blob: 98f9f647df170b0086437a367ed81bc1fe7611c4 [file] [log] [blame]
Austin Schuh189376f2018-12-20 22:11:15 +11001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_EULERSYSTEM_H
11#define EIGEN_EULERSYSTEM_H
12
13namespace Eigen
14{
15 // Forward declerations
16 template <typename _Scalar, class _System>
17 class EulerAngles;
18
19 namespace internal
20 {
21 // TODO: Check if already exists on the rest API
22 template <int Num, bool IsPositive = (Num > 0)>
23 struct Abs
24 {
25 enum { value = Num };
26 };
27
28 template <int Num>
29 struct Abs<Num, false>
30 {
31 enum { value = -Num };
32 };
33
34 template <int Axis>
35 struct IsValidAxis
36 {
37 enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
38 };
39 }
40
41 #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
42
43 /** \brief Representation of a fixed signed rotation axis for EulerSystem.
44 *
45 * \ingroup EulerAngles_Module
46 *
47 * Values here represent:
48 * - The axis of the rotation: X, Y or Z.
49 * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
50 *
51 * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
52 *
53 * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
54 */
55 enum EulerAxis
56 {
57 EULER_X = 1, /*!< the X axis */
58 EULER_Y = 2, /*!< the Y axis */
59 EULER_Z = 3 /*!< the Z axis */
60 };
61
62 /** \class EulerSystem
63 *
64 * \ingroup EulerAngles_Module
65 *
66 * \brief Represents a fixed Euler rotation system.
67 *
68 * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
69 *
70 * You can use this class to get two things:
71 * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
72 * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
73 *
74 * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
75 * This meta-class store constantly those signed axes. (see \ref EulerAxis)
76 *
77 * ### Types of Euler systems ###
78 *
79 * All and only valid 3 dimension Euler rotation over standard
80 * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
81 * - all axes X, Y, Z in each valid order (see below what order is valid)
82 * - rotation over the axis is supported both over the positive and negative directions.
83 * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
84 *
85 * Since EulerSystem support both positive and negative directions,
86 * you may call this rotation distinction in other names:
87 * - _right handed_ or _left handed_
88 * - _counterclockwise_ or _clockwise_
89 *
90 * Notice all axed combination are valid, and would trigger a static assertion.
91 * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
92 * This yield two and only two classes:
93 * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
94 * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
95 * and the second is different, e.g. {X,Y,X}
96 *
97 * ### Intrinsic vs extrinsic Euler systems ###
98 *
99 * Only intrinsic Euler systems are supported for simplicity.
100 * If you want to use extrinsic Euler systems,
101 * just use the equal intrinsic opposite order for axes and angles.
102 * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
103 *
104 * ### Convenient user typedefs ###
105 *
106 * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
107 * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
108 *
109 * ### Additional reading ###
110 *
111 * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
112 *
113 * \tparam _AlphaAxis the first fixed EulerAxis
114 *
115 * \tparam _AlphaAxis the second fixed EulerAxis
116 *
117 * \tparam _AlphaAxis the third fixed EulerAxis
118 */
119 template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
120 class EulerSystem
121 {
122 public:
123 // It's defined this way and not as enum, because I think
124 // that enum is not guerantee to support negative numbers
125
126 /** The first rotation axis */
127 static const int AlphaAxis = _AlphaAxis;
128
129 /** The second rotation axis */
130 static const int BetaAxis = _BetaAxis;
131
132 /** The third rotation axis */
133 static const int GammaAxis = _GammaAxis;
134
135 enum
136 {
137 AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
138 BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
139 GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
140
141 IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
142 IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
143 IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
144
145 IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
146 IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
147
148 IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
149 };
150
151 private:
152
153 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
154 ALPHA_AXIS_IS_INVALID);
155
156 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
157 BETA_AXIS_IS_INVALID);
158
159 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
160 GAMMA_AXIS_IS_INVALID);
161
162 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
163 ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
164
165 EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
166 BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
167
168 enum
169 {
170 // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
171 // They are used in this class converters.
172 // They are always different from each other, and their possible values are: 0, 1, or 2.
173 I = AlphaAxisAbs - 1,
174 J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
175 K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
176 };
177
178 // TODO: Get @mat parameter in form that avoids double evaluation.
179 template <typename Derived>
180 static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
181 {
182 using std::atan2;
183 using std::sin;
184 using std::cos;
185
186 typedef typename Derived::Scalar Scalar;
187 typedef Matrix<Scalar,2,1> Vector2;
188
189 res[0] = atan2(mat(J,K), mat(K,K));
190 Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
191 if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
192 if(res[0] > Scalar(0)) {
193 res[0] -= Scalar(EIGEN_PI);
194 }
195 else {
196 res[0] += Scalar(EIGEN_PI);
197 }
198 res[1] = atan2(-mat(I,K), -c2);
199 }
200 else
201 res[1] = atan2(-mat(I,K), c2);
202 Scalar s1 = sin(res[0]);
203 Scalar c1 = cos(res[0]);
204 res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
205 }
206
207 template <typename Derived>
208 static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
209 {
210 using std::atan2;
211 using std::sin;
212 using std::cos;
213
214 typedef typename Derived::Scalar Scalar;
215 typedef Matrix<Scalar,2,1> Vector2;
216
217 res[0] = atan2(mat(J,I), mat(K,I));
218 if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
219 {
220 if(res[0] > Scalar(0)) {
221 res[0] -= Scalar(EIGEN_PI);
222 }
223 else {
224 res[0] += Scalar(EIGEN_PI);
225 }
226 Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
227 res[1] = -atan2(s2, mat(I,I));
228 }
229 else
230 {
231 Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
232 res[1] = atan2(s2, mat(I,I));
233 }
234
235 // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
236 // we can compute their respective rotation, and apply its inverse to M. Since the result must
237 // be a rotation around x, we have:
238 //
239 // c2 s1.s2 c1.s2 1 0 0
240 // 0 c1 -s1 * M = 0 c3 s3
241 // -s2 s1.c2 c1.c2 0 -s3 c3
242 //
243 // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
244
245 Scalar s1 = sin(res[0]);
246 Scalar c1 = cos(res[0]);
247 res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
248 }
249
250 template<typename Scalar>
251 static void CalcEulerAngles(
252 EulerAngles<Scalar, EulerSystem>& res,
253 const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
254 {
255 CalcEulerAngles(res, mat, false, false, false);
256 }
257
258 template<
259 bool PositiveRangeAlpha,
260 bool PositiveRangeBeta,
261 bool PositiveRangeGamma,
262 typename Scalar>
263 static void CalcEulerAngles(
264 EulerAngles<Scalar, EulerSystem>& res,
265 const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
266 {
267 CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
268 }
269
270 template<typename Scalar>
271 static void CalcEulerAngles(
272 EulerAngles<Scalar, EulerSystem>& res,
273 const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
274 bool PositiveRangeAlpha,
275 bool PositiveRangeBeta,
276 bool PositiveRangeGamma)
277 {
278 CalcEulerAngles_imp(
279 res.angles(), mat,
280 typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
281
282 if (IsAlphaOpposite == IsOdd)
283 res.alpha() = -res.alpha();
284
285 if (IsBetaOpposite == IsOdd)
286 res.beta() = -res.beta();
287
288 if (IsGammaOpposite == IsOdd)
289 res.gamma() = -res.gamma();
290
291 // Saturate results to the requested range
292 if (PositiveRangeAlpha && (res.alpha() < 0))
293 res.alpha() += Scalar(2 * EIGEN_PI);
294
295 if (PositiveRangeBeta && (res.beta() < 0))
296 res.beta() += Scalar(2 * EIGEN_PI);
297
298 if (PositiveRangeGamma && (res.gamma() < 0))
299 res.gamma() += Scalar(2 * EIGEN_PI);
300 }
301
302 template <typename _Scalar, class _System>
303 friend class Eigen::EulerAngles;
304 };
305
306#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
307 /** \ingroup EulerAngles_Module */ \
308 typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
309
310 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
311 EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
312 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
313 EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
314
315 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
316 EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
317 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
318 EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
319
320 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
321 EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
322 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
323 EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
324}
325
326#endif // EIGEN_EULERSYSTEM_H