Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | |
| 2 | // This file is part of Eigen, a lightweight C++ template library |
| 3 | // for linear algebra. |
| 4 | // |
| 5 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_ORDERING_H |
| 12 | #define EIGEN_ORDERING_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | #include "Eigen_Colamd.h" |
| 17 | |
| 18 | namespace internal { |
| 19 | |
| 20 | /** \internal |
| 21 | * \ingroup OrderingMethods_Module |
| 22 | * \returns the symmetric pattern A^T+A from the input matrix A. |
| 23 | * FIXME: The values should not be considered here |
| 24 | */ |
| 25 | template<typename MatrixType> |
| 26 | void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat) |
| 27 | { |
| 28 | MatrixType C; |
| 29 | C = mat.transpose(); // NOTE: Could be costly |
| 30 | for (int i = 0; i < C.rows(); i++) |
| 31 | { |
| 32 | for (typename MatrixType::InnerIterator it(C, i); it; ++it) |
| 33 | it.valueRef() = 0.0; |
| 34 | } |
| 35 | symmat = C + mat; |
| 36 | } |
| 37 | |
| 38 | } |
| 39 | |
| 40 | #ifndef EIGEN_MPL2_ONLY |
| 41 | |
| 42 | /** \ingroup OrderingMethods_Module |
| 43 | * \class AMDOrdering |
| 44 | * |
| 45 | * Functor computing the \em approximate \em minimum \em degree ordering |
| 46 | * If the matrix is not structurally symmetric, an ordering of A^T+A is computed |
| 47 | * \tparam Index The type of indices of the matrix |
| 48 | * \sa COLAMDOrdering |
| 49 | */ |
| 50 | template <typename Index> |
| 51 | class AMDOrdering |
| 52 | { |
| 53 | public: |
| 54 | typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; |
| 55 | |
| 56 | /** Compute the permutation vector from a sparse matrix |
| 57 | * This routine is much faster if the input matrix is column-major |
| 58 | */ |
| 59 | template <typename MatrixType> |
| 60 | void operator()(const MatrixType& mat, PermutationType& perm) |
| 61 | { |
| 62 | // Compute the symmetric pattern |
| 63 | SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm; |
| 64 | internal::ordering_helper_at_plus_a(mat,symm); |
| 65 | |
| 66 | // Call the AMD routine |
| 67 | //m_mat.prune(keep_diag()); |
| 68 | internal::minimum_degree_ordering(symm, perm); |
| 69 | } |
| 70 | |
| 71 | /** Compute the permutation with a selfadjoint matrix */ |
| 72 | template <typename SrcType, unsigned int SrcUpLo> |
| 73 | void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) |
| 74 | { |
| 75 | SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat; |
| 76 | |
| 77 | // Call the AMD routine |
| 78 | // m_mat.prune(keep_diag()); //Remove the diagonal elements |
| 79 | internal::minimum_degree_ordering(C, perm); |
| 80 | } |
| 81 | }; |
| 82 | |
| 83 | #endif // EIGEN_MPL2_ONLY |
| 84 | |
| 85 | /** \ingroup OrderingMethods_Module |
| 86 | * \class NaturalOrdering |
| 87 | * |
| 88 | * Functor computing the natural ordering (identity) |
| 89 | * |
| 90 | * \note Returns an empty permutation matrix |
| 91 | * \tparam Index The type of indices of the matrix |
| 92 | */ |
| 93 | template <typename Index> |
| 94 | class NaturalOrdering |
| 95 | { |
| 96 | public: |
| 97 | typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; |
| 98 | |
| 99 | /** Compute the permutation vector from a column-major sparse matrix */ |
| 100 | template <typename MatrixType> |
| 101 | void operator()(const MatrixType& /*mat*/, PermutationType& perm) |
| 102 | { |
| 103 | perm.resize(0); |
| 104 | } |
| 105 | |
| 106 | }; |
| 107 | |
| 108 | /** \ingroup OrderingMethods_Module |
| 109 | * \class COLAMDOrdering |
| 110 | * |
| 111 | * Functor computing the \em column \em approximate \em minimum \em degree ordering |
| 112 | * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). |
| 113 | */ |
| 114 | template<typename Index> |
| 115 | class COLAMDOrdering |
| 116 | { |
| 117 | public: |
| 118 | typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; |
| 119 | typedef Matrix<Index, Dynamic, 1> IndexVector; |
| 120 | |
| 121 | /** Compute the permutation vector \a perm form the sparse matrix \a mat |
| 122 | * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). |
| 123 | */ |
| 124 | template <typename MatrixType> |
| 125 | void operator() (const MatrixType& mat, PermutationType& perm) |
| 126 | { |
| 127 | eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); |
| 128 | |
| 129 | Index m = mat.rows(); |
| 130 | Index n = mat.cols(); |
| 131 | Index nnz = mat.nonZeros(); |
| 132 | // Get the recommended value of Alen to be used by colamd |
| 133 | Index Alen = internal::colamd_recommended(nnz, m, n); |
| 134 | // Set the default parameters |
| 135 | double knobs [COLAMD_KNOBS]; |
| 136 | Index stats [COLAMD_STATS]; |
| 137 | internal::colamd_set_defaults(knobs); |
| 138 | |
| 139 | IndexVector p(n+1), A(Alen); |
| 140 | for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; |
| 141 | for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; |
| 142 | // Call Colamd routine to compute the ordering |
| 143 | Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); |
| 144 | EIGEN_UNUSED_VARIABLE(info); |
| 145 | eigen_assert( info && "COLAMD failed " ); |
| 146 | |
| 147 | perm.resize(n); |
| 148 | for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i; |
| 149 | } |
| 150 | }; |
| 151 | |
| 152 | } // end namespace Eigen |
| 153 | |
| 154 | #endif |