blob: c578970142114353ea402af96e575496ea97c8a6 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001
2// This file is part of Eigen, a lightweight C++ template library
3// for linear algebra.
4//
5// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_ORDERING_H
12#define EIGEN_ORDERING_H
13
14namespace Eigen {
15
16#include "Eigen_Colamd.h"
17
18namespace internal {
19
20/** \internal
21 * \ingroup OrderingMethods_Module
Austin Schuh189376f2018-12-20 22:11:15 +110022 * \param[in] A the input non-symmetric matrix
23 * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
Brian Silverman72890c22015-09-19 14:37:37 -040024 * FIXME: The values should not be considered here
25 */
26template<typename MatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +110027void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
Brian Silverman72890c22015-09-19 14:37:37 -040028{
29 MatrixType C;
Austin Schuh189376f2018-12-20 22:11:15 +110030 C = A.transpose(); // NOTE: Could be costly
Brian Silverman72890c22015-09-19 14:37:37 -040031 for (int i = 0; i < C.rows(); i++)
32 {
33 for (typename MatrixType::InnerIterator it(C, i); it; ++it)
Austin Schuhc55b0172022-02-20 17:52:35 -080034 it.valueRef() = typename MatrixType::Scalar(0);
Brian Silverman72890c22015-09-19 14:37:37 -040035 }
Austin Schuh189376f2018-12-20 22:11:15 +110036 symmat = C + A;
Brian Silverman72890c22015-09-19 14:37:37 -040037}
38
39}
40
Brian Silverman72890c22015-09-19 14:37:37 -040041/** \ingroup OrderingMethods_Module
42 * \class AMDOrdering
43 *
44 * Functor computing the \em approximate \em minimum \em degree ordering
45 * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
Austin Schuh189376f2018-12-20 22:11:15 +110046 * \tparam StorageIndex The type of indices of the matrix
Brian Silverman72890c22015-09-19 14:37:37 -040047 * \sa COLAMDOrdering
48 */
Austin Schuh189376f2018-12-20 22:11:15 +110049template <typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -040050class AMDOrdering
51{
52 public:
Austin Schuh189376f2018-12-20 22:11:15 +110053 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
Brian Silverman72890c22015-09-19 14:37:37 -040054
55 /** Compute the permutation vector from a sparse matrix
56 * This routine is much faster if the input matrix is column-major
57 */
58 template <typename MatrixType>
59 void operator()(const MatrixType& mat, PermutationType& perm)
60 {
61 // Compute the symmetric pattern
Austin Schuh189376f2018-12-20 22:11:15 +110062 SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm;
Brian Silverman72890c22015-09-19 14:37:37 -040063 internal::ordering_helper_at_plus_a(mat,symm);
64
65 // Call the AMD routine
66 //m_mat.prune(keep_diag());
67 internal::minimum_degree_ordering(symm, perm);
68 }
69
70 /** Compute the permutation with a selfadjoint matrix */
71 template <typename SrcType, unsigned int SrcUpLo>
72 void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
73 {
Austin Schuh189376f2018-12-20 22:11:15 +110074 SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat;
Brian Silverman72890c22015-09-19 14:37:37 -040075
76 // Call the AMD routine
77 // m_mat.prune(keep_diag()); //Remove the diagonal elements
78 internal::minimum_degree_ordering(C, perm);
79 }
80};
81
Brian Silverman72890c22015-09-19 14:37:37 -040082/** \ingroup OrderingMethods_Module
83 * \class NaturalOrdering
84 *
85 * Functor computing the natural ordering (identity)
86 *
87 * \note Returns an empty permutation matrix
Austin Schuh189376f2018-12-20 22:11:15 +110088 * \tparam StorageIndex The type of indices of the matrix
Brian Silverman72890c22015-09-19 14:37:37 -040089 */
Austin Schuh189376f2018-12-20 22:11:15 +110090template <typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -040091class NaturalOrdering
92{
93 public:
Austin Schuh189376f2018-12-20 22:11:15 +110094 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
Brian Silverman72890c22015-09-19 14:37:37 -040095
96 /** Compute the permutation vector from a column-major sparse matrix */
97 template <typename MatrixType>
98 void operator()(const MatrixType& /*mat*/, PermutationType& perm)
99 {
100 perm.resize(0);
101 }
102
103};
104
105/** \ingroup OrderingMethods_Module
106 * \class COLAMDOrdering
107 *
Austin Schuh189376f2018-12-20 22:11:15 +1100108 * \tparam StorageIndex The type of indices of the matrix
109 *
Brian Silverman72890c22015-09-19 14:37:37 -0400110 * Functor computing the \em column \em approximate \em minimum \em degree ordering
111 * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
112 */
Austin Schuh189376f2018-12-20 22:11:15 +1100113template<typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -0400114class COLAMDOrdering
115{
116 public:
Austin Schuh189376f2018-12-20 22:11:15 +1100117 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
118 typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
Brian Silverman72890c22015-09-19 14:37:37 -0400119
120 /** Compute the permutation vector \a perm form the sparse matrix \a mat
121 * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
122 */
123 template <typename MatrixType>
124 void operator() (const MatrixType& mat, PermutationType& perm)
125 {
126 eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
127
Austin Schuh189376f2018-12-20 22:11:15 +1100128 StorageIndex m = StorageIndex(mat.rows());
129 StorageIndex n = StorageIndex(mat.cols());
130 StorageIndex nnz = StorageIndex(mat.nonZeros());
Brian Silverman72890c22015-09-19 14:37:37 -0400131 // Get the recommended value of Alen to be used by colamd
Austin Schuhc55b0172022-02-20 17:52:35 -0800132 StorageIndex Alen = internal::Colamd::recommended(nnz, m, n);
Brian Silverman72890c22015-09-19 14:37:37 -0400133 // Set the default parameters
Austin Schuhc55b0172022-02-20 17:52:35 -0800134 double knobs [internal::Colamd::NKnobs];
135 StorageIndex stats [internal::Colamd::NStats];
136 internal::Colamd::set_defaults(knobs);
Brian Silverman72890c22015-09-19 14:37:37 -0400137
138 IndexVector p(n+1), A(Alen);
Austin Schuh189376f2018-12-20 22:11:15 +1100139 for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
140 for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
Brian Silverman72890c22015-09-19 14:37:37 -0400141 // Call Colamd routine to compute the ordering
Austin Schuhc55b0172022-02-20 17:52:35 -0800142 StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats);
Brian Silverman72890c22015-09-19 14:37:37 -0400143 EIGEN_UNUSED_VARIABLE(info);
144 eigen_assert( info && "COLAMD failed " );
145
146 perm.resize(n);
Austin Schuh189376f2018-12-20 22:11:15 +1100147 for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
Brian Silverman72890c22015-09-19 14:37:37 -0400148 }
149};
150
151} // end namespace Eigen
152
153#endif