blob: 7ea9b14d7eb285206a4eb98f9b084a3486b65e5e [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001
2// This file is part of Eigen, a lightweight C++ template library
3// for linear algebra.
4//
5// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_ORDERING_H
12#define EIGEN_ORDERING_H
13
14namespace Eigen {
15
16#include "Eigen_Colamd.h"
17
18namespace internal {
19
20/** \internal
21 * \ingroup OrderingMethods_Module
Austin Schuh189376f2018-12-20 22:11:15 +110022 * \param[in] A the input non-symmetric matrix
23 * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
Brian Silverman72890c22015-09-19 14:37:37 -040024 * FIXME: The values should not be considered here
25 */
26template<typename MatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +110027void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
Brian Silverman72890c22015-09-19 14:37:37 -040028{
29 MatrixType C;
Austin Schuh189376f2018-12-20 22:11:15 +110030 C = A.transpose(); // NOTE: Could be costly
Brian Silverman72890c22015-09-19 14:37:37 -040031 for (int i = 0; i < C.rows(); i++)
32 {
33 for (typename MatrixType::InnerIterator it(C, i); it; ++it)
34 it.valueRef() = 0.0;
35 }
Austin Schuh189376f2018-12-20 22:11:15 +110036 symmat = C + A;
Brian Silverman72890c22015-09-19 14:37:37 -040037}
38
39}
40
41#ifndef EIGEN_MPL2_ONLY
42
43/** \ingroup OrderingMethods_Module
44 * \class AMDOrdering
45 *
46 * Functor computing the \em approximate \em minimum \em degree ordering
47 * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
Austin Schuh189376f2018-12-20 22:11:15 +110048 * \tparam StorageIndex The type of indices of the matrix
Brian Silverman72890c22015-09-19 14:37:37 -040049 * \sa COLAMDOrdering
50 */
Austin Schuh189376f2018-12-20 22:11:15 +110051template <typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -040052class AMDOrdering
53{
54 public:
Austin Schuh189376f2018-12-20 22:11:15 +110055 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
Brian Silverman72890c22015-09-19 14:37:37 -040056
57 /** Compute the permutation vector from a sparse matrix
58 * This routine is much faster if the input matrix is column-major
59 */
60 template <typename MatrixType>
61 void operator()(const MatrixType& mat, PermutationType& perm)
62 {
63 // Compute the symmetric pattern
Austin Schuh189376f2018-12-20 22:11:15 +110064 SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm;
Brian Silverman72890c22015-09-19 14:37:37 -040065 internal::ordering_helper_at_plus_a(mat,symm);
66
67 // Call the AMD routine
68 //m_mat.prune(keep_diag());
69 internal::minimum_degree_ordering(symm, perm);
70 }
71
72 /** Compute the permutation with a selfadjoint matrix */
73 template <typename SrcType, unsigned int SrcUpLo>
74 void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
75 {
Austin Schuh189376f2018-12-20 22:11:15 +110076 SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat;
Brian Silverman72890c22015-09-19 14:37:37 -040077
78 // Call the AMD routine
79 // m_mat.prune(keep_diag()); //Remove the diagonal elements
80 internal::minimum_degree_ordering(C, perm);
81 }
82};
83
84#endif // EIGEN_MPL2_ONLY
85
86/** \ingroup OrderingMethods_Module
87 * \class NaturalOrdering
88 *
89 * Functor computing the natural ordering (identity)
90 *
91 * \note Returns an empty permutation matrix
Austin Schuh189376f2018-12-20 22:11:15 +110092 * \tparam StorageIndex The type of indices of the matrix
Brian Silverman72890c22015-09-19 14:37:37 -040093 */
Austin Schuh189376f2018-12-20 22:11:15 +110094template <typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -040095class NaturalOrdering
96{
97 public:
Austin Schuh189376f2018-12-20 22:11:15 +110098 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
Brian Silverman72890c22015-09-19 14:37:37 -040099
100 /** Compute the permutation vector from a column-major sparse matrix */
101 template <typename MatrixType>
102 void operator()(const MatrixType& /*mat*/, PermutationType& perm)
103 {
104 perm.resize(0);
105 }
106
107};
108
109/** \ingroup OrderingMethods_Module
110 * \class COLAMDOrdering
111 *
Austin Schuh189376f2018-12-20 22:11:15 +1100112 * \tparam StorageIndex The type of indices of the matrix
113 *
Brian Silverman72890c22015-09-19 14:37:37 -0400114 * Functor computing the \em column \em approximate \em minimum \em degree ordering
115 * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
116 */
Austin Schuh189376f2018-12-20 22:11:15 +1100117template<typename StorageIndex>
Brian Silverman72890c22015-09-19 14:37:37 -0400118class COLAMDOrdering
119{
120 public:
Austin Schuh189376f2018-12-20 22:11:15 +1100121 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
122 typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
Brian Silverman72890c22015-09-19 14:37:37 -0400123
124 /** Compute the permutation vector \a perm form the sparse matrix \a mat
125 * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
126 */
127 template <typename MatrixType>
128 void operator() (const MatrixType& mat, PermutationType& perm)
129 {
130 eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
131
Austin Schuh189376f2018-12-20 22:11:15 +1100132 StorageIndex m = StorageIndex(mat.rows());
133 StorageIndex n = StorageIndex(mat.cols());
134 StorageIndex nnz = StorageIndex(mat.nonZeros());
Brian Silverman72890c22015-09-19 14:37:37 -0400135 // Get the recommended value of Alen to be used by colamd
Austin Schuh189376f2018-12-20 22:11:15 +1100136 StorageIndex Alen = internal::colamd_recommended(nnz, m, n);
Brian Silverman72890c22015-09-19 14:37:37 -0400137 // Set the default parameters
138 double knobs [COLAMD_KNOBS];
Austin Schuh189376f2018-12-20 22:11:15 +1100139 StorageIndex stats [COLAMD_STATS];
Brian Silverman72890c22015-09-19 14:37:37 -0400140 internal::colamd_set_defaults(knobs);
141
142 IndexVector p(n+1), A(Alen);
Austin Schuh189376f2018-12-20 22:11:15 +1100143 for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
144 for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
Brian Silverman72890c22015-09-19 14:37:37 -0400145 // Call Colamd routine to compute the ordering
Austin Schuh189376f2018-12-20 22:11:15 +1100146 StorageIndex info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
Brian Silverman72890c22015-09-19 14:37:37 -0400147 EIGEN_UNUSED_VARIABLE(info);
148 eigen_assert( info && "COLAMD failed " );
149
150 perm.resize(n);
Austin Schuh189376f2018-12-20 22:11:15 +1100151 for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
Brian Silverman72890c22015-09-19 14:37:37 -0400152 }
153};
154
155} // end namespace Eigen
156
157#endif