+      res[0] = atan2(mat(J,I), mat(K,I));
+      if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
+      {
+        if(res[0] > Scalar(0)) {
+          res[0] -= Scalar(EIGEN_PI);
+        }
+        else {
+          res[0] += Scalar(EIGEN_PI);
+        }
+        Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+        res[1] = -atan2(s2, mat(I,I));
+      }
+      else
+      {
+        Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+        res[1] = atan2(s2, mat(I,I));
+      }
+
+      // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+      // we can compute their respective rotation, and apply its inverse to M. Since the result must
+      // be a rotation around x, we have:
+      //
+      //  c2  s1.s2 c1.s2                   1  0   0 
+      //  0   c1    -s1       *    M    =   0  c3  s3
+      //  -s2 s1.c2 c1.c2                   0 -s3  c3
+      //
+      //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3
+
+      Scalar s1 = sin(res[0]);
+      Scalar c1 = cos(res[0]);
+      res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
+    }
+    
+    template<typename Scalar>
+    static void CalcEulerAngles(
+      EulerAngles<Scalar, EulerSystem>& res,
+      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+    {
+      CalcEulerAngles(res, mat, false, false, false);
+    }
+    
+    template<
+      bool PositiveRangeAlpha,
+      bool PositiveRangeBeta,
+      bool PositiveRangeGamma,
+      typename Scalar>
+    static void CalcEulerAngles(
+      EulerAngles<Scalar, EulerSystem>& res,
+      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+    {
+      CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
+    }
+    
+    template<typename Scalar>
+    static void CalcEulerAngles(
+      EulerAngles<Scalar, EulerSystem>& res,
+      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
+      bool PositiveRangeAlpha,
+      bool PositiveRangeBeta,
+      bool PositiveRangeGamma)
+    {
+      CalcEulerAngles_imp(
+        res.angles(), mat,
+        typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
+
+      if (IsAlphaOpposite == IsOdd)
+        res.alpha() = -res.alpha();
+        
+      if (IsBetaOpposite == IsOdd)
+        res.beta() = -res.beta();
+        
+      if (IsGammaOpposite == IsOdd)
+        res.gamma() = -res.gamma();
+      
+      // Saturate results to the requested range
+      if (PositiveRangeAlpha && (res.alpha() < 0))
+        res.alpha() += Scalar(2 * EIGEN_PI);
+      
+      if (PositiveRangeBeta && (res.beta() < 0))
+        res.beta() += Scalar(2 * EIGEN_PI);
+      
+      if (PositiveRangeGamma && (res.gamma() < 0))
+        res.gamma() += Scalar(2 * EIGEN_PI);
+    }
+    
+    template <typename _Scalar, class _System>
+    friend class Eigen::EulerAngles;
+  };
+
+#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
+  /** \ingroup EulerAngles_Module */ \
+  typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
+  
+  EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
+  EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
+  EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
+  EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
+  
+  EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
+  
+  EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
+  EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
+}
+
+#endif // EIGEN_EULERSYSTEM_H